Behniafar, A., Ghanbarzadeh, H., & Eshraghi, A. (2010). Investigation of factors affecting subsidence in the Mashhad plain and its geomorphic consequences. Zagros Perspective Geographical Quarterly, 2(5), 131–146. [In Persian]
Berardino, P., Fornaro, G., Lanari, R., & Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40(11), 2375–2383. https://doi.org/10.1109/TGRS.2002.803792
Biggs, J., Wright, T., Lu, Z., & Parsons, B. (2007). Multi-interferogram method for measuring interseismic deformation: Denali Fault, Alaska. Geophysical Journal International, 170(3), 1165–1179. http://dx.doi.org/10.1111/j.1365-246X.2007.03415.x
Chang, L., Sakpal, N. P., Elberink, S. O., & Wang, H. (2020). Railway infrastructure classification and instability identification using Sentinel-1 SAR and laser scanning data. Sensors, 20(24), 7108. https://doi.org/10.3390/s20247108
Chen, B., Gong, H., Chen, Y., Lei, K., Zhou, C., Si, Y., ... & Gao, M. (2021). Investigating land subsidence and its causes along Beijing high-speed railway using multi-platform InSAR and a maximum entropy model. International Journal of Applied Earth Observation and Geoinformation, 96, 102284. https://doi.org/10.1016/j.jag.2020.102284
Doin, M. P., Lodge, F., Guillaso, S., Jolivet, R., Lasserre, C., Ducret, G., ... & Pinel, V. (2011). Presentation of the small baselin nsbas processing chain on a case example: The etan deformation monitoring from 2003 to 2010 using envisat data. In Fringe Symposium. https://ens.hal.science/hal-02185213
Ferretti, A., Prati, C., & Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1), 8–20. http://dx.doi.org/10.1109/36.898661
Ferretti, A., Savio, G., Barzaghi, R., Borghi, A., Musazzi, S., Novali, F., ... & Rocca, F. (2007). Submillimeter accuracy of InSAR time series: Experimental validation. IEEE Transactions on Geoscience and Remote Sensing, 45(5), 1142–1153. http://dx.doi.org/10.1109/TGRS.2007.894440
Foroughnia, F., Nemati, S., Maghsoudi, Y., & Perissin, D. (2019). An iterative PS-InSAR method for the analysis of large spatio-temporal baseline data stacks for land subsidence estimation. International Journal of Applied Earth Observation and Geoinformation, 74, 248–258. https://doi.org/10.1016/j.jag.2018.09.018
Gambolati, G., & Teatini, P. (2015). Geomechanics of subsurface water withdrawal and injection. Water Resources Research, 51(6), 3922-3955. https://doi.org/10.1002/2014WR016841
Gao, F., Zhao, T., Zhu, X., Zheng, L., Wang, W., & Zheng, X. (2023). Land subsidence characteristics and numerical analysis of the impact on major infrastructure in Ningbo, China. Sustainability, 15(1), 543. https://doi.org/10.3390/su15010543
Hooper, A. (2004). StaMPS (Stanford Method for PS) Manual. http://sismologia.ist.utl.pt/files/StaMPS_manual.pdf
Hooper, A. (2008). A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophysical Research Letters, 35(16), L16302. http://dx.doi.org/10.1029/2008GL034654
Hooper, A., Segall, P., & Zebker, H. (2007). Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcan Alcedo, Galapagos. Journal of Geophysical Research: Solid Earth, 112(B7), B07407. http://dx.doi.org/10.1029/2006JB004763
Karra, K., Kontgis, C., Statman-Weil, Z., Mazzariello, J. C., Mathis, M., & Brumby, S. P. (2021). Global land use/land cover with Sentinel 2 and deep learning. In 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS (pp. 4704–4707). https://doi.org/10.1109/IGARSS47720.2021.9553499
Khorrami, M., Abrishami, S., & Maghsoudi, Y. (2020). Mashhad Subsidence Monitoring by Interferometric Synthetic Aperture Radar Technique. Amirkabir Journal of Civil Engineering, 51(6), 1187-1204. [In Persian] https://doi.org/10.22060/ceej.2018.14300.5617
Lazecký, M., Spaans, K., González, P. J., Maghsoudi, Y., Morishita, Y., Albino, F., ... & Wright, T. J. (2020). LiCSAR: An automatic InSAR tool for measuring and monitoring tectonic and volcanic activity. Remote Sensing, 12(15), 2430. https://doi.org/10.3390/rs12152430
Luo, Q., Zhou, G., & Perissin, D. (2017). Monitoring of subsidence along Jingjin inter-city railway with high-resolution TerraSAR-X MT-InSAR analysis. Remote Sensing, 9(7), 717. https://doi.org/10.3390/rs9070717
Meng, Z., Shu, C., Wu, Q., & Yang, Y. (2021). Monitoring surface deformation of high-speed railway using time-series InSAR method in northeast China. IOP Conference Series: Earth and Environmental Science, 660(1), 012011. http://dx.doi.org/10.1088/1755-1315/660/1/012011
Minh, D. H. T., Van Trung, L., & Toan, T. L. (2015). Mapping ground subsidence phenomena in Ho Chi Minh City through the radar interferometry technique using ALOS PALSAR data. Remote Sensing, 7(7), 8543–8562. https://doi.org/10.3390/rs70708543
Ministry of Energy. (2010). Updating the integration of water resources studies, Qareh Qom watershed, Volume 2: Reviews and general specifications. Office of Basic Water Resources Studies. [In Persian]
Ministry of Energy. (2019). Prohibited plains. Office of Protection and Utilization of Water Resources and Subscriber Affairs. [In Persian]
Morishita, Y., Lazecký, M., Wright, T. J., Weiss, J. R., Elliott, J. R., & Hooper, A. (2020). LiCSBAS: An open-source InSAR time series analysis package integrated with the LiCSAR automated Sentinel-1 InSAR processor. Remote Sensing, 12(3), 424. https://doi.org/10.3390/rs12030424
Parliament Research Center. (1996). Opening of the Mashhad-Sarakhs-Tejen railway line with a look at the situation of Sarakhs. [In Persian]
Perissin, D., Wang, Z., & Wang, T. (2011). The SARPROZ InSAR tool for urban subsidence/manmade structure stability monitoring in China. In 34th International Symposium on Remote Sensing. Sydney, Australia.
Pietrzak, O., & Pietrzak, K. (2019). The role of railway in handling transport services of cities and agglomerations. Transportation Research Procedia, 39, 405-416. https://doi.org/10.1016/j.trpro.2019.06.043
Polcari, M., Moro, M., Romaniello, V., & Stramondo, S. (2019). Anthropogenic subsidence along railway and road infrastructures in Northern Italy highlighted by CosmoSkyMed satellite data. Journal of Applied Remote Sensing, 13(2), 024515. http://dx.doi.org/10.1117/1.JRS.13.024515
Rosen, P. A., Gurrola, E., Sacco, G. F., & Zebker, H. (2012). The InSAR scientific computing environment. In Proceedings of the EUSAR 2012. Nuremberg, Germany.
Sahraoui, O. H., Hassaine, B., Serief, C., & Hasni, K. (2006). Radar interferometry with Sarscape software. Photogrammetry and Remote Sensing, 1-10.
Salehi Moteahd, F., Hafezi Moghaddas, N., Lashkaripour, G., & Dehghani, M. (2019). Land Subsidence and its Consequences in Mashhad City by Integrating Radar Interferometry and Field Measurements. Journal of Engineering Geology, 13(3), 435-462. [In Persian] http://dx.doi.org/10.18869/acadpub.jeg.13.3.435
Sandwell, D., Mellors, R., Tong, X., Wei, M., & Wessel, P. (2011). Open radar interferometry software for mapping surface deformation. EOS Transactions, American Geophysical Union, 92(28), 234. https://doi.org/10.1029/2011EO280002
Shami, S., Azar, M. K., Nilfouroushan, F., Salimi, M., & Reshadi, M. A. M. (2022). Assessments of ground subsidence along the railway in the Kashan plain, Iran, using Sentinel-1 data and NSBAS algorithm. International Journal of Applied Earth Observation and Geoinformation, 112, 102898. https://doi.org/10.1016/j.jag.2022.102898
Sharifikia, M. (2010). Investigation of the consequences of the subsidence phenomenon in residential lands and plains of Iran. Journal of the Iranian Geological Engineering Association, 3(3–4), 43–58. [In Persian] https://www.jiraeg.ir/article_68238.html
Veci, L. (2015). Interferometry tutorial. Array Systems. Available online: http://sentinel1.s3. amazonaws .
Werner, C., Wegmüller, U., Strozzi, T., & Wiesmann, A. (2000). Gamma SAR and interferometric processing software. In Proceedings of the ERS-ENVISAT Symposium. Gothenburg, Sweden. https://api.semanticscholar.org/CorpusID:28598270
Yang, Z. (2015). Monitoring and predicting railway subsidence using InSAR and time series prediction techniques (Doctoral dissertation). https://etheses.bham.ac.uk/id/eprint/6377/
Yu, C., Li, Z., Penna, N., & Crippa, P. (2018). Generic atmospheric correction model for interferometric synthetic aperture radar observations. Journal of Geophysical Research: Solid Earth, 123(10), 9202–9222. https://doi.org/10.1029/2017JB015305
Zhang, Y., Fattahi, H., & Amelung, F. (2019). Small baseline InSAR time series analysis: Unwrapping error correction and noise reduction. Computers & Geosciences, 133, 104331. https://doi.org/10.1016/j.cageo.2019.104331
Zinno, I., Elefante, S., Luca, C. D., Manunta, M., Lanari, R., & Casu, F. (2015). New advances in intensive DInSAR processing through cloud computing environments. In Proceedings of the IGARSS 2015 (pp. 5264–5267). Milan, Italy. http://dx.doi.org/10.1109/IGARSS.2015.7327022