- Arjumend, T., Abbasi, M. K., & Rafique, E. (2015). Effects of lignite-derived humic acid on some selected soil properties, growth and nutrient uptake of wheat (tritcum aestium) grown under greenhouse conditions. Pakistan Journal of Botany, 47(6), 2231-2238.
- Aylaj, M., Sisouane, M., Tahiri, S., Mouchrif, Y., & El Krati, M. (2023). Effects of humic acid extracted from organic waste composts on Turnip culture (Brassica rapa subsp. rapa) in a sandy soil. Journal of Ecological Engineering, 24(7), 345-359. https://doi.org/10.12911/22998993/163510
- Cavani, L., Ciavatta, C., & Gessa, C. (2003). Identification of organic matter from peat, leonardite and lignite fertilizers using humification parameters and electrofocusing. Bioresource Technology, 86, 45-52. https://doi.org/10.1016/S0960-8524(02)00107-4
- Chaji, N., Khorassani, R., Astaraei, A., & Lakzian, A. (2013). Effect of phosphorous and nitrogen on vegetative growth and production of daughter corms of saffron. Journal of Saffron Research, 1(1), 1-12. https://doi.org/10.22077/jsr.2013.352
- Chakerol-hosseini, M. (1999). Effect of phosphorus and iron on growth and chemical composition of corn and soybean. M.Sc. Thesis, College of Agriculture, Shiraz University, Iran. (In Persian with English abstract)
- Ertani, A., Pizzeghello, D., Francioso, O., Muscolo, A., & Nardi, S. (2013). Isopentenyladenosine and cytokininlike activity of different humic substances. Journal of Geochemical Exploration, 129, 70-75. https://doi.org/10.1016/j.gexplo.2012.10.007
- Fageria N.K., Baligar, V.C., & Jones, C.A. (2011). Growth and mineral nutrition of field crops (3rd Ed.). CRC Press, Taylor & Francis Group, New York.
- FAO, IFAD, & WFP. (2015). The state of food Insecurity in the world 2015. Meeting the 2015 international hunger targets: taking stock of uneven progress. Rome, FAO. https://doi.org/10.3945/an.115.009936
- Fixen, P.E., Ludwick, A.E., & Olsen, S.R. (1983). Phosphorus and potassium fertilization of irrigated alfalfa on calcareous soils: Soil phosphorus solubility relationships. Soil Science Society of Amerrican Journal, 47, 112–117. https://doi.org/10.2136/sssaj1983.03615995004700010023x
- Gerke, J. (2021). The effect of humic substances on phosphate and iron acquisition by higher plants: Qualitative and quantitative aspects. Journal of Plant Nutrition and Soil Science, 184(3), 329-338. https://doi.org/10.1002/jpln.202000525
- Ghorbani, S.H., Khazaee, R., Kaafi, M., & Banayan, A. (2010). Effect of humic acid application in irrigation water on yield and yield components of maize (Zea mays). Journal of Agricultural Ecology, 2, 123-131. (In Persian with English abstract). https://doi.org/10.22067/jag.v2i1.7608
- Harper, S.M., Kerven, G.L., Edwards, D.G., & Ostatek-Boczynski, Z. (2000). Characterisation of fulvic and humic acids from leaves of Eucalyptus camaldulensis and from decomposed Soil Biology and Biochemistry, 32(10), 1331-1336. https://doi.org/10.1016/S0038-0717(00)00021-3
- Hoffland, E., Wei, C., & Wissuwa, M. (2006). Organic anion exudation by lowland rice (Oryza sativa) at zinc and phosphorus deficiency. Plant and Soil, 283, 155–162. https://doi.org/10.1007/s11104-005-3937-1
- Holford, I.C.R. (1997). Soil phosphorus: its measurement, and its uptake by plants. Soil Australian Journal of Soil Research, 35(2), 227–240. https://doi.org/10.1071/S96047
- Hosseini, S., & Abedi, S. (2007). Assess the role of markets and government policies in determining the price of corn. Agricultural Economics, 1, 21-34. (In Persian)
- Hua, Q.X., Li, J.Y., Zhou, J.M., Wang, H.Y., Du, C.W., & Chen, X.Q. (2008). Enhancement of phosphorus solubility by humic substances in Ferrosols. Pedosphere, 18, 533–538. https://doi.org/10.1016/S1002-0160(08)60044-2
- Jindo, K., Martim, S.A., Navarro, E.C., Pérez-Alfocea, F., Hernandez, T., Garcia, C., Aguiar, N.O., & Canellas, P. (2012). Root growth promotion by humic acids from composted and non-composted urban organic wastes. Plant and Soil, 353, 209-220. https://doi.org/10.1007/s11104-011-1024-3
- Jing, J., Zhang, S., Yuan, L., Li, Y., Lin, Z., Xiong, Q., & Zhao, B. (2020). Combining humic acid with phosphate fertilizer affects humic acid structure and its stimulating efficacy on the growth and nutrient uptake of maize seedlings. Scientific Reports, 10(1), 17502. https://doi.org/10.1038/s41598-020-74349-6
- Keating, B.A., & Carberry, P.S. (2010). Sustainable production, food security and supply chain implications. Aspects of Applied Biology,102, 7–20.
- Keating, B.A., Herrero, M., Carberry, P.S., Gardner, J., & Cole, M.B. (2014). Food wedges: Framing the global food demand and supply challenge towards 2050. Global Food Security, 3(3-4), 125–132. https://doi.org/10.1016/j.gfs.2014.08.004
- Li, Q., Wu, L., Chen, J., Khan, M. A., Luo, X., & Lin, W. (2016). Biochemical and microbial properties of rhizospheres under maize/peanut intercropping. Journal of Integrative Agriculture, 15(1), 101-110. https://doi.org/10.1016/S2095-3119(15)61089-9
- Li, X., Geng, H., Zhang, L., Peng, S., Xin, Q., Huang, J., & Wang, Y. (2022). Improving maize yield prediction at the county level from 2002 to 2015 in China using a novel deep learning approach. Computers and Electronics in Agriculture, 202, 107356. https://doi.org/10.1016/j.compag.2022.107356
- Lindsay, W.L. (1979). Chemical Equilibria in Soils. Wiley-Interscience, New York.
- Masood, T., Gul, R., Munsif, F., Jalal, F., Hussain, Z., Noreen, N., & Khan, H. (2021). Effect of different phosphorus levels on the yield and yield components of maize. Sarhad Journal of Agriculture, 27(2), 167-170.
- https://www.researchgate.net/publication/268011160
- Michaeal, H.B., & Lua, H. (2001). Influence of humic acid on the growth of tomato in hydroponic systems. Acta Horticulturae, 548, 451-458. https://doi.org/17660/ActaHortic.2001.548.53
- Nezami, S., & Malakouti, M.J. (2016). The role of organic acids on the release of phosphorus and zinc in a calcareous soil. Journal of Water and Soil, 30(3), 805-816. https://doi.org/22067/jsw.v30i3.40469
- Oktem, A.G., & Oktem, A. (2020). Effect of Humic acid application methods on yield and some yield characteristics of corn plant (Zea mays indentata). Journal of Applied Life Sciences International, 23(11), 31-37. https://doi.org/10.9734/jalsi/2020/v23i1130196
- Ouzounidou, G., Čiamporová, M., Moustakas, M., & Karataglis, S. (1995). Responses of maize (Zea mays) plants to copper stress—I. Growth, mineral content and ultrastructure of roots. Environmental and Experimental Botany, 35(2), 167-176. https://doi.org/10.1016/0098-8472(94)00049-B
- Ronaghi, A., Chakrol-hosseini, M., & Karimian, N. (2002). Growth and chemical composition of corn as affected by phosphorus and iron. Journal of Science and Technology of Agricultural and Natural Resources, 6, 91-102. (In Persian). https://doi.org/1001.1.22518517.1381.6.2.8.2
- Sarhadi-Sardoui, J., Ronagashi, A., Maftoun, M., & Karimian, N. (2003). Growth and chemical composition of corn in three calcareous sandy soil of Iran as affected by applied phosphorus and manure. Journal of Agricultural Science and Technology, 5, 77-84. https://doi.org/1001.1.16807073.2003.5.1.4.1
- Sekhon, G.S. (1994). Management of nutrient interactions in agriculture. Journal of the Indian Society of Soil Science, 42(1), 167-167.
- Subhash, C., Malik A., Zargar, M.Y., & Bhat, M.A. (2011). Nitrate pollution: a menace to human, soil, water and plant. Universal Journal of Environmental Research and Technology, 1, 22-32.
- Sumner, M.E., & Farina, M.P. (1986). Phosphorus Interactions with Other Nutrients and Lime in Field Cropping Systems. In: Stewart, B. A., Ed., Advances in Soil Science, Springer, New York, 201-236.https://doi.org/10.1007/978-1-4613-8660-5_5
- Yuan, Y., Gai, S., Tang, C., Jin, Y., Cheng, K., Antonietti, M., & Yang, F. (2022). Artificial humic acid improves maize growth and soil phosphorus utilization efficiency. Applied Soil Ecology, 179, 104587. https://doi.org/10.1016/j.apsoil.2022.104587
|