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solving various stochastic optimal control
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Abstract

In this paper, a computational method based on parameterizing state and
control variables is presented for solving Stochastic Optimal Control (SOC)
problems. By using Chebyshev wavelets with unknown coefficients, state
and control variables are parameterized, and then a stochastic optimal
control problem is converted to a stochastic optimization problem. The
expected cost functional of the resulting stochastic optimization problem
is approximated by sample average approximation thereby the problem can
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be solved by optimization methods more easily. For facilitating and guar-
anteeing convergence of the presented method, a new theorem is proved.
Finally, the proposed method is implemented based on a newly designed
algorithm for solving one of the well-known problems in mathematical fi-
nance, the Merton portfolio allocation problem in finite horizon. The simu-
lation results illustrate the improvement of the constructed portfolio return.

AMS subject classifications (2020): Primary 93E20; Secondary 91G80, 91G10.

Keywords: Stochastic optimal control; Chebyshev wavelets; Expansion;
Optimal asset allocation.

1 Introduction

Most practical problems in various fields, such as economics and finance, lead
us to solve continuous finite-horizon Stochastic Optimal Control (SOC) prob-
lems. These problems are driven by Stochastic Differential Equations (SDEs)
in mathematical finance and especially in portfolio management, which is
started with classical equations such as Merton [10].

The solution of an SDE requires the evaluation of stochastic Itô integral∫ T

0
S(u)dB(u), where {B(t)}t ≥ 0 is a Brownian motion and S is a stochas-

tic process. The common methods for evaluating of the integral, are direct
numerical ideas [13]. For example, the approaches of [20, 3] use an optimal
wavelet approximation of the Browning motion {B(t)}t ≥ 0. Also, the ap-
proaches of [30, 23, 22] apply the Legendre wavelets to compute numerical
solutions of integral and differential equations. For instance, in [22], coeffi-
cient functions of the SDE are approximated in terms of Legendre wavelets.
Then according to the relation between the block pulse functions and the Itô
integral of this function, the integrals of the coefficient function are approxi-
mated.

The most common approach for solve SOC problems is the indirect
dynamic programming approach in which the corresponding Hamiltonian–
Jacobi–Bellman (HJB) equation has to be considered [14, 27, 33]. However,
the second-order partial differential HJB equation is usually solved under
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3 Chebyshev wavelet-based method for solving various stochastic ...

some prior assumptions, and it is not solvable analytically in most cases,
which is why applying appropriate numerical ideas can be applicable to de-
sign optimal decision (control) rules. Among the numerical ideas, the direct
ones are more common methods. In these methods, the dynamical system
under consideration is discretized in space and time domain, based on the
application of the Markov chain. For example, the presented methods of
[17, 31] obtain the transition probabilities of the Markov chain from the HJB
equation by using finite difference and finite-element ideas. Also, there are
some approaches that apply approximation schemes to SOC problems. For
instance, the approaches of [4, 16] are Markov decision chain methods from
the original SOC problem by approximating the solution of the correspond-
ing SDE and then solving the resulting Bellman equation by using value
iteration. Additionally, Huschto and Sager [9] utilized the Wiener chaos ex-
pansion developed by Ledoux [19] to reformulate the original SOC problem
as a deterministic optimal control problem. Indeed, the considered stochas-
tic process is expressed in terms of deterministic coefficient and orthonormal
basis polynomials spanning the underlying Wiener chaos space. Therefore,
the approach of [9] is a direct numerical method based on using orthonormal
polynomials to solve SOC problems. For this purpose, wavelet polynomials
can be used, because they have the property of local approximating dis-
continuous functions [29]. For example, Haar wavelet orthogonal functions
[26], Legendre wavelets [30], and Chebyshev wavelets [35] can be applied to
SOC problems, and then the resulting parameterized problems can be solved.
Indeed, the application of wavelets as a basis function in a numerical solu-
tion of integral equations and optimal control have been attended recently
[29, 1, 32]. In comparison with other algorithms, the wavelets techniques
provide very fast algorithms. This is because of specific properties when it
is used as a basis function. In fact, the wavelets techniques convert SOC
problems to stochastic optimization (SO) ones [21, 2, 8] that can be solved
by using common methods of SO problems. These methods are commonly
divided into two categories, solution methods for single-stage problems and
multistage problems [8]. These methods minimize or maximize an expected
objective function due to random variables in the formulation of stochastic
problems. There are four well-known solution methods, sample average ap-
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proximation (SAA) [8, 5], stochastic approximation [18], response surfaces
[34], and metamodels [6].

In this paper, a new direct numerical method based on using Chebyshev
wavelets is applied to solve SOC problems. For this purpose, stochastic state
and control processes are approximated by the finite series of Chebyshev
wavelet polynomials. The resulting Chebyshev approximation is the best
approximation for the continuous state and control variables. Chebyshev
wavelets are well-behaved basic functions that are orthonormal on the inter-
val [0, 1]. The advantages of Chebyshev wavelets are that the values of the
degree of polynomial M and the number of subintervals 2k are adjustable.
Therefore, it can yield a more accurate approximation than piecewise con-
stant orthogonal functions. Thereby, stochastic state and control processes
and the expected cost functional of the SOC problem are parameterized.
Therefore, the SOC problem is converted to an SO problem. The result-
ing SO problem is a single-stage problem. Thus, the parameterized expected
cost functional is approximated by sample average approximation thereby the
problem is formulated as a deterministic optimal control problem, which can
be solved by optimization methods more easily. Also, the proposed method
does not require operational matrix that is an obstacle for works which use
Chebychev wavelets to convert a differential equation into an algebraic one.
Additionally, to solve an SOC problem by the proposed method does not
require to solve a partial differential HJB equation, which is a limitation
for solving SOC problems, whereas the optimal trajectory and optimal con-
trol are approximated properly. The convergence of the proposed method
is proved through a new theorem. Finally, the proposed method is imple-
mented for solving one of the well-known problems in mathematical finance,
the Merton portfolio allocation problem in finite horizon. The simulation
results illustrate the improvement of the constructed portfolio return.

This paper is organized as follows: The mathematical preliminaries of the
proposed method are presented in section 2. The Chebyshev wavelet-based
method is presented in section 3. The Merton portfolio allocation problem
as an application of the proposed method is simulated in section 4. Finally,
the conclusion is presented in section 5.
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5 Chebyshev wavelet-based method for solving various stochastic ...

2 Mathematical preliminaries

2.1 Formulation of a stochastic optimal control problem

Assume that {Xt}t∈[0,T ] is an n-dimensional stochastic process within the
probability space (Ω,F ,R) and that {Bt}t∈[0,T ] is a d-dimensional Brownian
motion. The finite-horizon SOC problem is defined as follows [28]:

minu E
[ ∫ T

0

L(Xt, ut)dt+G(T,XT )
]
, (1a)

s.t. dXt = b(Xt, ut)dt+ σ(Xt, ut)dBt, (1b)

X(0) = X0. (1c)

The process {Xt}t∈[0,T ] in L2(Ω× [0, T ]) is driven by controlled Ito stochas-
tic differential equation (1b) with initial condition (1c). Also, b and σ

are describing the drift and diffusion parts of the random state process
Xt ∈ Rn for all t ∈ [0, T ], respectively. The stochastic control process
{ut} = {u(ω, t)}ut∈Rn is chosen over a set A of admissible controls such
that the cost function (1a) be minimized.
Additionally, the taken decision at time t ∈ [0, T ] depends on what al-
ready has happened up to t. Therefore, the stochastic control process
must be Ft-adapted [12]. The admissible control functions can be cho-
sen as “deterministic” controls u(t, ω) = u(t), “open-loop” u(t, ω) controls,
which are nonanticipative with respect to the Brownian motion {Bt} and
“Markov” controls u(t, ω) = uM (t,X(ω)), where uM (·) is a nonrandom and
Lebesgue-measurable function. The process{Xt} becomes an Ito diffusion
under Markov control [25]. Also, the function uM must be smooth.

2.2 Chebyshev wavelets

In this subsection, Chebyshev wavelet polynomials are described, briefly. A
family of wavelets can be constituted by dilation and translation of a function
Ψ called mother wavelet.
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Consider the following family of continuous wavelet:

Ψa,b(t) = |a|− 1
2Ψ(

t− a

b
), a, b ∈ R, a ̸= 0, (2)

where the dilation parameter a and translation parameter b are varying con-
tinuously. The family of Chebyshev wavelets Ψnm(t) = Ψ(k, n,m, t) is one
of the applicable wavelets that is defined on interval [0, 1] as follows [29]:

Ψnm(t) =

 αm2
k
2√

π
Tm(2k+1t− 2n+ 1), n−1

2k
⩽ t ⩽ n

2k
,

0, otherwise,
(3)

where k ∈ N and n = 1, 2, 3, . . . , 2k. Also, m = 0, 1, 2, . . . ,M − 1 for M -order
Chebyshev polynomials and

αm =

{√
2, m = 0,

2, m = 1, 2, . . . ,
(4)

Additionally, Tm(t)’s in (3) are Chebyshev polynomials that can be con-
structed by the following recursive relations:

T0(t) = 1,

T1(t) = t,
...
Tm+1(t) = 2tTm(t)− Tm−1(t).

(5)

3 Solving stochastic optimal control problem via
Chebyshev wavelet-based method

In this section, a proposed Chebyshev wavelet-based method for solving gen-
eral SOC problems is presented. This procedure is presented in three subsec-
tions. In subsection 3.1, stochastic state and control process are expanded in
Chebyshev Wavelet polynomials. In subsection 3.2, the expected cost func-
tion approximation is described. Finally, the convergence analysis of the
method is proved in subsection 3.3
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7 Chebyshev wavelet-based method for solving various stochastic ...

3.1 Chebyshev wavelet expansion of stochastic state and
control process

Let Q ⊆ C1[0, T ] be the set of all piecewise-continuous functions with initial
condition (1c) and let Q2k,M−1 ⊆ Q be the class of combinations of Cheby-
shev wavelet polynomials of degree up to (M − 1).
Consider the Chebyshev wavelet approximations of state process {Xt}t∈[0,T ]

and control process {ut} as follows:

X̂(t) =

2k∑
n=1

M−1∑
m=0

anmΨnm(t), (6)

and

Û(t) =

2k∑
n=1

M−1∑
m=0

cnmΨnm(t). (7)

Therefore, the SOC problem (1) can be interpreted as a stochastic minimiza-
tion problem on Q. For this purpose, the interval [0, T ] is divided to 2k

subintervals; that is,

[0, T ] = [0,
1

2k
T ]

∪
[
1

2k
T,

2

2k
T ]

∪
· · ·

∪
[
2k − 1

2k
T, T ]. (8)

Thus, the state variable (6) and the control variable (7) is rewritten as follows:

X̂(t) =



x̂1(t) =
∑M−1

m=0 a1mΨ1m(t), 0 ⩽ t ⩽ 1
2k
T,

x̂2(t) =
∑M−1

m=0 a2mΨ2m(t), 1
2k
T ⩽ t ⩽ 2

2k
T,

...
x̂2k(t) =

∑M−1
m=0 a2kmΨ2km(t), 2k−1

2k
T ⩽ t ⩽ T.

(9)

Also,

Û(t) =



û1(t) =
∑M−1

m=0 c1mΨ1m(t), 0 ⩽ t ⩽ 1
2k
T,

û2(t) =
∑M−1

m=0 c2mΨ2m(t), 1
2k
T ⩽ t ⩽ 2

2k
T,

...
û2k(t) =

∑M−1
m=0 c2kmΨ2km(t), 2k−1

2k
T ⩽ t ⩽ T.

(10)

Now, from (9) and (10), the cost functional (1a) becomes

E[Ĵ(a10, . . . , a2kM−1, c10, . . . , c2kM−1)] = E
[ ∫ T

0

L(X̂, Û)dt+G(T, X̂T )
]
.
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In other words, we have

E[Ĵ ] = E
[ ∫ 1

2k
T

0 L(x̂1(t), û1(t))dt+
∫ 2

2k
T

1

2k
T
L(x̂2(t), û2(t))dt

+ · · ·+
∫ T

2k−1

2k
T
L(x̂2k(t), û2k(t))dt+G(T, x̂2k(T ))

]
.

(11)

Additionally, from (9) and (10), the controlled Ito SDE (1b) becomes

˙̂
Xt = b(X̂t, Ût) + σ(X̂t, Ût)Ḃt. (12)

More precisely, the following constraints are yielded

˙̂x1(t) = b(x̂1, û1) + σ(x̂1, û1)Ḃ1,

˙̂x2(t) = b(x̂2, û2) + σ(x̂2, û2)Ḃ2,
...
˙̂x2k(t) = b(x̂2k , û2k) + σ(x̂2k , û2k)Ḃ2k .

(13)

Also, according to the initial condition (1c), we have the following constraint:

M−1∑
m=0

a1mΨ1m(0)−X0 = 0. (14)

According to the continuity property of the state variable and (8) for

ti =
i

2k
, i = 1, 2, . . . , 2k − 1, (15)

one can yield∑M−1
m=0 a1mΨ1m(t1) =

∑M−1
m=0 a2mΨ2m(t1),∑M−1

m=0 a2mΨ1m(t2) =
∑M−1

m=0 a3mΨ3m(t2),
...∑M−1

m=0 a2k−1mΨ2k−1m(t2k−1) =
∑M−1

m=0 at
2km

Ψ2km(t2k−1).

(16)

According to the SOC problem (1) and the parameterization process, which
was mentioned above, the following SO problem with objective function (11)
subject to constraints (13)–(14) and (16) is designed, which can be solved by
SO methods [8, 18], more easily.

minE[Ĵ(αt, γt, Bt)], (17a)

Iran. J. Numer. Anal. Optim., Vol. 14, No. 1, 2024, pp 1–19



9 Chebyshev wavelet-based method for solving various stochastic ...

subject to : P [αt, γt, Bt]
T = C, (17b)

where α = [a10, . . . , a1M−2, a20, . . . , a2M−1, . . . , a2k0, . . . , a2kM−1],
γ = [c10, . . . , c1M−2, c20, . . . , c2M−1, . . . , c2k0, . . . , c2kM−1] and {Bt} is the
Brownian motion.

3.2 Expected cost function approximation

Consider the SO problem (17). Let R2k+1M be the domain of all the feasi-
ble decisions and let (αt, γt) = X be a specific decision. The goal is to find
a decision that minimizes the cost function, Ĵ . Let the Brownian motion
{ξt} denote random information that is available only after a taken deci-
sion. Since we cannot directly optimize Ĵ(X , ξ), we compute minimize the
expected value, E[Ĵ(X , ξ)]. SAA is the most common approach of a choice
for the approximation of E[Ĵ(X , ξ)]. The first step in SAA is sampling. let
{ξ1, . . . , ξn} be a set of independent identically distributed realizations of ran-
dom process {ξt} and let Ĵ(αt, γt, ξi) be the cost function realization for ξi.
According to the SAA approach, the expected cost function is approximated
by the average of the realizations:

E[Ĵ(X , ξ)] ≈
1

n

n∑
i=1

Ĵ(X , ξi). (18)

The second step in SAA is the solving an optimal problem. The right-hand
side of (18) is deterministic, so deterministic optimization methods can be
used for solving the following approximated problem for all n ∈ N:

β∗
n = min(αt,γt)∈R2k+1M E[Ĵ(αt, γt, ξ)] = minX∈R2k+1M

1

n

n∑
i=1

Ĵ(X , ξi). (19)

Deterministic search is the main benefit of SAA [8].

3.3 Convergence analysis

In this section, the convergence of the proposed method is investigated.

Iran. J. Numer. Anal. Optim., Vol. 14, No. 1, 2024, pp 1–19
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Theorem 1. Suppose that f(x) ∈ L2[0, 1] with bounded second derivative
|f̈ | ≤ L, and let

∑∞
n=0

∑∞
m=0 cnmΨnm(x) be its infinite Chebyshev wavelet

expansion. Then

|cnm| ≤
√
(2π)L

(2n)
5
2 (m2 − 1)

. (20)

This means that the Chebyshev wavelets series converges uniformly to f(x);
that is,

f(x) =

∞∑
n=1

∞∑
m=0

cnmΨnm(x). (21)

Proof. See [7].

Theorem 2. Let β = inf(X,u)∈Q E[J ]. If β2kM−1 = inf(X,u)∈Q
2kM−1

E[J(X,u)]

for k,M = 1, 2, . . ., where Q2kM−1 is a subset of Q, then limk,M→∞ β2kM−1 =

β .

Proof. Since (Xt, ut) ∈ Q2kM−1, by considering the Chebyshev expansions
(6) and (7) for stochastic processes {Xt} and {ut}, respectively, we have

β2kM−1 = min(αt,γt)∈R2k+1M E[Ĵ(αt, γt, ξ)]. (22)

Now, let {ξ1, . . . , ξn} be a set of independent identically distributed realiza-
tions of random process {ξt} and let Ĵ(αt, γt, ξi) be the cost function real-
ization for ξi. According to the SAA approach, the expected cost function is
approximated by the average of the realizations:

E[Ĵ(α, γ, ξ)] ≈
1

n

n∑
i=1

Ĵ(α, γ, ξi). (23)

If we define

β∗
n,2kM−1 = min(α,γ)∈R2k+1M

1

n

n∑
i=1

Ĵ(α, γ, ξi), (24)

then there exists an optimal value (α∗, γ∗, ξi) for

argmin{ 1
n

n∑
i=1

Ĵ(α, γ, ξi) : (α, γ, ξi) ∈ (R2k+1M × R)}, (25)

such that
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11 Chebyshev wavelet-based method for solving various stochastic ...

β∗
n,2kM−1 =

1

n

n∑
i=1

Ĵ(α∗, γ∗, ξi). (26)

Also, one can conclude that there exists a corresponding optimal value
(X∗, u∗) from argmin{ 1

n

∑n
i=1 Ĵ(X,u) : (X,u) ∈ Q2kM−1} such that

β∗
n,2kM−1 =

1

n

n∑
i=1

Ĵ(X∗, u∗). (27)

Furthermore, since Q2kM−1 ⊆ Q2kM , we have

β∗
n,2kM =

1

n

n∑
i=1

Ĵ(X∗, u∗) = min(X,u)∈Q
2kM

1

n

n∑
i=1

Ĵ(X,u) (28)

≤ min(X,u)∈Q
2kM−1

1

n

n∑
i=1

Ĵ(X,u) (29)

= β∗
n,2kM−1. (30)

Therefore, for all k,M and n, we have β∗
n,2kM ≤ β∗

n,2kM−1. Since, the se-
quence {β∗

n,2kM} is a nonincreasing sequence. Additionally, this sequence is
upper bounded and therefore is convergent and this completes the proof.

For implementing of the proposed method, Chebyshev Wavelet-based
Method algorithm for solving SOC problems, is presented as follows:

Chebyshev wavelet-based method algorithm for
stochastic optimal control problems

Input : SOC problem (1).

Output : The approximated Stochastic optimal trajectory and approximated
optimal control.

Step 1 : Choose N , k, and M , and set i = 1

Iran. J. Numer. Anal. Optim., Vol. 14, No. 1, 2024, pp 1–19
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Step 2 : Approximate the state and control variable by Chebyshev wavelet
series from equations (9) and (10).

Step 3 : Find an expression of E[Ĵ ] from equation (11).

Step 4 : Determine the set of equality constraints, by (13), (14), and (16).

Step 5 : Consider a set of independent identically distributed realizations of
Brownian motion {Bt} and approximate the expected cost function
E[Ĵ(α, γ,B)] from (18).

Step 6 : Determine the optimal parameters [α∗, γ∗] by solving the optimization
problem with the resulting cost function of Step 5 subject to (17b) and
substitute these parameters into (9) and (10) to find the approximated
optimal trajectory, approximated optimal control.

Step 7 : If i = N go to Step 8 else set i = i+ 1 and go to Step 2.

Step 8 : End.

4 Simulation results

In this section, one of the well-known problems in continuous-time finance,
the Merton portfolio allocation problem, is considered for illustrating the
advantages and efficiency of the proposed method.

Example 1 (Merton portfolio allocation problem in finite hoziron[15]). Con-
sider an investing process on time interval [0, T ], and denote wealth at time
t ∈ [0, T ] by Wt. Also, suppose that this investing is started with a known
initial wealth W0. At time t, we must choose a fraction of wealth to invest in
a (set of risky assets) stock portfolio U1(t) whereas the remaining fraction,

Iran. J. Numer. Anal. Optim., Vol. 14, No. 1, 2024, pp 1–19



13 Chebyshev wavelet-based method for solving various stochastic ...

1−U1(t) is invested in a (the risk-free asset) bond . Additionally, the variable
U2(t) is considered as wealth consumption value at time t. Therefore, the
control vector has two component, 0 ≤ U1(t) ≤ 1 and U2(t) ≥ 0.

Let the interest rate for risky and risk-free investment be R and r, re-
spectively, such that 0 < r < R. Thus, the bond price bt and the stock price
St evolve according to the following Black-Scholes models:

db(t)

b
= rdt,

dSt

S
= Rdt+ σdBt, (31)

where σ is a real positive constant that denotes the volatility of S, and
Bt is a Brownian motion described. The objective is to find an optimal
two-dimensional control vector (U1(t), U2(t)), which maximizes the following
expected cost functional:

E[J ] = E
[ ∫ T

0

e−βtF (U2(t))dt
]

(32)

subject to

dWt =
db(t)
b Wt +

dS(t)
S Wt − U2(t)dt

= [(1− U1(t))r + U1R]Wtdt+ U1(t)σWtdBt − U2(t)dt,
(33)

W (0) = W0, (34)

where β and F are discount rate and utility function, respectively.

Consider the utility function F (U2(t)) = Uα
2 (t), 0 < α < 1. This problem

is solved by the proposed method for k = 1,M = 3, r = 0.05, R = 0.11, α =

0.5, β = 0.11,W0 = 105 and σ = 0.4 on the interval [0, 1]. Therefore, the
state and control variables are approximated as follows:

Ŵ (t) =

{
ŵ1(t) =

∑2
m=0 a1mΨ1m(t), 0 ⩽ t ⩽ 1

2 ,

ŵ2(t) =
∑2

m=0 a2mΨ2m(t), 1
2 ⩽ t ⩽ 1,

(35)

Û1(t) =

{
û1(t) =

∑2
m=0 c1mΨ1m(t), 0 ⩽ t ⩽ 1

2 ,

û2(t) =
∑2

m=0 c2mΨ2m(t), 1
2 ⩽ t ⩽ 1,

(36)

Û2(t) =

{
v̂1(t) =

∑2
m=0 d1mΨ1m(t), 0 ⩽ t ⩽ 1

2 ,

v̂2(t) =
∑2

m=0 d2mΨ2m(t), 1
2 ⩽ t ⩽ 1,

(37)

where
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Ψ(t) = [Ψ10(t),Ψ11(t),Ψ12(t),Ψ20(t),Ψ21(t),Ψ22(t)],

a(t) = [a10, a11, a12, a20, a21, a22],

γ(t) = [c10, c11, c12, c20, c21, c22, d10, d11, d12, d20, d21, d22].

From (35) and (36), the expected cost functional (32) is parameterized as
follows:

E[Ĵ ] = E
[ ∫ 1

2

0

e−βtv̂α1 (t)dt+

∫ 1

1
2

e−βtv̂α2 (t)dt
]
. (38)

By substituting (35) and (36) into the SED equation (33) and applying the
differential transformation dB

dt = tkB(tk) [24], the following equality con-
straints can be obtained:{
[ ˙̂w1 − [(1− û1)r + û1R]ŵ1]t=tk + [û1σŵ1]t=tktkBk − v̂1(tk) = 0, tk ∈ {0, 1

2},
( ˙̂w2 − [(1− û2)r + û2R]ŵ2)t=tk + [û2σŵ2]t=tktkBk − v̂2(tk) = 0, tk ∈ { 1

2 , 1}.
(39)

The continuity of state variable must be satisfied at point t1 = 1
2 . Therefore,

the following equality constraint is considered as well:

ŵ1(t1)− ŵ2(t1) = 0. (40)

Also, from initial condition (34) another constraint is produced as follows:

ŵ1(0)− 105 = 0. (41)

Now, consider a Brownian motion, Bt ∼ N(0, 1). Let {Bt(t1), Bt(t2), Bt(t3)}
be a sample of random process Bt. According to the SAA method, the
expected cost functional (38) is approximated as

E[Ĵ(a, γ,Bt)] ≈
1

3

3∑
i=1

Ĵ(a, γ,Bi). (42)

By maximizing (42) subject to constraints (39)–(41), the optimal vector
[a∗, γ∗] is obtained. Therefore, the optimal approximated trajectory of wealth
{Wt} and the optimal approximated control {U2(t)} can be obtained. The
simulation results are shown in Figures 1 and 2.

In the following, the simulation results based on presented method in this
paper are comprised with the simulation result of method proposed in [11].
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Figure 1: The wealth trajectory by Chebyshev wavelet-based method.

Figure 2: The wealth trajectory by method proposed in [11]

The optimal trajectory of the wealth {Wt} by the Chebyshev wavelet-
based method and method proposed in [11] is given in Figures 1 and 2,
respectively. Figure 1 shows that the Chebyshev wavelet-based portfolio in-
creases the initial wealth value from 105$ to 5∗1010$ while according to Figure
2, the proposed method in [11] has increased it to 5 ∗ 108$. Therefore, from
comparison point of view, the resulting portfolio of Chebyshev wavelet-based
method has a higher return.

5 Conclusion

In this paper, a new Chebyshev wavelet-based algorithm, which is the state-
control parameterization method for solving problems, has been presented.
The state and control process were parameterized via orthogonal Chebyshev
polynomial basis functions. Therefore, the SOC problem was converted to
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an SO, and an optimal approximation of the solution was produced without
requiring compute the operational matrix of the derivative. An advantage of
the proposed method is that an SOC problem is solved without encountering
a partial differential HJB equation. The convergence of the proposed method
was proved via a new theorem. One of the well-known problems in mathe-
matical finance, the Merton portfolio allocation problem in finite horizon, was
simulated by the proposed method. The simulation results showed the capa-
bility and efficiency of the proposed method in comparison with other similar
works. For instance, the return of the constructed portfolio was improved by
the proposed method.
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