- [1] B. Zoph, Q. V. Le, Neural architecture search with reinforcement learning, arXiv preprint arXiv:1611.01578 (2016).
- [2] Baker, O. Gupta, N. Naik, R. Raskar, Designing neural network architectures using reinforcement learning, arXiv preprint arXiv:1611.02167, (2016).
- [3] Brock, T. Lim, J. M. Ritchie, N. Weston, Smash: one-shot model architecture search through hypernetworks, arXiv preprint arXiv:1708.05344 (2017).
- [4] Liu, K. Simonyan, Y. Yang, Darts: Differentiable architecture search, arXiv preprint arXiv:1806.09055 (2018).
- [5] Wang, Y. Zhao, Y. Jinnai, Y. Tian, R. Fonseca, Neural architecture search using deep neural networks and monte carlo tree search, Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, (2020)
- [6] Deng, J. Yan, D. Lin, Peephole: Predicting network performance before training, arXiv preprint arXiv:1712.03351 (2017)
- [7] Luo, F. Tian, T. Qin, E. Chen, T.-Y. Liu, Neural architecture optimization, arXiv preprint arXiv:1808.07233 (2018)
- [8] Baker, O. Gupta, R. Raskar, N. Naik, Accelerating neural architecture search using performance prediction, arXiv preprint arXiv:1705.10823 435, (2017)
- [9] Zhong, J. Yan, W. Wu, J. Shao, C.-L. Liu, Practical block-wise neural network architecture generation, in: Proceedings of the IEEE conference on computer vision and pattern recognition, (2018).
- Zoph, V. Vasudevan, J. Shlens, Q. V. Le, Learning transferable architectures for scalable image recognition, in: Proceedings of the IEEE conference on computer vision and pattern recognition, (2018).
- Luo, X. Tan, R. Wang, T. Qin, E. Chen, T.-Y. Liu, Neural architecture search with gbdt, arXiv preprint arXiv:2007.04785 (2020)
- Ying, A. Klein, E. Christiansen, E. Real, K. Murphy, F. Hutter, Nas-bench-101: Towards reproducible neural architecture search, in: International Conference on Machine Learning, PMLR, (2019).
- Dong, Y. Yang, Nas-bench-201: Extending the scope of reproducible neural architecture search, arXiv preprint arXiv:2001.00326 (2020).
- Veit, M. J. Wilber, S. Belongie, Residual networks behave like ensembles of relatively shallow networks, Advances in neural information processing systems 29 (2016).
- Wen, H. Liu, Y. Chen, H. Li, G. Bender, P.-J. Kindermans, Neural predictor for neural architecture search, in: European Conference on Computer Vision, Springer, (2020)
- Real, A. Aggarwal, Y. Huang, Q. V. Le, Regularized evolution for image classifier architecture search, in: Proceedings of the aaai conference on artificial intelligence, Vol. 33, (2019)
- White, W. Neiswanger, Y. Savani, Bananas: Bayesian optimization with neural architectures for neural architecture search, arXiv preprint arXiv:1910.11858 1 (2) (2019).
- Li, A. Talwalkar, Random search and reproducibility for neural architecture search, in: arXiv preprint arXiv:1902.07638, (2019).
- Wu, X. Dai, D. Chen, Y. Chen, M. Liu, Y. Yu, Z. Wang, Z. Liu, M. Chen, L. Yuan, Weak nas predictors are all you need, arXiv preprint arXiv:2102.10490 (2021).
- White, W. Neiswanger, S. Nolen, Y. Savani, A study on encodings for neural architecture search, arXiv preprint arXiv:2007.04965 (2020)
- Wei, C. Niu, Y. Tang, Y. Wang, H. Hu, J. Liang, Npenas: Neural predictor guided evolution for neural architecture search, arXiv preprint arXiv:2003.12857 (2020).
- Sun, H. Wang, B. Xue, Y. Jin, G. G. Yen, M. Zhang, Surrogate-assisted evolutionary deep learning using an end-to-end random forest-based performance predictor, IEEE Transactions on Evolutionary Computation 24 (2), (2019)
- Istrate, F. Scheidegger, G. Mariani, D. Nikolopoulos, C. Bekas, A. C. I. Malossi, Tapas: Train-less accuracy predictor for architecture search, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, (2019)
- Ning, Y. Zheng, T. Zhao, Y. Wang, H. Yang, A generic graph-based neural architecture encoding scheme for predictor-based nas, in: Computer Vision–ECCV 2020: 16th European Conference, 28, 2020, Proceedings, Part XIII 16, Springer, (2020)
- -G. Talbi, Optimization of deep neural networks: a survey and unified taxonomy (2020).
- Cai, T. Chen, W. Zhang, Y. Yu, J. Wang, Efficient architecture search by network transformation, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32, (2018)
- Ning, Y. Zheng, T. Zhao, Y. Wang, and H. Yang. A generic graph-based neural architecture encoding scheme for predictor-based nas. arXiv preprint arXiv:2004.01899, (2020)
- Wang, L., Zhao, Y., Jinnai, Y., Fonseca, R.: Alphax: exploring neural architec- tures with deep neural networks and monte carlo tree search. arXiv preprint arXiv:1805.07440 (2018)
- Shi, H., Pi, R., Xu, H., Li, Z., Kwok, J.T., Zhang, T.: Multi-objective neural architecture search via predictive network performance optimization. arXiv preprint arXiv:1911.09336 (2019)
- Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, L.J., Fei-Fei, L., Yuille, A., Huang, J., Murphy, K.: Progressive neural architecture search. In: Proceedings of the European Conference on Computer Vision (ECCV). pp. 19–34 (2018)
- Pham, H., Guan, M.Y., Zoph, B., Le, Q.V., Dean, J.: Efficient neural architecture search via parameter sharing. arXiv preprint arXiv:1802.03268 (2018)
- Minghao Guo, Yuzhe Yang, Rui Xu, Ziwei Liu, Dahua Lin; When NAS Meets Robustness: In Search of Robust Architectures Against Adversarial Attacks, Proc. Of the IEEE/CVF conference on Computer Vision and Pattern Recognition (CVPR), (2020)
- Liu J., Jin Y., Multi-Objective search of robust neural architectures against multiple types of adversarial attacks, Neurocomputing Vol. 453 (2021)
|