- Abdullah, M. N. Bakar, A. H. A. Rahim, N. A. Mokhlis, H. Illias, H. A. and Jamian, J. J. (2014). Modified particle swarm optimization with time varying acceleration coefficients for economic load dispatch with generator constraints. Journal of Electrical Engineering & Technology, 9(1), 15-26. http://dx.doi.org/10.5370/JEET.2013.8.5.742
 
- Abiodun, O. I. Jantan, A. Omolara, A. E. Dada, K. V. Mohamed, N. A. and Arshad, H. (2018). State-of-the-art in artificial neural network applications: A survey. Heliyon, 4(11), e00938. https://doi.org/10.1016/j.heliyon.2018.e00938
 
- Abraham, A. (2005). Artificial neural networks. Handbook of measuring system design.
 
- Al-Tashi, Q. Kadir, S. J. A. Rais, H. M., Mirjalili, S. and Alhussian, H. (2019). Binary optimization using hybrid grey wolf optimization for feature selection. IEEE Access, 7, 39496-39508.
 
- Amin, I. A. Mahmood, D. Y. and Numan, A. H. (2020, July). Optimal location of UPFC devices for minimizing Losses in Transmission Line. In IOP Conference Series: Materials Science and Engineering. https://doi.org/10.1088/1757-899X/881/1/012129
 
- Dagmar Blatná and JiříTrešl, (2011), Financial Forecasting Using Neural Networks China-USA Business Review, David Publishing ISSN 1537-1514, 10(3), 169-175.
 
- Davallou, M. and Azizi, N. (2017). The Investigation of Information Risk Pricing; Evidence from Adjusted Probability of Informed Trading Measure. Financial Research Journal, 19(3), 415-438. https://doi.org/22059/jfr.2018.251305.1006600
 
- Desan, C. (2008). From blood to profit: Making money in the practice and imagery of early America. Journal of Policy History, 20(1), 26-46. https://doi.org/10.1353/jph.0.0010
 
- Faris, H. Aljarah, I. and Mirjalili, S. (2016). Training feedforward neural networks using multi-verse optimizer for binary classification problems. Applied Intelligence, 45(2), 322-332. https://link.springer.com/article/10.1007/s10489-016-0767-1
 
- Friedman, B. M. (1977). Financial flow variables and the short-run determination of long-term interest rates. Journal of Political Economy, 85(4), 661-689.
 
- Friedman, M. (1966). Interest rates and the demand for money. The Journal of Law and Economics, 9, 71-85.
 
- Ghasemiyeh, R. Moghdani, R. and Sana, S. S. (2017). A hybrid artificial neural network with metaheuristic algorithms for predicting stock price. Cybernetics and Systems, 48(4), 365-392.
 
- https://doi.org/10.1080/01969722.2017.1285162
 
- Göçken, M. Özçalıcı, M. Boru, A. and Dosdoğru, A. T. (2016). Integrating metaheuristics and artificial neural networks for improved stock price prediction. Expert Systems with Applications, 44, 320-331. https://doi.org/10.1016/j.eswa.2015.09.029
 
- Goodfriend, M. (1993). Interest rate policy and the inflation scare problem: 1979-1992. FRB Richmond Economic Quarterly, 79(1), 1-23.
 
- Hadavandi, E. Ghanbari, A. and Abbasian-Naghneh, S. (2010). Developing an evolutionary neural network model for stock index forecasting. Paper presented at the International Conference on Intelligent Computing.
 
- Haider, A. and Hanif, M. N. (2009). Inflation forecasting in Pakistan using artificial neural networks. Pakistan economic and social review, 47(1), 123-138. https://www.jstor.org/stable/25825345
 
- Hassanin, M. F. Shoeb, A. M. and Hassanien, A. E. (2016). Grey wolf optimizer-based back-propagation neural network algorithm. Paper presented at the 2016 12th International Computer Engineering Conference (ICENCO). https://ieeexplore.ieee.org/abstract/document/7856471
 
- He, J. and Guo, H. (2013). A Modified Particle Swarm Optimization Algorithm. TELKOMNIKA Indonesian Journal of Electrical Engineering. 11(10), 6209-6215. https://doi.org/11591/telkomnika.v11i10.2947
 
- Huang, C. F. Chang, B. R. Cheng, D. W. and Chang, C. H. (2012). Feature Selection and Parameter Optimization of a Fuzzy-based Stock Selection Model Using Genetic Algorithms. International Journal of Fuzzy Systems, 14(1), 65-75.
 
- Idris, M. A. Saiang, D. and Nordlund, E. (2015). Stochastic assessment of pillar stability at Laisvall mine using Artificial Neural Network. Tunnelling and Underground Space Technology, 49, 307-319. https://doi.org/10.1016/j.tust.2015.05.003
 
- Jain, A., and Kumar, A. M. (2007). Hybrid neural network models for hydrologic time series forecasting. Applied Soft Computing, 7(2), 585-592.
 
- Jensen, M. C. (2002). Value maximization, stakeholder theory, and the corporate objective function. Business ethics quarterly, 235-256.
 
- Khishe, M. and Mosavi, M. R. (2020). Chimp optimization algorithm. Expert Systems with Applications, 113338. https://doi.org/10.1016/j.eswa.2020.113338
 
- Mirjalili, S. (2015). Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowledge-based systems, 89, 228-249. https://doi.org/10.1016/j.knosys.2015.07.006
 
- Monfared, J.H., Alinejad, M.A., & Metghalchi, S. (2012). A comparative study of neural network models with box Jenkins methodologies in prediction of Tehran price index (tepix). Quarterly of Journal Financial Engineering and Securities Management (portfolio management), 3(11): 1-16. (in Persian)
 
- Mortezapour, R. and Afzali, M. (2013). Assessment of customer credit through combined clustering of artificial neural networks, genetics algorithm and Bayesian probabilities. arXiv preprint arXiv:1312.7740.
 
- Peek, J. and Rosengren, E. S. (2010). The role of banks in the transmission of monetary policy (pp. 257-277). Oxford: Oxford University Press.
 
- Prasanna, S. and Ezhilmaran, D. (2013). An analysis on stock market prediction using data mining techniques. International Journal of Computer Science & Engineering Technology (IJCSET), 4(3), 49-51. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.480.90&rep=rep1&type=pdf
 
- Qasim, N. Rind, M. Q. Sheikh, M. S. (2013). NEURAL NETWORKS A GATEWAY TO NON-LINEAR DATA MODELING TECHNIQUES. Islamic Countries Society of Statistical Sciences, 24, 115-126.
 
- Rather, A. M. Sastry, V. and Agarwal, A. (2017). Stock market prediction and Portfolio selection models: a survey. Opsearch, 54(3), 558-579. https://link.springer.com/article/10.1007/s12597-016-0289-y
 
- Shaheen, M. A. Hasanien, H. M. and Alkuhayli, A. (2020). A novel hybrid GWO-PSO optimization technique for optimal reactive power dispatch problem solution. Ain Shams Engineering Journal. 12(1), 621-630. https://doi.org/1016/j.asej.2020.07.011
 
- Sheela, K. G. and Deepa, S. N. (2013). Review on methods to fix number of hidden neurons in neural networks. Mathematical Problems in Engineering, 2013.
 
- Subramanyam, T. (2016). Selection of input-output variables in data envelopment Analysis-Indian commercial banks. International Journal of Computer & Mathematical Sciences, 5(6), 2347-8527.
 
- Taylor, S. J. (2008). Modelling financial time series. World scientific.
 
- Trujillo‐Ponce, A. (2013). What determines the profitability of banks? Evidence from Spain. Accounting and Finance, 53(2), 561-586. https://doi.org/10.1111/j.1467-629X.2011.00466.
 
- Vercellis, C. (2009). Business intelligence: data mining and optimization for decision making (pp. 1-420). New York: Wiley.
 
- Yasir, M. Afzal, S. Latif, K. Chaudhary, G. M. Malik, N. Y.,Shahzad, F. and Song, O. Y. (2020). An Efficient Deep Learning Based Model to Predict Interest Rate Using Twitter Sentiment. Sustainability, 12(4), 1660. https://doi.org/10.3390/su12041660
 
- Zhang, T. and Wu, W. B. (2011). Testing parametric assumptions of trends of a nonstationary time series. Biometrika, 98(3), 599-614. https://doi.org/10.1093/biomet/asr017
 
  			 
			 |