- زارع، مریم؛ آذری، محمود، رضائی؛ عارفی، محسن. (1403). مقایسه روشهای مختلف تصمیمگیری چند معیاره در اولویتبندی سیلخیزی زیرحوضههای آبخیز کشف رود. جغرافیا و مخاطرات محیطی.
- https://doi.org/22067/GEOEH.2024.88777.1498
- سرور، هوشنگ؛ خیریزاده آروق، منصور. (1394). امکانسنجی توسعه فیزیکی بهینه شهر مراغه با استفاده از سیستم اطلاعات جغرافیایی (GIS). طرح پژوهشی، دانشگاه مراغه.
- Sarvar, H., & Kherizadeh Arouq, M. (2015) Feasibility of optimal physical development of Maragheh city using geographic information system (GIS). Research project, Maragheh University.
- مدرسی، فرشته؛ عراقی نژاد، شهاب. (1396). آموزش کاربردی مدلسازی هیدرولوژیکی حوضه آبخیز در HEC-HMS و HEC-GeoHMS، انتشارات نشر نوآور.
- Modaresi, F. & Araghinejad, Sh. (2017) Practical training of the hydrological modelling of the watershed in HEC-HMS and HEC-GeoHMS, Noavar publication.
- Ajin, S., Krishnamurthy, R.R, Jayaprakash, M., & Vinod, P.G. (2013). Flood Hazard Assessment of Vamanapuram River Basin, Kerala, India: An Approach Using Remote Sensing & GIS Techniques. Advances in Applied Science Research, 4(3), 263–274. https://www.scirp.org/reference/referencespapers?referenceid=2331182
- Ali Mohammad, J.K., Aslam, I., & Khan, Z. (2011). Simulation of the Impacts of Landuse Change on Surface Runoff of Lai Nullah Basin in Islamabad, Pakistan. Landscape and Urban Planning, 102(4), 271–279. https://doi.org/10.1016/j.landurbplan.2011.05.006
- Allafta, H., & Opp, C. (2021). GIS-Based Multi-Criteria Analysis for Flood Prone Areas Mapping in the Trans-Boundary Shatt Al-Arab Basin, Iraq-Iran, Geomatics. Natural Hazards and Risk, 12(1), 2087-2116. https://doi.org/10.1080/19475705.2021.1955755
- Centre for Research on the Epidemiology of Disasters, UN International Strategy for Disaster Reduction (CRED, UNISDR) (2015). The Human Cost of Natural Disasters 2015: A Global Perspective, Report available at https://reliefweb.int/report/world/human-cost-natural-disasters-2015-global-perspective
- Chen, Y., Liu, R.D., Barrett, D., Gao, L., Zhou, M., Renzullo, L., & Emelyanova, I. (2015). A Spatial Assessment Framework for Evaluating Flood Risk under Extreme Climates. Science of the Total Environment, 538, 512-523. https://doi.org/10.1016/j.scitotenv.2015.08.094
- Dung, N.B., Long, N.Q., Tran, A.D., & Tuyet, M.D. (2021). Multi-Geospatial Flood Hazard Modelling for a Large and Complex River Basin with Data Sparsity: A Case Study of the Lam River Basin, Vietnam. Earth Systems and Environment, 6 (20), 715-731.
https://doi.org/10.1007/s41748-021-00215-8
- Dung NB, Tuyet MD, Ahmad A, Long NQ. (2020). The Role Of Relative Slope Length In Flood Hazard Mapping Using Ahp And Gis (Case Study: Lam River Basin, Vietnam). Geography, Environment, Sustainability, 13(2): 118-126.https://doi.org/10.24057/2071-9388-2020-48
- Ganji, K., Gharechelou, S., & Ahmadi, A. (2022). Determining Effective Factors on Gorganrood River Flooding and Micro-Zoning of Flood Risk Analysis in Aq’Qala County Using AHP Method. Journal of Geography and Environmental Hazards, 10(4), 25-46. [In Persian] https://doi.org/10.22067/geoeh.2021.68419.1011
- Ghanavati, E., Karam, A., & Aghaalikhani, M. (2013). Flood Risk Zonation in the Farahzad Basin (Tehran) Using Fuzzy Model. Geography and Environmental Planning, 23(4), 121-138. [In Persian] https://dorl.net/dor/20.1001.1.20085362.1391.23.4.8.2
- Hydrologic Engineering Center. (2013). HEC-GeoHMS, Geospatial Hydrologic Modeling Extension. US Army Corps of Engineers.
- Hydrologic Engineering Center. (2016). Hydrologic Modeling System HEC-HMS. US Army Corps of Engineers.
- Iwahashi, J., Pike, R.J. (2007). Automated Classifications of Topography from DEMs by an Unsupervised Nested-Means Algorithm and a Three-Part Geometric Signature. Geomorphology, 86(3-4), 409–440. https://doi.org/10.1016/j.geomorph.2006.09.012
- Jahanbakhsh Asl, S., Asad, M., & Akbari, E. (2016). The Potential Evaluation of Wind Power Plants by Using the Fuzzy- AHP Methods in GIS (Case Study: North East of IRAN). Journal of Geography and Planning, 20(56), 55-72. [In Persian] https://geoplanning.tabrizu.ac.ir/article_4981.html
- Kourgialas, N.N., Karatzas, G.P. (2011). Flood Management and a GIS Modelling Method to Assess Flood-Hazard Areas—A Case Study. Hydrological Sciences Journal, 56(2), 212-225. https://doi.org/10.1080/02626667.2011.555836
- Kumar, S., Gupta, S. (2016). Geospatial Approach in Mapping Soil Erodibility Using CartoDEM – A Case Study in Hilly Watershed of Lower Himalayan Range. Journal of Earth System Science, 125, 1463–1472. https://doi.org/10.1007/s12040-016-0738-2
- Lee, S. (2007). Application and Verification of Fuzzy Algebraic Operators to Landslide Susceptibility Mapping. Environmental Geology 52, 615–623. https://doi.org/10.1007/s00254-006-0491-y
- Liu, J.G., & Mason, P.J. (2009). Essential Image Processing and GIS for Remote Sensing. New Jersey, John Wiley & Sons. https://doi.org/1002/9781118687963
- Luca, F., Conforti, M., & Robustelli, G. (2011). Comparison of GIS-based Gullying Susceptibility Mapping Using Bivariate and Multivariate Statistics: Northern Calabria, South Italy. Geomorphology, 134(3-4), 297-308. https://doi.org/10.1016/j.geomorph.2011.07.006
- Mazidi, A., & Kooshki, S. (2015). Simulation of Rainfall-Runoff Process and Estimate of Flood with HEC-HMSModel in Khorramabad Catchment Area. Geography and Development, 13(41), 1-10. [In Persian] https://doi.org/10.22111/gdij.2015.2236
- Mesri Alamdari, P. (2021). Spatial Analysis of Flood Hazard in Ajabshir Ghaleh Chay Catchment using GIS and HEC-HMS Model. Quantitative Geomorphological Research, 10(1), 93-111. [In Persian] https://www.geomorphologyjournal.ir/article_134562.html
- Moradnezhadi, M., Jourgholami, M., & Malekian, A. (2015). Evaluating the HEC-HMS Hydrologic Model in Order to Simulating Flood Hydrograph in Forest Basin (Case Study: Kheyrud Forest). Forest and Wood Products, 68(3), 625-639. [In Persian] https://doi.org/10.22059/jfwp.2015.55594
- Nandalal, H.K., Ratnayake, U.R. (2011). Flood Risk Analysis Using Fuzzy Models. Journal of Flood Risk Management, 4, 128–139. https://doi.org/10.1111/j.1753-318X.2011.01097.x
- Qin Z., Zhu, A.X., Pei, T., & Li B.L., Scholten, T., Behrens, T., & Zhou, C.H. (2011). An Approach to Computing Topographic Wetness Index Based on Maximum Downslope Gradient. Precision Agric 12, 32–43. https://doi.org/10.1007/s11119-009-9152-y
- Rahimzadeh, Z., & Habibi, M. (2018). Simulation of Hydrograph of Flood with Hydrological Model HEC-HMS and Prediction of Return Period in Kermanshah Ravansar Basin. Geography and Development, 16(53), 175-194. [In persian] https://doi.org/22111/gdij.2018.4186
- Rashetnia, S. (2016). Flood Vulnerability Assessment by Applying a Fuzzy Logic Method: A Case Study from Melbourne. Thesis Submitted in Fulfilment of the Requirements for the Degree of Master of Engineering, College of Engineering and Science Victoria University, Melbourne, Australia. https://api.semanticscholar.org/CorpusID:132844539
- Sistani Badooei, M., Negaresh, H., & Fotoohi, S. (2017). Zoning Flood Hazard in the GabrikDrainage Basin. Journal of Geography and Environmental Hazards, 6(2), 163-182. [In Persian] https://doi.org/22067/geo.v6i2.59833
- Sui, Y., Lang, X., & Jiang, D. (2018). Projected Signals in Climate Extremes Over China Associated with a 2°C Global Warming Under Two RCP Scenarios. International Journal of Climatology, 38 (S1): 678–697. https://doi.org/10.1002/joc.5399
- Tella, A., & Balogun, A.L. (2020). Ensemble Fuzzy MCDM for Spatial Assessment of Flood Susceptibility in Ibadan, Nigeria. Nat Hazards, 104, 2277–2306.
https://doi.org/10.1007/s11069-020-04272-6
- Toya, H., Skidmore, M. (2007). Economic Development and the Impacts of Natural Disasters. Lett, 94 (1), 20–25. https://doi.org/10.1016/j.econlet.2006.06.020
- Yariyan, P., Avand, M., Ali Abbaspour, R., Torabi Haghighi, A., Costache, R., Ghorbanzadeh, O., Janizadeh, S., & Blaschke, T. (2020). Flood Susceptibility Mapping Using an Improved Analytic Network Process with Statistical Models. Geomatics, Natural Hazards and Risk, 11(1), 2282-2314. https://doi.org/10.1080/19475705.2020.1836036
Yousefi, H., Golshan, M., & Pirnia, A. (2018). Performance of HEC-HMS Hydrological Model in Simulation of Flood Hydrograph in Arid and Humid Watersheds. Iranian journal of Ecohydrology, 5(1), 319-330. [In Persian] https://doi.org/ 10.22059/ije.2018.240802.715
|