1- Abdullah M., Fasola M., Muhammad A., Malik S.A., Bostan N., Bokhari H., Kamran M.A., Shafqat, M.N., Alamdar A., Khan M., and Ali N. 2015. A vianfeathers as a non-destructive bio-monitoring tool of trace metals signatures: a case study from severely contaminated areas. Chemosphere, 119: 553–561.
2- Aldoobie N.F., and Beltagi M.S. 2013. Physiological, biochemical and molecular responses of common bean (Phaseolus vulgaris L.) plants to heavy metals stress. African Journal of Biotechnology, 12(29): 4614-4622.
3- Bahraminia M., Zarei M., Ronaghi A., and Ghasemi-Fasaei R. 2015. Effectiveness of arbuscular mycorrhizal fungi in phytoremediation of lead-contaminated soil by Vetiver grass. International Journal of Phytoremediation, 18: 730-737.
4- Barbosa B., Boleo S, Sidella S., Costa J., Duarte M.P., Mendes B., Cosentino S.L., and Fernando A.L. 2015. Phytoremediation of Heavy Metal-Contaminated Soils Using the Perennial Energy Crops Miscanthus spp. and Arundo donax L. BioEnergy Research, 8: 1500-1511.
5- Bates L.S., Waldern R.P., and Teare I.D. 1973. Rapid determination of free proline for water stress studies. Plant and Soil, 39: 205-207.
6- Behera R.K., and Mishra P.C. 2002. High Irradiance and water stress induce alterations in pigment composition and chloroplast activities of primary wheat leaves. Journal of Plant Physiology, 159: 967-97.
7- Cariny T. 1995. The reuse of contaminated land. John Wiley and Sons Ltd Publisher, 219 p.
8- Carter M.R., and Gregorich E.G. 2008. Soil sampling and methods of analysis (2nd ed). CRC Press. Boca Raton. FL. 1204 p.
9- Cenkci S., Cioerci I.H., Yildiz M., Oezay C., Bozdao A., and Terzi H. 2010. Lead contamination reduces chlorophyll biosynthesis and genomic template stability in Brassica rapa L. Environmental and Experimental Botany, 67: 467-473.
10- Curaqueo G., Schoebitz M., Borie F., Caravaca F., and Roldan A. 2014. Inoculation with arbuscular mycorrhizal fungi and addition of composted olive-mill waste enhance plant establishment and soil properties in the regeneration of a heavy metal-polluted environment. Environmental Science and Pollution Research, 21(12): 7403–7412.
11- Demir S. 2004. Influence of arbuscular mycorrhiza on some physiological growth parameters of pepper. Turkish Journal of Biology, 28: 85-90.
12- Gattai G.S., Pereira S.V., Costa C.M.C., Lima C.E.P., and Maia L. C. 2011. Microbial activity, arbuscular mycorrhizal fungi and inoculation of Woody plants in lead contaminated soil. Brazilian Journal of Microbiology, 42: 859-867.
13- Giovannetti M., and Mosse B. 1980. An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytologist, 84: 489-500.
14- Ivanov Y., Savochkin Y., and Kuznetsov V.l.V. 2013. Development of scots pine seedlings and functioning of antioxidant systems under the chronic action of lead ions. Biological Bulletin, 40(1): 26–35.
15- Janmohammadi M., Bihamta M., and Ghasemzadeh F. 2013. Influence of rhizobacteria inoculation and lead stress on the physiological and biochemical attributes of wheat genotypes. Cercetari agronomice in Moldova, 46: 49–67.
16- Kamran M.A., Eqani S.A., Bibi S., Xu R.K., Amna Monis M.F., Katsoyiannis A., Bokhari H., and Chaudhary H.J. 2016. Bioaccumulation of nickel by E. sativa and role of plant growth promoting rhizobacteria (PGPRs) under nickel stress. Ecotoxicology and Environmental Safety, 126: 256–263.
17- Karamooz H., Safipour Afshar A., and Saeid Nematpour F. 2016. Tolerance and accumulation of heavy metals by Descurainia sophia L. Journal of Chemical Health Risks, 6(1): 69–78.
18- Karimi A., Khodaverdiloo H., Sepehri M., and Rasouli Sadaghiani M.H. 2011. Arbuscular mycorrhizal fungi and heavy metal contaminated soils. African Journal of Microbiology Research, 5: 1571- 1576.
19- Karimi A. Khodaverdiloo H., and Rasouli Sadaghiani M.H. 2013. Enhanced soil Pb extraction by Acroptilon (Acroptilon repens) through inoculation with some arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria.Journal of Water and Soil Conservation, 20(3): 193-210. (In Persian with English abstract).
20- Khodaverdiloo H., Rahmanian M., Rezapour S., Ghorbani Dashtaki Sh., Hadi H., and Han F.X. 2012. Effect of wetting-drying cycles on redistribution of lead in some semi-arid zone soils spiked with a lead salt. Pedosphere, 22: 304–313.
21- Khodaverdiloo H., Rasouli Sadaghiani M.H., and Karimi A. 2013. Influence of microbial inoculation of a Pb-contaminated soil on growth, some physiological properties, and uptake and translocation of Pb, Fe, and Zn by Centaurea (Centaurea cyanus). Journal of Soil Management and Sustainable Production, 3(2): 75-93. (In Persian with English abstract).
22- Khodaverdiloo H., and Hamzenejad Taghlidabad R. 2014. Phytoavailability and potential transfer of Pb from a salt-affected soil to Atriplex verucifera, Salicornia europaea and Chenopodium album. Chemistry and Ecology, 30: 216-226.
23- Kochert. 1978. Carbohydrate determination by phenol-sulfuric acid method. In:J.A. Hellebust and J.S. Craige, Editors, Handbook of physiological andbiochemical methods, Cambridge University Press, London, Pp: 95-97.
24- Kumar A., Prasad M.N.V., and Sytar O. 2012. Lead toxicity, defense strategies and associated indicative biomarkers in Talinum triangulare grown hydroponically. Chemosphere, 89: 1056- 1065.
25- Kumar A., and Prasad M.N.V. 2015. Lead-induced toxicity and interference in chlorophyll fluorescence in Talinum triangulare grown hydroponically. Photosynthetica, 53 (1): 66-71.
26- Lichtenthaler H.K., and Wellburn A.R. 1985. Determination of total carotenoids and chlorophyll a and b of leaf in different solvents. Biochemical Society Transactions, 11: 591-592.
27- Ma Y., Prasad M.N.V., Rajkumar M., and Freitas H. 2011. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnology Advances, 29: 248-258.
28- Mohammadzadeh A., Tavakoli M., Chaichi M.R., and Motesharezadeh B. 2014. Effects of nickel and PGPBs on growth indices and phytoremediation capability of sunflower (Helianthusannuus L.). Archives of Agronomy and Soil Science, 1765-1778.
29- Patra M., Bhowmik N., Bandopadhyay B., and Sharma A. 2004. Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environmental and Experimental Botany, 52(3): 199-223.
30- Qian K., Wang L., and Yin N. 2012. Effects of AMF on soil enzyme activity and carbon sequestration capacity in reclaimed mine soil. International Journal of Mining Science and Technology, 22(4): 553–557.
31- Rasouli Sadaghiani M.H., Kavazi K., Rahimian H., Malakouti M.J., and Asadi H. 2006. An evaluation of the potentials of indigenous fluorescent pseudomonads of wheat rhizosphere for producing siderophore. Journal of Soil Water Sciences, 20: 133-143. (In Persian with English abstract).
32- Rasouli Sadaghiani M.H., Khodaverdiloo H., Barin, M., and Kazemalilou S. 2016. Influence of PGPR bacteria and arbuscular Mycorrhizal fungi on growth and some physiological parameters of Onopordon acanthium in a Cd-contaminated soil. Journal of Water and Soil, 30(2): 542-554. (In Persian with English abstract).
33- Sharma P., and Dubey R.S. 2005. Lead toxicity in plants. Plant Physiology, 17: 35-52.
34- Smith S.E., and Read D.J. 2010. Mycorrhizal symbiosis. Academic press, 800p.
35- Turner N.C. 1981. Techniques and experimental approaches for the measurement of plant water status. Plant and Soil, 58: 339–366.
36- Yang Y., Han X., Liang Y., Ghosh A., Chen J., and Tang M. 2015. The combined effects of arbuscular mycorrhizal fungi (AMF) and lead (Pb) stress on Pb accumulation, plant growth parameters, photosynthesis, and antioxidant enzymes in Robinia pseudoacacia L. Plos One, 10(12): 1-24.