
Iranian Journal of Numerical Analysis and Optimization
Vol. 14, No. 4, 2024, pp 1106–1139
https://doi.org/ 10.22067/ijnao.2024.87836.1434
https://ijnao.um.ac.ir/

Research Article

A fuzzy solution approach to
multi-objective fully triangular fuzzy

optimization problem
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Abstract

Numerous optimization problems comprise uncertain data in practical cir-
cumstances and such uncertainty can be suitably addressed using the con-
cept of fuzzy logic. This paper proposes a computationally efficient solution
methodology to generate a set of fuzzy non-dominated solutions of a fully
fuzzy multi-objective linear programming problem, which incorporates all
its parameters and decision variables expressed in form of triangular fuzzy
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1107 A fuzzy solution approach to multi-objective fully triangular fuzzy ...

numbers. The fuzzy parameters associated with the objective functions
are transformed into interval forms by utilizing the fuzzy-cuts, which sub-
sequently generates the equivalent interval valued objective functions. The
concept of centroid of triangular fuzzy numbers derives the deterministic
form of the constraints. Furthermore, the scalarization process of weighting
sum approach and certain concepts of interval analysis are used to gener-
ate the fuzzy non-dominated solutions from which the compromise solution
can be determined based on the corresponding real valued expressions of
fuzzy optimal objective values resulted due to the ranking function. Three
numerical problems and one practical problem are solved for illustration
and validation of the proposed approach. The computational results are
also discussed as compared to some existing methods.

AMS subject classifications (2020): 90C05; 90C29; 90C70.

Keywords: Multi-objective optimization; Fully fuzzy programming; Trian-
gular fuzzy numbers; Interval valued functions; Weighting sum approach.

1 Introduction

Linear optimization has several applications in context of decision making
real world problems but the associated data often exist in ambiguous state,
which cannot be defined or categorized exactly. To manage such data with
uncertainty, the concept of fuzzy logic is appropriately useful in formulating
practical problems into suitable fuzzy optimization models. The concept of
fuzzy was first introduced by Zadeh [31], which is rapidly implemented in
numerous fields of applications including business, economics, management,
engineering, health care, and many more. A crisp form of linear program-
ming problem (LPP) usually exists in the following form:
Max Z =

n∑
j=1

cjxj

subject to
n∑

j=1

aijxj(≤,=,≥)bi, i = 1, 2, . . . ,m

xj ≥ 0, where x = (xj) ∈ Rn, cj , aij , bi ∈ R.
The linear optimization that comprises all the technological coefficients, re-
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source constants, and decision variables expressed in form of fuzzy numbers,
is interpreted as fully fuzzy linear programming problem (FFLPP) [18, 19].
Practical problems of several fields incorporate multiple conflicting objec-
tive functions that need simultaneous optimization over some common con-
straints; such problems are mathematically modeled as multi-objective opti-
mization problems (MOOP) [7]. An MOOP comprises a set of non-dominated
solutions [21] from which the decision-maker (DM) determines the compro-
mise solution. Lotfi et al. [19] proposed a method to solve FFLPP using
the lexicography method where the associated symmetric triangular fuzzy
numbers (TFNs) are approximated by nearest symmetric triangular num-
bers to derive its symmetric fuzzy solution. Das, Mandal and Edalatpanah
[10] derived a method to solve FFLPP based on multi-objective LPP, and
lexicographic ordering approach where all its parameters are considered as
trapezoidal fuzzy numbers. Ezzati, Khorram, and Enayati [12] developed
a method to solve FFLPP, which converts the fuzzy problem into a multi-
objective LPP (MOLPP) and found its solution using lexicographic method.
Hosseinzadeh and Edalatpanah [15] proposed a method of solution for FFLPP
using lexicography method where the parameters are considered as L-R fuzzy
numbers. Kumar, Kaur, and Singh [18] developed a method of solution for
FFLPP with equality constraints using the ranking functions to derive the
fuzzy optimal solution whereas Allahviranloo et al.[2] proposed another so-
lution approach for FFLPP using a new linear ranking function for defuzzi-
fication and found its equivalent form based on some proposed theoretical
results. Ebrahimnejad [11] developed a solution approach for FFLPP, as-
suming the parameters as non-negative TFNs where FFLPP is formulated
into tri-objective LPP. Khan, Ahmad, and Maan [17] proposed a modified
version of simplex method for solving FFLPP, which utilizes both the con-
cepts of ranking function and gauss elimination method to derive the optimal
solution. Khalili, Nasseri, and Taghi-Nezhad [16] developed a fuzzy interac-
tive approach based on the concept of membership function to solve a fully
fuzzy mixed integer LPP. Daneshrad and Jafari [8] proposed an algorithm to
find out the non-dominated solutions of an FFLPP by considering its param-
eters as symmetric trapezoidal fuzzy numbers. Das [9] proposed a modified
algorithm to solve and derive fuzzy optimal solutions of an FFLPP containing
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1109 A fuzzy solution approach to multi-objective fully triangular fuzzy ...

equality constraints. Arana-Jiménez [3] proposed an algorithm to determine
the non-dominated solutions of an FFLPP involving TFNs without applying
ranking functions but an equivalent MOLPP is formulated, which generates
the corresponding fuzzy optimal solutions. Pérez-Cañedo et al. [24] devel-
oped a solution approach for fully fuzzy linear regression problem comprising
LR fuzzy numbers where this problem is transformed into an equivalent fully
fuzzy MOLPP and fuzzy goal programming is used to find its solution. Bas
and Ozkok [6] developed an iterative approach to solve a fully fuzzy linear
fractional programming problem (LFPP) i.e., objective function exists as the
ratio of linear functions, by transforming it to crisp MOLPP.
Some practical problems can be designed as optimization models with mul-
tiple goals that can be mathematically expressed as the problems of multi-
objective optimization by the DMs. Fully fuzzy multi-objective LPP(FFMOLPP)
has multiple conflicting linear objective functions with all its parameters and
variables both in the objective functions and constraints are expressed as
fuzzy numbers. Jimenez [4] proposed a method to solve FFMOLPP and de-
rived fuzzy Pareto optimal solutions without using any ranking functions.
Hop [28] studied the relationship between fuzzy numbers and solved a fully
fuzzy multi-objective decision making problem based on the concepts of ab-
solute fuzzy and relative fuzzy dominant degrees. Temelcan, Gonce Kocken,
and Albayrak [27] also proposed an algorithm to solve an FFMOLPP where
game theory approach was used for determining proper weights and solv-
ing the weighted LPP to find a fuzzy compromise solution. Pérez‐Cañedo,
Verdegay, and Miranda Perez [25] proposed fuzzy epsilon constraint method
to derive fuzzy Pareto optimal solutions of FFMOLPP using lexicographic
ranking process. Hamadameen and Hassan [14] developed a compromise so-
lution algorithm to solve FFMOLPP by using revised simplex and Gaussian
elimination methods. Sharma and Aggarwal [26] proposed a solution algo-
rithm for FFMOLPP involving LR flat fuzzy numbers as the coefficients and
decision variables, which converts the fuzzy problem into a crisp LPP using
the concepts of scalarization methods and nearest interval approximation for
fuzzy numbers. Yang, Cao, and Lin [30] proposed a method based on lexi-
cographic order relation to solve an FFMOLPP with TFNs by converting it
into multi-level MOLPP. Arana-Jiménez [5] developed an algorithm to ob-
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tain the fuzzy Pareto solutions of an FFMOLPP by using fuzzy arithmetics
and partial orders to formulate its associated crisp MOLPP instead of ap-
plying ranking functions. Fathy and Hassanien [13] used a fuzzy harmonic
approach to solve a fully fuzzy multi-level MOLPP by converting it into crisp
MOLPP and derived its compromise solution. Malik and Gupta [20] proposed
a method to solve fully triangular intuitionistic fuzzy multi-objective LFPP
using goal programming approach and provided an application in e-education
system. Niksirat [23] used nearest interval approximation concept to solve a
fully fuzzy multi-objective transportation problem considering its parameters
in uncertain forms.

MOLPP often arises in numerous practical problems of several domains
comprising ambiguous information. In view of this, the paper studies FF-
MOLPP with the following major objectives:

• Develop a computationally efficient solution methodology to solve FF-
MOLPP in triangular fuzzy environment.

• Generate a set of fuzzy Pareto optimal(fuzzy non-dominated) solutions
of FFMOLPP so that DM gets a choice to determine the compromise
solution.

As it is observed, most of the existing methods deal with single objective
fully fuzzy LPP or solve FFMOLPP using ranking function for converting it
into crisp MOLPP or derives only one solution as the compromise solution
of FFMOLPP. However, this paper studies a multi-objective FFLPP with
all triangular fuzzy parameters and derives multiple fuzzy non-dominated so-
lutions from which DM can choose the compromise solution. The proposed
solution approach is also simple to formulate and computationally efficient,
which is verified through comparisons of the computational results of nu-
merical problems with some existing methods. The proposed study utilizes
multiple concepts to solve FFMOLPP such as fuzzy α-cuts and centroid con-
cept of TFNs, concept of interval analysis, which converts interval valued to
real valued objective functions, weighting sum approach and ranking function
for TFNs. Different values of fuzzy cuts maintain different degrees of satis-
faction for the fuzzy parameters involved in the objective functions whereas
the centroid concept of TFNs makes a better comparison in between both
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sides of the fuzzy valued constraints. This is a novel approach in context of
utilizing the aforesaid concepts to efficiently solve and derive fuzzy Pareto
optimal solutions of FFMOLPP.
This paper is organized as follows: Including introduction in Section 1, Sec-
tion 2 incorporates the discussions on some preliminary concepts. Section
3 comprises the problem formulation of FFMOLPP and a description of
the proposed methodology along with the presentation of its algorithm and
flowchart. Section 4 contains the solutions of three numerical and one practi-
cal problems of FFMOLPP using the proposed methodology and their com-
parative result analysis. Finally, Section 5 contains the concluding remarks
of this paper.

2 Certain preliminary concepts

Definition 1. [32] Let U be the universal set; then the fuzzy set T̃ on U is
defined as follows:

T̃ = {(x, µT̃ (x)) : x ∈ U},

where µT̃ : U → [0, 1] and µT̃ (x) ∈ [0, 1] represents the degree of membership
of x in T̃ .

Definition 2. [32] A fuzzy set T̃ is characterized as a fuzzy number if it
satisfies the following properties:

• T̃ must be defined over the real line R.

• T̃ must be normal, that is, here exists at least one element x0 ∈ R such
that µT̃ (x0)=1.

• T̃ is a convex fuzzy set, that is, for all x1, x2 ∈ R and λ ∈ [0, 1],
µT̃ (λx1 + (1− λ)x2) ≥ min{µT̃ (x1), µT̃ (x2)}

• The membership function µT̃ of the fuzzy set T̃ in R is piecewise con-
tinuous.

• Support of the fuzzy set T̃ in R, S(T̃ ) = {x|µT̃ (x) > 0} must be
bounded.
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Definition 3. [32] A TFN on R+ remains in the form of T̃ = (t1, t2, t3),
where t1 ≤ t2 ≤ t3 and t1, t2, t3 ∈ R+. The associated membership function
µT̃ can be mathematically defined as follows with its geometrical interpreta-
tion stated in Figure 1:

µT̃ (x) =


x− t1
t2 − t1

, t1 ≤ x ≤ t2 ,

t3 − x

t3 − t2
, t2 ≤ x ≤ t3,

0, otherwise.

(1)

Figure 1: TFNs

Definition 4. Let T̃1 = (tl1, t
m
1 , tn1 ), T̃2 = (tl2, t

m
2 , tn2 ) be the TFNs on R;

then the arithmetic operations can be defined as follows:

• T̃1⊕T̃2 = (tl1 + tl2, t
m
1 + tm2 , tn1 + tn2 ),

• T̃1⊖T̃2 = (tl1 − tn2 , t
m
1 − tm2 , tn1 − tl2),

• αT̃1 =

 (αtl1, αt
m
1 , αtn1 ), α ≥ 0,

(αtn1 , αt
m
1 , αtl1), α < 0,

• T̃1 ⊗ T̃2 =



(tl1t
l
2, t

m
1 tm2 , tn1 t

n
2 ), T̃1, T̃2 ∈ R+,

(tn1 t
n
2 , t

m
1 tm2 , tl1t

l
2), T̃1, T̃2 ∈ R−,

(tn1 t
l
2, t

m
1 tm2 , tl1t

n
2 ), T̃1 ∈ R+, T̃2 ∈ R−,

(tl1t
n
2 , t

m
1 tm2 , tn1 t

l
2), T̃1 ∈ R−, T̃2 ∈ R+,
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• T̃1

T̃2

=



( tl1
tn2

,
tm1
tm2

,
tn1
tl2

)
, T̃1, T̃2 ∈ R+,( tn1

tl2
,
tm1
tm2

,
tl1
tn2

)
, T̃1, T̃2 ∈ R−,( tn1

tn2
,
tm1
tm2

,
tl1
tl2

)
, T̃1 ∈ R+, T̃2 ∈ R−,( tl1

tl2
,
tm1
tm2

,
tn1
tn2

)
, T̃1 ∈ R−, T̃2 ∈ R+,

where the symbols ⊕,⊖, and ⊗ denote addition, subtraction, and multipli-
cation of fuzzy numbers, respectively.

Definition 5. [32] Fuzzy α-cut T̃α of the fuzzy set T̃ can be defined as T̃α =

{x ∈ U : µT̃ (x) ≥ α, α ∈ [0, 1]}. The fuzzy α-cut of a TFN T̃ = (t1, t2, t3) is
defined as T̃α = [t1 + α(t2 − t1), t3 − α(t3 − t2)].

Definition 6. [22] Ranking function over the set of TFNs T̃ = (t1, t2, t3) in
R can be defined as, R(T̃ ) = t1+2t2+t3

4 for all T̃ = (t1, t2, t3) ∈ TFN(R).

Definition 7. [22] Let ABC be a triangle in xy-plane with its vertices
A(x1, y1), B(x2, y2) and C(x3, y3). Then its centroid is the point of intersec-
tions of the medians, which can be defined as

(x1 + x2 + x3

3
,
y1 + y2 + y3

3

)
.

The centroid of a TFN T̃ = (t1, t2, t3) is defined as
( t1 + t2 + t3

3
,
1

3

)
.

Theorem 1. [29] The optimal solution of the real valued optimization,
Maxx∈δ FL(x) + FU (x) is a non-dominated solution of the interval valued
optimization, Maxx∈δ [FL(x), FU (x)].

3 Problem formulation and methodology developed for
FFMOLPP

FFMOLPP frequently arises in many real world problems. The use of TFNs
are common and often required to address the informational ambiguity in
these optimization models.

3.1 FFMOLPP formulation:

Consider the following FFMOLPP with p number of objective functions:
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Max Z̃1(X̃) =

r∑
j=1

F̃1j ⊗ x̃j= F̃11 ⊗ x̃1 ⊕ F̃12 ⊗ x̃2 ⊕ · · · ⊕ F̃1r ⊗ x̃r

Max Z̃2(X̃) =

r∑
j=1

F̃2j ⊗ x̃j= F̃21 ⊗ x̃1 ⊕ F̃22 ⊗ x̃2 ⊕ · · · ⊕ F̃2r ⊗ x̃r

...

Max Z̃p(X̃) =

r∑
j=1

F̃pj ⊗ x̃j= F̃p1 ⊗ x̃1 ⊕ F̃p2 ⊗ x̃2 ⊕ · · · ⊕ F̃pr ⊗ x̃r

subject to

∆̃(X̃) = {ÃX̃(≼,≈,≽)b̃} =
{ r∑

j=1

ãij x̃j(≼,≈,≽)b̃i

}
,

(2)

where F̃kj , X̃=(x̃j), ãij , b̃i ∈ TFN(R+) for k = 1, 2, . . . , p, j = 1, 2, . . . , r, i =

1, 2, . . . , q and ≼,≽,≈, represent the fuzziness in the inequalities and equality,
respectively. Moreover, Z̃, X̃, ∆̃ represent the fuzzy or interval valued charac-
teristics whereas Z,X,∆ represent the real valued characteristics throughout
this paper.

Definition 8. [22] X̃∗ ∈ ∆̃(X̃) is a fuzzy Pareto optimal solution or fuzzy
non-dominated solution of the FFMOLPP (2) if and only if there is no another
feasible solution X̃∗∗ ∈ ∆̃(X̃) such that Z̃r(X̃

∗∗) ≽ Z̃r(X̃
∗) for all (r =

1, 2, 3, . . . , p) and Z̃s(X̃
∗∗) ≻ Z̃s(X̃

∗) for at least one s ∈ {1, 2, . . . , p}.

3.2 Developed solution methodology:

On substituting the values of decision variables and coefficients/constants,
which exist in form of TFNs, the objective functions and constraints of the
model (2) can be expressed as follows:

Max Z̃1(X̃) =

n∑
j=1

(cl1j , c
m
1j , c

n
1j)⊗ (xl

j , x
m
j , xn

j )

Max Z̃2(X̃) =

n∑
j=1

(cl2j , c
m
2j , c

n
2j)⊗ (xl

j , x
m
j , xn

j )

...
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Max Z̃p(X̃) =

n∑
j=1

(clpj , c
m
pj , c

n
pj)⊗ (xl

j , x
m
j , xn

j ) (3)

subject to

∆̃(X̃) =


r∑

j=1

(alij , a
m
ij , a

n
ij)⊗(xl

j , x
m
j , xn

j )(≼,≈,≽)(bli, b
m
i , bni ), i = 1, 2, . . . , q,

x̃j ≽ 0, j = 1, 2, . . . , r.

In ∆̃(X̃), x̃j = (xl
j , x

m
j , xn

j ) ≽ 0, that is , x̃j ∈ TFN(R+) implies xl
j ≥

0, xm
j ≥ xl

j , x
n
j ≥ xm

j and ãij = (alij , a
m
ij , a

n
ij), x̃j = (xl

j , x
m
j , xn

j ) ∈ TFN(R+)

implies ãij ⊗ x̃j = (alijx
l
j , a

m
ijx

m
j , anijx

n
j ) based on the arithmetic operations

in Definition 4. So, ∆̃(X̃) is converted into ∆̃1(X̃) and the fuzzy model (3)
is equivalently transformed into the following MOLPP using fuzzy α-cuts of
TFNs in the objective functions:

Max Z̃1(X̃) =

n∑
j=1

[cl1j + α(cm1j − cl1j), c
n
1j − α(cn1j − cm1j)]

× [xl
j + α(xm

j − xl
j), x

n
j − α(xn

j − xm
j )]

Max Z̃2(X̃) =

n∑
j=1

[cl2j + α(cm2j − cl2j), c
n
2j − α(cn2j − cm2j)]

× [xl
j + α(xm

j − xl
j), x

n
j − α(xn

j − xm
j )]

...

Max Z̃p(X̃) =

n∑
j=1

[clpj + α(cmpj − clpj), c
n
pj − α(cnpj − cm1j)]

× [xl
j + α(xm

j − xl
j), x

n
j − α(xn

j − xm
j )]

(4)

subject to

∆̃1(X̃) =


r∑

j=1

(alijx
l
j , a

m
ijx

m
j , anijx

n
j )(≼,≈,≽)(bli, b

m
i , bni ), i = 1, 2, . . . , q,

xl
j , x

m
j − xl

j , x
n
j − xm

j ≥ 0, j = 1, 2, . . . , r.

To convert the triangular fuzzy valued inequalities ∆̃1(X̃) to its equivalent
deterministic form, the concept of centroid of TFNs discussed in Definition
7 is utilized in the set of constraints ∆̃1(X̃).
r∑

j=1

(alijx
l
j , a

m
ijx

m
j , anijx

n
j )(≼,≈,≽)(bli, b

m
i , bni ),

that is,
( r∑

j=1

alijx
l
j ,

r∑
j=1

amijx
m
j ,

r∑
j=1

anijx
n
j

)
(≼,≈,≽)

(
bli, b

m
i , bni

)
,
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that is,
( r∑

j=1
al
ijx

l
j+

r∑
j=1

am
ijx

m
j +

r∑
j=1

an
ijx

n
j

3 , 1
3

)
(≼,≈,≽)

(
bli+bmi +bni

3 , 1
3

)
,

that is,
( r∑

j=1

alijx
l
j +

r∑
j=1

amijx
m
j +

r∑
j=1

anijx
n
j

)
(≼,≈,≽)

(
bli + bmi + bni

)
.

Consequently, the following deterministic form of inequalities ∆2(X) is de-
rived for the constraints:

∆2(X) =



( r∑
j=1

alijx
l
j +

r∑
j=1

amijx
m
j +

r∑
j=1

anijx
n
j

)
(≤,=,≥)(bli + bmi + bni ),

i = 1, 2, . . . , q

xl
j , x

m
j − xl

j , x
n
j − xm

j ≥ 0,

j = 1, 2, . . . , r.

The objective functions of the model (4) can be transformed into interval
valued forms. The mathematical formulation of Z̃1(X̃) as interval valued
function, is expressed below:

Z̃1(X̃) =

n∑
j=1

[(1− α)cl1j + αcm1j , (1− α)cn1j + αcm1j ]

× [(1− α)xl
1j + αxm

1j , (1− α)xn
j + αxm

j ]

=

[ n∑
j=1

{(1− α)cl1j + αcm1j}{(1− α)xl
1j + αxm

1j},

n∑
j=1

{(1− α)cn1j + αcm1j}{(1− α)xn
j + αxm

j }
]

=[ZL
1 (X), ZU

1 (X)].

(5)

Similarly, the remaining objective functions can be expressed in interval val-
ued forms,

Z̃2(X̃) = [ZL
2 (X), ZU

2 (X)], Z̃3(X̃) = [ZL
3 (X), ZU

3 (X)], . . . , Z̃p(X̃) = [ZL
p (X), ZU

p (X)].

(6)

The FFMOLPP (2) can be expressed now as the following optimization
model with interval valued objective functions and deterministic constraints:

Iran. J. Numer. Anal. Optim., Vol. 14, No. 4, 2024, pp 1106–1139



1117 A fuzzy solution approach to multi-objective fully triangular fuzzy ...

Max Z̃1(X̃) = [ZL
1 (X), ZU

1 (X)]

Max Z̃2(X̃) = [ZL
2 (X), ZU

2 (X)]

...

Max Z̃p(X̃) = [ZL
p (X), ZU

p (X)]

(7)

subject to

∆2(X) =


(

r∑
j=1

alijx
l
j +

r∑
j=1

amijx
m
j +

r∑
j=1

anijx
n
j )(≤,=,≥)(bli + bmi + bni ),

i = 1, 2, . . . , q,

xl
j , x

m
j − xl

j , x
n
j − xm

j ≥ 0, j = 1, 2, . . . , r.

The multi-objective interval valued optimization (7) can be scalarized into
the following single objective interval valued optimization using weighting
sum approach with the weight vectors (w1, w2, . . . , wp):

Max Z̃(X̃) =w1[Z
L
1 (X), ZU

1 (X)] + w2[Z
L
2 (X), ZU

2 (X)]

+ · · ·+ wp[Z
L
p (X), ZU

p (X)]
(8)

subject to

∆2(X) =



(
r∑

j=1

alijx
l
j +

r∑
j=1

amijx
m
j +

r∑
j=1

anijx
n
j )(≤,=,≥)(bli + bmi + bni ),

i = 1, 2, . . . , q,

xl
j , x

m
j − xl

j , x
n
j − xm

j ≥ 0, wk > 0,
p∑

k=1

wk = 1,

j = 1, 2, . . . , r.

The objective function of the optimization model (8) can be expressed in
the following form.:

Z̃(X̃) =
[
w1Z

L
1 (X) + w2Z

L
2 (X) + · · ·+ wpZ

L
p (X), w1Z

U
1 (X)

+ w2Z
U
2 (X) + · · ·+ wpZ

U
p (X)

]
.

That is, Z̃(X̃) =
[ p∑
i=1

wiZ
L
i (X),

p∑
i=1

wiZ
U
i (X)

]
.

The optimization model (8) can be further simplified as,
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MaxX∈∆2(X) Z̃(X̃) =
[ p∑

i=1

wiZ
L
i (X),

p∑
i=1

wiZ
U
i (X)

]
. (9)

Based on Theorem 1, it can be clearly proved that the optimal solution of the
following model (10) is a non-dominated solution of the optimization model
(9):

MaxX∈∆2(X) Z(X) =

p∑
i=1

wiZ
L
i (X) +

p∑
i=1

wiZ
U
i (X). (10)

The FFMOLPP (2) is equivalently converted into the optimization model
(8), which is next simplified as the model (9). Since an optimal solution of
(10) is a non-dominated solution of the model (9), so it is also considered as
non-dominated for the FFMOLPP (2).

Finally, the FFMOLPP (2) can be transformed into the following sin-
gle objective deterministic LPP on applying Theorem 1 and simplifying the
model (10):

Max Z(X) =w1[Z
L
1 (X) + ZU

1 (X)] + w2[Z
L
2 (X) + ZU

2 (X)]

+ · · ·+ wp[Z
L
p (X) + ZU

p (X)]
(11)

subject to

∆2(X) =



(
r∑

j=1

alijx
l
j +

r∑
j=1

amijx
m
j +

r∑
j=1

anijx
n
j )(≤,=,≥)(bli + bmi + bni ),

i = 1, 2, . . . , q,

xl
j , x

m
j − xl

j , x
n
j − xm

j ≥ 0,

wk > 0,
p∑

k=1

wk = 1, j = 1, 2, . . . , r.

Solving the model (11), a set of non-dominated solutions can be gener-
ated for the FFMOLPP (2) by substituting different values of α ∈ [0, 1] and
weights wk > 0 with

p∑
k=1

wk = 1.

3.3 Algorithm and flowchart presentation of the
developed methodology:

An algorithm and a flowchart Figure 2 are presented below, describing the
details of the proposed methodology.
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Step 1. Use fuzzy α-cuts and arithmetic operations of TFNs in the objective
functions and constraints of FFMOLPP (3), respectively.
Step 2. Simplify the objective functions in the form of the model (4) and
the set of constraints as ∆̃1(X̃).
Step 3. Linearize the constraints of ∆̃1(X̃) as ∆2(X) by using the concept
of centroid of TFNs.
Step 4. Express the FFMOLPP as the optimization model (7) with interval
valued objective functions and deterministic constraints.
Step 5. Use weighting sum method to scalarize the model (7) in form of
single objective optimization (8).
Step 6. Apply Theorem 1 in order to transform the problem (8) to its
equivalent model (11) comprising real valued objective function Z(X) and
deterministic constraints ∆2(X).
Step 7. Solve the optimization model (11) substituting different values of
α ∈ [0, 1] and weights wk > 0,

p∑
k=1

wk = 1. The optimal solutions obtained

are considered as the non-dominated solutions of the FFMOLPP (2).
Step 8. If DM is unsatisfied with the obtained non-dominated solutions,
then reformulate and solve model (11) by changing α ∈ [0, 1] and weight
vector (wk).

4 Numerical examples

In order to illustrate and validate the feasibility of the proposed methodology,
two existing numerical and one practical problems in form of FFMOLPP are
solved and the comparative study on its result analysis is incorporated.

Example 1. Consider the following FFMOLPP, which is initially solved by
Aggarwal and Sharma [1], Temelcan, Gonce Kocken, and Albayrak [27]:
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Figure 2: Flowchart of proposed solution approach

Max Z̃1(X̃) = (1, 2, 3)⊗x̃1 ⊕ (2, 4, 5)⊗x̃2

Max Z̃2(X̃) = (2, 3, 4)⊗x̃1 ⊕ (3, 4, 5)⊗x̃2

subject to

(0, 1, 2)⊗x̃1 ⊕ (1, 2, 3)⊗x̃2 ≼ (1, 10, 27)

(1, 2, 3)⊗x̃1 ⊕ (0, 1, 2)⊗x̃2 ≼ (2, 11, 28)

x̃1, x̃2 ≽ 0,

(12)

Solution:
According to the proposed methodology, the FFMOLPP (12) is equivalently
transformed into the following optimization model with fuzzy constraints
based on fuzzy α-cuts in objective functions and arithmetic operations of
TFNs:
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Max Z̃1(X̃) =[1 + α, 3− α][(1− α)xl
1 + αxm

1 , (1− α)xn
1 + αxm

1 ]

+ [2 + 2α, 5− α][(1− α)xl
2 + αxm

2 , (1− α)xn
2 + αxm

2 ]

Max Z̃2(X̃) =[2 + α, 4− α][(1− α)xl
1 + αxm

1 , (1− α)xn
1 + αxm

1 ]

+ [3 + α, 5− α][(1− α)xl
2 + αxm

2 , (1− α)xn
2 + αxm

2 ]

subject to

(xl
2, x

m
1 + 2xm

2 , 2xn
1 + 3xn

2 ) ≼ (1, 10, 27)

(xl
1, 2x

m
1 + xm

2 , 3xn
1 + 2xn

2 ) ≼ (2, 11, 28)

xl
1, x

l
2, x

m
1 − xl

1, x
m
2 − xl

2, x
n
1 − xm

1 , xn
2 − xm

2 ≥ 0.

(13)

Using centroid concept of TFNs in constraints and arithmetic operations,
the model (13) is expressed as the following interval valued optimization
with deterministic linear constraints:

Max Z̃1(X̃) =[(1− α2)xl
1 + α(1 + α)xm

1 + (1− α)(2 + 2α)xl
2 + α(2 + 2α)xm

2 ,

(3− α)(1− α)xn
1 + α(3− α)xm

1 + (1− α)(5− α)xn
2 + α(5− α)xm

2 ]

Max Z̃2(X̃) =[(1− α)(2 + α)xl
1 + α(2 + α)xm

1 + (1− α)(3 + α)xl
2 + α(3 + α)xm

2 ,

(1− α)(4− α)xn
1 + α(4− α)xm

1 + (1− α)(5− α)xn
2 + α(5− α)xm

2 ]

subject to

xm
1 + 2xn

1 + xl
2 + 2xm

2 + 3xn
2 ≤ 38

xl
1 + 2xm

1 + 3xn
1 + xm

2 + 2xn
2 ≤ 41

xl
1, x

l
2, x

m
1 − xl

1, x
m
2 − xl

2, x
n
1 − xm

1 , xn
2 − xm

2 ≥ 0.

(14)

The FFMOLPP (14) is finally formulated as the following single objective
optimization using the weight vector (w1, w2):

Max Z(X) =w1[(1− α2)xl
1 + 4αxm

1 + (3− α)(1− α)xn
1

+ (1− α)(2 + 2α)xl
2 + α(7 + α)xm

2 + (1− α)(5− α)xn
2 ]

+ w2[(1− α)(2 + α)xl
1 + 6αxm

1 + (1− α)(4− α)xn
1

+ (1− α)(3 + α)xl
2 + 8αxm

2 + (1− α)(5− α)xn
2 ]

subject to

xm
1 + 2xn

1 + xl
2 + 2xm

2 + 3xn
2 ≤ 38

xl
1 + 2xm

1 + 3xn
1 + xm

2 + 2xn
2 ≤ 41

xl
1, x

l
2, x

m
1 − xl

1, x
m
2 − xl

2, x
n
1 − xm

1 , xn
2 − xm

2 ≥ 0

w1, w2 > 0, w1 + w2 = 1.

(15)
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On solving problem (15) with different α ∈ [0, 1] and weights w1, w2 >

0, w1 + w2 = 1, a set of optimal solutions are derived, which are consid-
ered as the non-dominated solutions of the FFMOLPP (12).
The triangular fuzzy optimal objective values are computed along with their
corresponding real valued expressions using ranking function and these val-
ues are shown in the following Table 1.

Example 2. Consider the following FFMOLPP, which is initially solved by
Yang, Cao, and Lin [30]:

Min Z̃1(X̃) = (7, 10, 11)⊗x̃1 ⊕ (8, 10, 13)⊗x̃2

Min Z̃2(X̃) = (2, 3, 4)⊗x̃1 ⊕ (4, 7, 12)⊗x̃2

subject to

(1, 2, 4)⊗x̃1 ⊕ (2, 8, 10)⊗x̃2 ≈ (3, 22, 36)

(2, 3, 6)⊗x̃1 ⊕ (4, 10, 15)⊗x̃2 ≈ (6, 29, 54)

x̃1, x̃2 ≽ 0.

(16)

Solution:
The FFMOLPP (16) is formulated into the following optimization model
using fuzzy α-cuts in objective functions and arithmetic operations of TFNs
in constraints:

Min Z̃1(X̃) =[7 + 3α, 11− α][(1− α)xl
1 + αxm

1 , (1− α)xn
1 + αxm

1 ]

+ [8 + 2α, 13− 3α][(1− α)xl
2 + αxm

2 , (1− α)xn
2 + αxm

2 ]

Min Z̃2(X̃) =[2 + α, 4− α][(1− α)xl
1 + αxm

1 , (1− α)xn
1 + αxm

1 ]

+ [4 + 3α, 12− 5α][(1− α)xl
2 + αxm

2 , (1− α)xn
2 + αxm

2 ]

subject to

(xl
1 + 2xl

2, 2x
m
1 + 8xm

2 , 4xn
1 + 10xn

2 ) ≈ (3, 22, 36)

(2xl
1 + 4xl

2, 3x
m
1 + 10xm

2 , 6xn
1 + 15xn

2 ) ≈ (6, 29, 54)

xl
1, x

l
2, x

m
1 − xl

1, x
m
2 − xl

2, x
n
1 − xm

1 , xn
2 − xm

2 ≥ 0.

(17)

The above model (17) is equivalently expressed into the following model com-
prising interval valued objective functions and deterministic linear constraints
based on the centroid concept:
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Table 1: Non-dominated solutions, fuzzy valued optimal objective functions and their
real valued expressions of Example 1

α w x̃1 x̃2 Z̃1 Z̃2 R(Z̃1) R(Z̃2)

(0.2,0.8)
(0.4,0.6) (3.916667,3.916667, (0,0,8.75) (3.916667,7.8333, (7.8333,11.75, 18.7708 22.6875

0.1 (0.5,0.5) 3.916667) 55.5) 59.4167)
(0.6,0.4)
(0.8,0.2) (0,0,0) (0,0,12.667) (0,0,63.335) (0,0,63.335) 15.8338 15.8338
(0.2,0.8)
(0.4,0.6) (4.88889,4.88889, (3.88889,3.88889,(12.6667,25.3333, (21.4445,30.2222,24.3611 30.2222

0.2 (0.5,0.5) 4.88889) 3.88889) 34.1111) 39)
(0.6,0.4)
(0.8,0.2) (3.916667,3.916667,

3.916667)
(0,0,8.75) (3.916667,7.8333,

55.5)
(7.8333,11.75,

59.4167)
18.7708 22.6875

(0.2,0.8)
(0.4,0.6) (4.88889,4.88889, (3.88889,3.88889,(12.6667,25.3333, (21.4445,30.2222,24.3611 30.2222

0.3 (0.5,0.5) 4.88889) 3.88889) 34.1111) 39)
(0.6,0.4)
(0.8,0.2)
(0.2,0.8)
(0.4,0.6) (4.88889,4.88889, (3.88889,3.88889,(12.6667,25.3333, (21.4445,30.2222,24.3611 30.2222

0.4 (0.5,0.5) 4.88889) 3.88889) 34.1111) 39)
(0.6,0.4)
(0.8,0.2)
(0.2,0.8)
(0.4,0.6) (4.88889,4.88889, (3.88889,3.88889,(12.6667,25.3333, (21.4445,30.2222,24.3611 30.2222

0.5 (0.5,0.5) 4.88889) 3.88889) 34.1111) 39)
(0.6,0.4)
(0.8,0.2)
(0.2,0.8)
(0.4,0.6) (4.88889,4.88889, (3.88889,3.88889,(12.6667,25.3333, (21.4445,30.2222,24.3611 30.2222

0.6 (0.5,0.5) 4.88889) 3.88889) 34.1111) 39)
(0.6,0.4)
(0.8,0.2)
(0.2,0.8)
(0.4,0.6) (4.333333,4.333333 (4.333333,28.6667, (8.6667,33,

0.7 (0.5,0.5) ,4.333333) (0,5,5) 38) 42.3333) 24.9167 29.25
(0.6,0.4)
(0.8,0.2)
(0.2,0.8)
(0.4,0.6) (4.333333,4.333333 (4.333333,28.6667, (8.6667,33,

0.8 (0.5,0.5) ,4.333333) (0,5,5) 38) 42.3333) 24.9167 29.25
(0.6,0.4)
(0.8,0.2)
(0.2,0.8)
(0.4,0.6) (4.333333,4.333333 (4.333333,28.6667, (8.6667,33,

0.9 (0.5,0.5) ,4.333333) (0,5,5) 38) 42.3333) 24.9167 29.25
(0.6,0.4)
(0.8,0.2) (0,0,0) (0,7.6,7.6) (0,30.4,38) (0,30.4,38) 24.7 24.7
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Min Z̃1(X̃) =[(7 + 3α)(1− α)xl
1 + α(7 + 3α)xm

1 + (8 + 2α)(1− α)xl
2 + α(8 + 2α)xm

2 ,

(11− α)(1− α)xn
1 + α(11− α)xm

1 + (13− 3α)(1− α)xn
2 + α(13− 3α)xm

2 ]

Min Z̃2(X̃) =[(2 + α)(1− α)xl
1 + α(2 + α)xm

1 + (4 + 3α)(1− α)xl
2 + α(4 + 3α)xm

2 ,

(4− α)(1− α)xn
1 + α(4− α)xm

1 + (12− 5α)(1− α)xn
2 + α(12− 5α)xm

2 ]

subject to

xl
1 + 2xm

1 + 4xn
1 + 2xl

2 + 8xm
2 + 10xn

2 = 61

2xl
1 + 3xm

1 + 6xn
1 + 4xl

2 + 10xm
2 + 15xn

2 = 89

xl
1, x

l
2, x

m
1 − xl

1, x
m
2 − xl

2, x
n
1 − xm

1 , xn
2 − xm

2 ≥ 0.

(18)

The FFMOLPP (16) is finally formulated into the following single objective
optimization according to the proposed methodology:

Min Z(X) = w1[(7 + 3α)(1− α2)xl
1 + α(18 + 2α)xm

1 + (11− α)(1− α)xn
1

+ (8 + 2α)(1− α)xl
2 + α(21− α)xm

2 + (13− 3α)(1− α)xn
2 ]

+ w2[(2 + α)(1− α)xl
1 + 6αxm

1 + (4− α)(1− α)xn
1

+ (4 + 3α)(1− α)xl
2 + α(16− 2α)xm

2 + (12− 5α)(1− α)xn
2 ]

subject to

xl
1 + 2xm

1 + 4xn
1 + 2xl

2 + 8xm
2 + 10xn

2 = 61

2xl
1 + 3xm

1 + 6xn
1 + 4xl

2 + 10xm
2 + 15xn

2 = 89

xl
1, x

l
2, x

m
1 − xl

1, x
m
2 − xl

2, x
n
1 − xm

1 , xn
2 − xm

2 ≥ 0

w1, w2 > 0, w1 + w2 = 1.

(19)
Substituting different α ∈ [0, 1], weights (w1, w2) > 0 with w1 + w2 = 1 in
(19) and solving each resulted optimization model, a set of optimal solutions
are obtained, which are considered as the non-dominated solutions of the
FFMOLPP (16). The triangular fuzzy optimal objective values and their
corresponding real valued expressions are computed based on the concept of
ranking function, which are shown in the following Table 2.

Example 3. Consider the following FFMOLPP, which is initially solved by
Arana-Jiménez [5]:
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Table 2: Non-dominated solutions, fuzzy valued optimal objective functions and their
real valued expressions of Example 2

α w x̃1 x̃2 Z̃1 Z̃2 R(Z̃1) R(Z̃2)

(0.2,0.8) (0,6.41667,6.41667)(0,1.25,1.25) (0,76.6667,86.8333)(0,28,40.6667) 60.0417 24.1667
(0.4,0.6) (0,0,0) (2.5,2.5,3.6) (20,25,46.8) (10,17.5,43.2) 29.2 22.05

0.1 (0.5,0.5)
(0.6,0.4) (0,0,0) (0,1.25,5.1) (0,12.5,66.3) (0,8.75,61.2) 22.825 19.675
(0.8,0.2)
(0.2,0.8)
(0.4,0.6)

0.2 (0.5,0.5) (0,0,0) (0,1.25,5.1) (0,12.5,66.3) (0,8.75,61.2) 22.825 19.675
(0.6,0.4)
(0.8,0.2)
(0.2,0.8)
(0.4,0.6)

0.3 (0.5,0.5) (0,0,0) (0,1.25,5.1) (0,12.5,66.3) (0,8.75,61.2) 22.825 19.675
(0.6,0.4)
(0.8,0.2)
(0.2,0.8)
(0.4,0.6)

0.4 (0.5,0.5) (0,0,0) (0,1.25,5.1) (0,12.5,66.3) (0,8.75,61.2) 22.825 19.675
(0.6,0.4)
(0.8,0.2)
(0.2,0.8)
(0.4,0.6)

0.5 (0.5,0.5) (0,0,0) (0,1.25,5.1) (0,12.5,66.3) (0,8.75,61.2) 22.825 19.675
(0.6,0.4)
(0.8,0.2)
(0.2,0.8)
(0.4,0.6)

0.6 (0.5,0.5) (0,0,0) (0,1.25,5.1) (0,12.5,66.3) (0,8.75,61.2) 22.825 19.675
(0.6,0.4)
(0.8,0.2)
(0.2,0.8)
(0.4,0.6)

0.7 (0.5,0.5) (0,0,0) (0,1.25,5.1) (0,12.5,66.3) (0,8.75,61.2) 22.825 19.675
(0.6,0.4)
(0.8,0.2)
(0.2,0.8)
(0.4,0.6)

0.8 (0.5,0.5) (0,0,0) (0,1.25,5.1) (0,12.5,66.3) (0,8.75,61.2) 22.825 19.675
(0.6,0.4)
(0.8,0.2)
(0.2,0.8)
(0.4,0.6)

0.9 (0.5,0.5) (0,0,0) (0,1.25,5.1) (0,12.5,66.3) (0,8.75,61.2) 22.825 19.675
(0.6,0.4)
(0.8,0.2)
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Max Z̃1(X̃) = (
7

5
, 4,

43

7
)⊗ x̃1 ⊕ (5, 7, 12)⊗ x̃2 ⊕ (

39

4
, 11,

33

2
)⊗ x̃3

Max Z̃2(X̃) = (3, 4, 6)⊗ x̃1 ⊕ (
10

3
, 5, 9)⊗ x̃2 ⊕ (4, 5, 10)⊗ x̃3

subject to

(2, 5, 8)⊗ x̃1 ⊕ (3,
41

6
, 10)⊗ x̃2 ⊕ (5,

31

3
, 18)⊗ x̃3 ⪯ (6,

50

3
, 30)

(4,
32

3
, 12)⊗ x̃1 ⊕ (5,

73

6
, 20)⊗ x̃2 ⊕ (7,

105

6
, 30)⊗ x̃3 ⪯ (10, 30, 50)

(3, 5, 7)⊗ x̃1 ⊕ (5, 15, 20)⊗ x̃2 ⊕ (5, 10, 15)⊗ x̃3 ⪯ (2,
145

6
, 30)

x̃1, x̃2, x̃3 ≽ 0.

(20)

Solution:
The FFMOLPP (20) is formulated into the following model using fuzzy α-
cuts in the objective functions and arithmetic operations of TFNs in the
constraints:

Max Z̃1(X̃) = [
7

5
+ 2.6α,

43

7
− 2.1429α][(1− α)xl

1 + αxm
1 , (1− α)xn

1 + αxm
1 ]

+ [5 + 2α, 12− 5α][(1− α)xl
2 + αxm

2 , (1− α)xn
2 + αxm

2 ]

+ [
39

4
+ 1.25α,

33

2
− 5.5α][(1− α)xl

3 + αxm
3 , (1− α)xn

3 + αxm
3 ]

Max Z̃2(X̃) = [3 + α, 6− 2α][(1− α)xl
1 + αxm

1 , (1− α)xn
1 + αxm

1 ]

+ [
10

3
+ 1.6667α, 9− 4α][(1− α)xl

2 + αxm
2 , (1− α)xn

2 + αxm
2 ]

+ [4 + α, 10− 5α][(1− α)xl
3 + αxm

3 , (1− α)xn
3 + αxm

3 ]

subject to

(2xl
1 + 3xl

2 + 5xl
3, 5x

m
1 +

41

6
xm
2 +

31

3
xm
3 , 8xn

1 + 10xn
2 + 18xn

3 ) ⪯ (6,
50

3
, 30)

(4xl
1 + 5xl

2 + 7xl
3,

32

3
xm
1 +

73

6
xm
2 +

105

6
xm
3 , 12xn

1 + 20xn
2 + 30xn

3 ) ⪯ (10, 30, 50)

(3xl
1 + 5xl

2 + 5xl
3, 5x

m
1 + 15xm

2 + 10xm
3 , 7xn

1 + 20xn
2 + 15xn

3 ) ⪯ (2,
145

6
, 30)

xl
1, x

l
2, x

l
3, x

m
1 − xl

1, x
m
2 − xl

2, x
m
3 − xl

3, x
n
1 − xm

1 , xn
2 − xm

2 , xn
3 − xm

3 ≥ 0.

(21)
The model (21) is equivalently converted into the following interval valued
optimization model, which contains the following deterministic linear con-
straints using the concept of centroid of TFNs:
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Max Z̃1(X̃) =[(
7

5
+ 2.6α)(1− α)xl

1 + α(
7

5
+ 2.6α)xm

1

+ (5 + 2α)(1− α)xl
2 + α(5 + 2α)xm

2 + (
39

4
+ 1.25α)(1− α)xl

3

+ α(
39

4
+ 1.25α)xm

3 ,

(
43

7
− 2.1429α)(1− α)xn

1 + α(
43

7
− 2.1429α)xm

1 + (12− 5α)(1− α)xn
2

+ α(12− 5α)xm
2 + (

33

2
− 5.5α)(1− α)xn

3 + α(
33

2
− 5.5α)xm

3 ]

Max Z̃2(X̃) =[(3 + α)(1− α)xl
1 + α(3 + α)xm

1 + (
10

3
+ 1.6667α)(1− α)xl

2

+ α(
10

3
+ 1.6667α)xm

2 + (4 + α)(1− α)xl
3 + α(4 + α)xm

3 ,

(6− 2α)(1− α)xn
1 + α(6− 2α)xm

1 + (9− 4α)(1− α)xn
2

+ α(9− 4α)xm
2 + (10− 5α)(1− α)xn

3 + α(10− 5α)xm
3 ]

(22)

subject to

2xl
1 + 5xm

1 + 8xn
1 + 3xl

2 +
41

6
xm
2 + 10xn

2 + 5xl
3 +

31

3
xm
3 + 18xn

3 ≤ 52.6667

4xl
1 +

32

3
xm
1 + 12xn

1 + 5xl
2 +

73

6
xm
2 + 20xn

2 + 7xl
3 +

105

6
xm
3 + 30xn

3 ≤ 90

3xl
1 + 5xm

1 + 7xn
1 + 5xl

2 + 15xm
2 + 20xn

2 + 5xl
3 + 10xm

3 + 15xn
3 ≤ 56.1667

xl
1, x

l
2, x

l
3, x

m
1 − xl

1, x
m
2 − xl

2, x
m
3 − xl

3, x
n
1 − xm

1 , xn
2 − xm

2 , xn
3 − xm

3 ≥ 0.

The FFMOLPP (22) is finally expressed as the following single objective
deterministic linear optimization model based on the concepts of the proposed
methodology:

Max Z(X)

= w1[(
7

5
+ 2.6α)(1− α)xl

1 + α(7.5429 + 0.4571α)xm
1 + (

43

7
− 2.1429α)(1− α)xn

1

+ (5 + 2α)(1− α)xl
2 + α(17− 3α)xm

2 + (12− 5α)(1− α)xn
2

+ (
39

4
+ 1.25α)(1− α)xl

3 + α(26.25− 4.25α)xm
3 + (

33

2
− 5.5α)(1− α)xn

3 ]

+ w2[(3 + α)(1− α)xl
1 + α(9− α)xm

1 + (6− 2α)(1− α)xn
1

+ (
10

3
+ 1.6667α)(1− α)xl

2 + α(12.3333− 2.3333α)xm
2 + (9− 4α)(1− α)xn

2

+ (4 + α)(1− α)xl
3 + α(14− 4α)xm

3 + (10− 5α)(1− α)xn
3 ]

subject to
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2xl
1 + 5xm

1 + 8xn
1 + 3xl

2 +
41

6
xm
2 + 10xn

2 + 5xl
3 +

31

3
xm
3 + 18xn

3 ≤ 52.6667

4xl
1 +

32

3
xm
1 + 12xn

1 + 5xl
2 +

73

6
xm
2 + 20xn

2 + 7xl
3 +

105

6
xm
3 + 30xn

3 ≤ 90

3xl
1 + 5xm

1 + 7xn
1 + 5xl

2 + 15xm
2 + 20xn

2 + 5xl
3 + 10xm

3 + 15xn
3 ≤ 56.1667

xl
1, x

l
2, x

l
3, x

m
1 − xl

1, x
m
2 − xl

2, x
m
3 − xl

3, x
n
1 − xm

1 , xn
2 − xm

2 , xn
3 − xm

3 ≥ 0,

w1, w2 > 0, w1 + w2 = 1. (23)

On solving the problem (23) with different values of α ∈ [0, 1] and different
weights w1, w2 > 0 satisfying w1 + w2 = 1, a set of solutions are generated,
which are considered as the non-dominated solutions of the FFMOLPP (20).
The triangular fuzzy valued optimal objective values are computed at the
non-dominated solutions, which are shown in the Table 3.

Example 4 (Practical problem). A company manufactures two types of
products A and B with the profit amount of Rs. 5 and Rs. 3 per unit, re-
spectively. The import of the products A and B are required as two units
and eight units, respectively, in a day. The processing time required to man-
ufacture the products A and B are 2hr. and 3hr. per unit, respectively, in a
day not exceeding 5hr and the raw materials required are 4kg. and 5kg. per
unit, respectively, not exceeding 10kg. The company aims to maximize the
profit and maximize the import of products. The parameters and variables
are considered as fuzzy numbers because the data varies due to insufficient
labourers, supply of raw materials, defective machine, bad weather condition,
etc.
Consider the formulation of the above problem as the following FFMOLPP:

Max Z̃1(X̃) = (4, 5, 6)⊗x̃1 ⊕ (2, 3, 4)⊗x̃2

Max Z̃2(X̃) = (1, 2, 3)⊗x̃1 ⊕ (7, 8, 9)⊗x̃2

subject to

(3, 4, 5)⊗x̃1 ⊕ (4, 5, 7)⊗x̃2 ⪯ (9, 10, 11)

(1, 2, 4)⊗x̃1 ⊕ (1, 3, 5)⊗x̃2 ⪯ (3, 5, 7)

x̃1, x̃2 ≽ 0

(24)

Solution:
According to the proposed methodology, FFMOLPP (24) is expressed into
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Table 3: Non-dominated solutions and fuzzy valued optimal objective values of Example
3

α w x̃1 x̃2 x̃3 Z̃1 Z̃2 R(Z̃1) R(Z̃2)

(0.2,0.8)
(0.4,0.6) (0,0,5.462967) (0,0,0.8962967) (0,0,0) (0,0,44.3138) (0,0,40.8445) 11.0785 10.2111

0.1 (0.5,0.5)
(0.6,0.4) (0,0,0.90004) (0,0,1.026666) (0,0,1.95554) (0,0,50.1152) (0,0,34.1956) 12.5288 8.5489
(0.8,0.2) (0,0,0) (0,0,1.11667) (0,0,2.255553) (0,0,50.6167) (0,0,32.6056) 12.6542 8.1514
(0.2,0.8)
(0.4,0.6) (0,0,5.462967) (0,0,0.8962967) (0,0,0) (0,0,44.3138) (0,0,40.8445) 11.0785 10.2111

0.2 (0.5,0.5)
(0.6,0.4) (0,0,0) (0,0,0.79697) (1.34091,1.34091 (13.0739,14.75 (5.3636,6.7046 18.5657 9.8387
(0.8,0.2) ,1.34091) ,31.6887) ,20.5818)
(0.2,0.8) (2.970483,2.970483(0.2902363,0.2902363 (0,0,0) (5.6099,13.9136 (9.8789,13.333113.7918 14.2450

,2.970483) ,0.2902363) ,21.7301) ,20.4350)
(0.4,0.6) (1.106286,1.106286(0.3208687,0.3208687(0.8912555,0.8912555(11.8429,16.475 (7.9534,10.485817.5362 11.8408

,1.106286) ,0.3208687) ,0.8912555) ,25.3519) ,18.4381)
0.3 (0.5,0.5)

(0.6,0.4) (0,0,0) (0.3957865,0.3957865(1.344508,1.344508 (15.0879,17.5601(6.6973,8.7015 19.2855 10.2769
(0.8,0.2) ,0.3957865) ,1.344508) ,26.9338) ,17.0072)
(0.2,0.8) (2.970483,2.970483(0.2902363,0.2902363 (0,0,0) (5.6099,13.9136 (9.8789,13.333113.7918 14.2450

,2.970483) ,0.2902363) ,21.7301) ,20.4350)
(0.4,0.6) (1.106286,1.106286(0.3208687,0.3208687(0.8912555,0.8912555(11.8429,16.475 (7.9534,10.485817.5362 11.8408

,1.106286) ,0.3208687) ,0.8912555) ,25.3519) ,18.4381)
0.4 (0.5,0.5)

(0.6,0.4) (0,0,0) (0.3957865,0.3957865(1.344508,1.344508 (15.0879,17.5601(6.6973,8.7015 19.2855 10.2769
(0.8,0.2) ,0.3957865) ,1.344508) ,26.9338) ,17.0072)
(0.2,0.8) (2.970483,2.970483(0.2902363,0.2902363 (0,0,0) (5.6099,13.9136 (9.8789,13.333113.7918 14.2450

,2.970483) ,0.2902363) ,21.7301) ,20.4350)
(0.4,0.6) (1.106286,1.106286(0.3208687,0.3208687(0.8912555,0.8912555(11.8429,16.475 (7.9534,10.485817.5362 11.8408

,1.106286) ,0.3208687) ,0.8912555) ,25.3519) ,18.4381)
0.5 (0.5,0.5)

(0.6,0.4) (0,0,0) (0.3957865,0.3957865(1.344508,1.344508 (15.0879,17.5601(6.6973,8.7015 19.2855 10.2769
(0.8,0.2) ,0.3957865) ,1.344508) ,26.9338) ,17.0072)
(0.2,0.8) (2.970483,2.970483(0.2902363,0.2902363 (0,0,0) (5.6099,13.9136 (9.8789,13.333113.7918 14.2450
(0.4,0.6) ,2.970483) ,0.2902363) ,21.7301) ,20.4350)

0.6 (0.5,0.5)
(0.6,0.4) (0,0,0) (0.3957865,0.3957865(1.344508,1.344508 (15.0879,17.5601(6.6973,8.7015 19.2855 10.2769
(0.8,0.2) ,0.3957865) ,1.344508) ,26.9338) ,17.0072)
(0.2,0.8) (0,3.970588 (0,0,0) (0,0,0) (0,15.8824 (0,15.8824 14.0389 13.8971

,3.970588) ,24.3908) ,23.8235)
(0.4,0.6) (0,3.297802 (0,0.4740881 (0,0,0) (0,16.5098 (0,15.5616 14.7417 13.7942

,3.297802) ,0.4740881) ,25.9470) ,24.0536)
0.7 (0.5,0.5)

(0.6,0.4) (0,0,0) (0,0.4774971 (0.1290657,1.552359(1.2584,20.4184 (0.5163,10.149318.3598 10.1590
(0.8,0.2) ,0.4774971) ,1.552359) ,31.3439) ,19.8211)
(0.2,0.8) (0,3.970588 (0,0,0) (0,0,0) (0,15.8824 (0,15.8824 14.0389 13.8971

,3.970588) ,24.3908) ,23.8235)
(0.4,0.6) (0,3.297802 (0,0.4740881 (0,0,0) (0,16.5098 (0,15.5616 14.7417 13.7942

0.8 (0.5,0.5) ,3.297802) ,0.4740881) ,25.9470) ,24.0536)
(0.6,0.4) (0,0,0) (0,0.486895 (0,1.565015 (0,20.6234 (0,10.2596 18.2281 10.1379

,0.486895) ,1.565015) ,31.6655) ,20.0322)
(0.8,0.2) (0,0,0) (0,0.432284 (0,1.601997 (0,20.648 (0,10.1714 18.2291 10.0633

,0.432284) ,1.601997) ,31.6204) ,19.9105)
(0.2,0.8) (0,3.970588 (0,0,0) (0,0,0) (0,15.8824 (0,15.8824 14.0389 13.8971

,3.970588) ,24.3908) ,23.8235)
(0.4,0.6) (0,3.297802 (0,0.4740881 (0,0,0) (0,16.5098 (0,15.5616 14.7417 13.7942

0.9 (0.5,0.5) ,3.297802) ,0.4740881) ,25.9470) ,24.0536)
(0.6,0.4) (0,0,0) (0,0.486895 (0,1.565015 (0,20.6234 (0,10.2596 18.2281 10.1379

,0.486895) ,1.565015) ,31.6655) ,20.0322)
(0.8,0.2) (0,0,0) (0,0.432284 (0,1.601997 (0,20.648 (0,10.1714 18.2291 10.0633

,0.432284) ,1.601997) ,31.6204) ,19.9105)
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the following model using fuzzy α-cuts in the objective functions and arith-
metic operations of TFNs in the constraints:

Max Z̃1(X̃) = [4 + α, 6− α][(1− α)xl
1 + αxm

1 , (1− α)xn
1 + αxm

1 ]

+ [2 + α, 4− α][(1− α)xl
2 + αxm

2 , (1− α)xn
2 + αxm

2 ]

Max Z̃2(X̃) = [1 + α, 3− α][(1− α)xl
1 + αxm

1 , (1− α)xn
1 + αxm

1 ]

+ [7 + α, 9− α][(1− α)xl
2 + αxm

2 , (1− α)xn
2 + αxm

2 ]

subject to

(3xl
1 + 4xl

2, 4x
m
1 + 5xm

2 , 5xn
1 + 7xn

2 ) ⪯ (9, 10, 11)

(xl
1 + xl

2, 2x
m
1 + 3xm

2 , 4xn
1 + 5xn

2 ) ⪯ (3, 5, 7)

xl
1, x

l
2, x

m
1 − xl

1, x
m
2 − xl

2, x
n
1 − xm

1 , xn
2 − xm

2 ≥ 0.

(25)

The model (25) is equivalently converted into the following interval valued
optimization model with deterministic linear constraints based on the cen-
troid concept as discussed:

Max Z̃1(X̃) = [(4 + α)(1− α)xl
1 + α(4 + α)xm

1 + (2 + α)(1− α)xl
2 + α(2 + α)xm

2 ,

(6− α)(1− α)xn
1 + α(6− α)xm

1 + (4− α)(1− α)xn
2 + α(4− α)xm

2 ]

Max Z̃2(X̃) = [(1− α2)xl
1 + α(1 + α)xm

1 + (7 + α)(1− α)xl
2 + α(7 + α)xm

2 ,

(3− α)(1− α)xn
1 + α(3− α)xm

1 + (9− α)(1− α)xn
2 + α(9− α)xm

2 ]

subject to

3xl
1 + 4xm

1 + 5xn
1 + 4xl

2 + 5xm
2 + 7xn

2 ≤ 30

xl
1 + 2xm

1 + 4xn
1 + xl

2 + 3xm
2 + 55xn

2 ≤ 15

xl
1, x

l
2, x

m
1 − xl

1, x
m
2 − xl

2, x
n
1 − xm

1 , xn
2 − xm

2 ≥ 0.

(26)

The FFMOLPP (24) is finally modeled as the following single objective
deterministic linear optimization model based on the weighting sum approach
and Theorem 1:

Max Z(X) = w1[(4 + α)(1− α2)xl
1 + 10αxm

1 + (6− α)(1− α)xn
1

+ (2 + α)(1− α)xl
2 + 6αxm

2 + (4− α)(1− α)xn
2 ]

+ w2[(1− α2)xl
1 + 4αxm

1 + (3− α)(1− α)xn
1

+ (7 + α)(1− α)xl
2 + 16αxm

2 + (9− α)(1− α)xn
2 ]

subject to (27)
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3xl
1 + 4xm

1 + 5xn
1 + 4xl

2 + 5xm
2 + 7xn

2 ≤ 30

xl
1 + 2xm

1 + 4xn
1 + xl

2 + 3xm
2 + 55xn

2 ≤ 15

xl
1, x

l
2, x

m
1 − xl

1, x
m
2 − xl

2, x
n
1 − xm

1 , xn
2 − xm

2 ≥ 0

w1, w2 > 0, w1 + w2 = 1

On solving problem (27) by substituting different values of α ∈ [0, 1] and
different weights w1, w2 > 0 satisfying w1 + w2 = 1, a set of optimal solu-
tions are generated, which are considered as the non-dominated solutions of
the FFMOLPP (24). The triangular fuzzy valued optimal objective values
are computed at the non-dominated solutions and also their real valued ex-
pressions are calculated using ranking function of TFNs, which are shown in
Table 4.

4.1 Comparative result discussions

The FFMOLPP considered in the numerical examples are existing problems,
which are solved using our proposed methodology. The computational results
of Examples 1, 2, and 3 are incorporated in Tables 1, 2, and 3, respectively.
The triangular fuzzy valued optimal objective values are computed at the
fuzzy Pareto optimal solutions and their equivalent real valued expressions
are determined using the concept of ranking function.
As it is observed, the ranking function values calculated for the optimal objec-
tive functions due to our proposed method and existing methods are closely
approaching towards each other in certain cases. Besides, the methodology
proposed in this paper derives a set of fuzzy Pareto optimal solutions from,
which some of the solutions generate better optimal objective values based
on the values of their ranking function.
In this context, some of the comparative results are incorporated in Tables 5,
6, and 7 for Examples 1, 2, and 3, respectively. The real-valued expressions of
fuzzy optimal objective values are evaluated using ranking functions in Tables
5, 6, and 7 which are further comparatively discussed with existing methods
through the following figures, Figures 3, 4, and 5, respectively. Since Exam-

Iran. J. Numer. Anal. Optim., Vol. 14, No. 4, 2024, pp 1106–1139



Swain, Maharana and Nayak 1132

Table 4: Non-dominated solutions, fuzzy valued optimal objective functions and their
real valued expressions of Example 4

α w x̃1 x̃2 Z̃1 Z̃2 R(Z̃1) R(Z̃2)

(0.2,0.8)
(0.4,0.6) (0,0,0) (1.666667,1.666667,(3.3333,5,6.6667)(11.6667,13.3333,15) 5 13.3333

0.1 (0.5,0.5) 1.666667)
(0.6,0.4)
(0.8,0.2) (2.142857,2.142857, (0,0,0) (8.5714,10.7143, (2.142857,4.2857, 10.7143 4.2857

2.142857) 12.8571) 6.4286)
(0.2,0.8)
(0.4,0.6) (0,0,0) (1.666667,1.666667,(3.3333,5,6.6667)(11.6667,13.3333,15) 5 13.3333

0.2 (0.5,0.5) 1.666667)
(0.6,0.4)
(0.8,0.2) (2.142857,2.142857, (0,0,0) (8.5714,10.7143, (2.142857,4.2857, 10.7143 4.2857

2.142857) 12.8571) 6.4286)
(0.2,0.8)
(0.4,0.6) (0,0,0) (1.666667,1.666667,(3.3333,5,6.6667)(11.6667,13.3333,15) 5 13.3333

0.3 (0.5,0.5) 1.666667)
(0.6,0.4)
(0.8,0.2) (2.142857,2.142857, (0,0,0) (8.5714,10.7143, (2.142857,4.2857, 10.7143 4.2857

2.142857) 12.8571) 6.4286)
(0.2,0.8)
(0.4,0.6) (0,0,0) (1.666667,1.666667,(3.3333,5,6.6667)(11.6667,13.3333,15) 5 13.3333

0.4 (0.5,0.5) 1.666667)
(0.6,0.4)
(0.8,0.2) (2.142857,2.142857, (0,0,0) (8.5714,10.7143, (2.142857,4.2857, 10.7143 4.2857

2.142857) 12.8571) 6.4286)
(0.2,0.8)
(0.4,0.6) (0,0,0) (1.666667,1.666667,(3.3333,5,6.6667)(11.6667,13.3333,15) 5 13.3333

0.5 (0.5,0.5) 1.666667)
(0.6,0.4)
(0.8,0.2) (2.142857,2.142857, (0,0,0) (8.5714,10.7143, (2.142857,4.2857, 10.7143 4.2857

2.142857) 12.8571) 6.4286)
(0.2,0.8)
(0.4,0.6) (0,0,0) (1.666667,1.666667,(3.3333,5,6.6667)(11.6667,13.3333,15) 5 13.3333

0.6 (0.5,0.5) 1.666667)
(0.6,0.4)
(0.8,0.2) (2.142857,2.142857, (0,0,0) (8.5714,10.7143, (2.142857,4.2857, 10.7143 4.2857

2.142857) 12.8571) 6.4286)
(0.2,0.8)
(0.4,0.6) (0,0,0) (1.666667,1.666667,(3.3333,5,6.6667)(11.6667,13.3333,15) 5 13.3333

0.7 (0.5,0.5) 1.666667)
(0.6,0.4)
(0.8,0.2) (0,2.5,2.5) (0,0,0) (0,12.5,15) (0,5,7.5) 10 4.375
(0.2,0.8)
(0.4,0.6) (0,0,0) (0,1.875,1.875) (0,5.625,7.5) (0,15,16.875) 4.6875 11.7188

0.8 (0.5,0.5)
(0.6,0.4)
(0.8,0.2) (0,2.5,2.5) (0,0,0) (0,12.5,15) (0,5,7.5) 10 4.375
(0.2,0.8)
(0.4,0.6) (0,0,0) (0,1.875,1.875) (0,5.625,7.5) (0,15,16.875) 4.6875 11.7188

0.9 (0.5,0.5)
(0.6,0.4)
(0.8,0.2) (0,2.5,2.5) (0,0,0) (0,12.5,15) (0,5,7.5) 10 4.375

ples 1, 2, and 3 are of maximization, minimization and maximization types,
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respectively, the figures validate and justify the feasibility and effectiveness
of the proposed solution approach.

Table 5: Comparative results of Example 1

Methods Z̃1 Z̃2 R(Z̃1) R(Z̃2)

Agarwal
and
Sharma
[1]

(4, 20, 43) (7, 24, 49) 21.75 26

Temelcan,
Gonce
Kocken,
and Al-
bayrak [27]

(12, 24, 32.33) (20.33, 28.67, 37) 23.08 28.67

Proposed
method

(4.3333,28.6667,38) (8.6667,33,42.3333) 24.9167 29.25

Proposed
method

(3.8889,3.8889,3.8889)(12.6667,25.3333,34.1111)24.3611 30.2222

Figure 3: Comparative results on ranking function, Example 1 and Table 5
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Table 6: Comparative results of Example 2

Methods Z̃1 Z̃2 R(Z̃1) R(Z̃2)

Yang, Cao, and Lin [30] (12, 50, 66.3712) (6, 23, 40.5008) 44.5928 23.1252
Proposed method (20,25,46.8) (10,17.5,43.2) 29.2 22.05

Figure 4: Comparative results on ranking function, Example 2 and Table 6

Table 7: Comparative results of Example 3

Methods Z̃1 Z̃2 R(Z̃1) R(Z̃2)

Arana-Jiménez [5] (2.457143,
16.343755,
33.540027)

(2.4,
11.49366,
15.47613)

17.17117 10.2158625

Proposed method (15.0879,
17.5601,
26.9338)

(6.6973,
8.7015,
17.0072)

19.2855 10.2769

Proposed method (1.2584,
20.4184,
31.3439)

(0.5163,
10.1493,
19.8211)

18.3598 10.1590
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Figure 5: Comparative results on ranking function, Example 3 and Table 7

5 Conclusions

This paper developed a methodology that generates a set of fuzzy Pareto
optimal solutions of an FFMOLPP, which is considered in a triangular fuzzy
environment. The concepts of fuzzy cuts and centroid of TFNs are used to
develop an equivalent interval valued MOLPP, which is further solved using
weighting sum approach with different weight vectors and a theorem of inter-
val analysis. Different fuzzy cuts and positive weight vectors derive the set of
fuzzy Pareto optimal solutions. The solution approach developed is compu-
tationally simple and efficient, which provides a set of fuzzy valued solutions
comprising the compromise solution of the FFMOLPP whereas most of the
existing methods generate only one solution as the compromise solution. DM
compares the resulted fuzzy optimal objective values using ranking function
concept to decide the compromise solution. The incorporated algorithm and
flowchart narrate the detailed steps of the proposed solution approach. In the
numerical section, three existing problems along with one practical problem
are solved and the results computed are discussed as compared to the existing
methods, which shows the feasibility, effectiveness and acceptability of the
proposed methodology. LINGO software is used for the computational works
of the numerical section. The developed approach can also be applicable for
FFMOLPP designed with trapezoidal, pentagonal and hexagonal fuzzy num-
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bers etc. As the future scope of research, fully fuzzy nonlinear MOOP, fully
fuzzy bi-level MOOP in various fuzzy environment can be studied to develop
some new efficient solution methodologies.
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