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Abstract

In the current study, we design a new computational method to solve a
class of Liénard’s equations. This equation originates from advancements
in radio and vacuum tube technology. To attain the proposed goal, we
develop a method using a three-layer artificial neural network, consisting
of an input layer, a hidden layer, and an output layer. We use the Morgan–
Voyce even Fibonacci polynomials and sinh function as activation functions
for the hidden layer and the output layer, respectively. Then, the neural
network is trained using a classical optimization method. Finally, we an-
alyze four examples using graphs and tables to demonstrate the accuracy
and effectiveness of the numerical approach.
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1 Introduction

Nonlinear differential equations have significant implications in various fields
of science and engineering, including fluid mechanics, solid state physics,
chemical kinetics, plasma physics, mathematical biology, and so on. Most
of the nonlinear differential equations are complicated to be solved using
analytical methods, so different numerical methods are proposed for solving
these problems. For example,

• The Bernoulli collocation approach to solve the nonlinear Liénard’s
equations (LEs) [2].

• The Taylor wavelets method to solve the Bratu-type equation [8].

• The orthonormal Bernoulli wavelets neural network approach to solve
the Lane-Emden equation [25].

• The Hermite wavelets method to solve the nonlinear Rosenau–Hyman
equation [12].

• The Laguerre wavelets to solve the Hunter Saxton equation [33].

• The cardinal B-spline wavelets to solve the generalized Burgers–Huxley
equation [31].

• Hahn hybrid functions to solve distributed order fractional Black–
Scholes European [27].

• Chelyshkov least squares support vector regression to solve nonlinear
stochastic differential equations [26].

The standard LE is a generalization of the damped pendulum equation or
spring-mass system. Because this equation can be applied to describe the
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oscillating circuits, it is used in developing radio and vacuum-tube technol-
ogy. The LE, formulated by Liénard, is a second-order nonlinear differential
equation [13] and is given as

f ′′(t) + ηf ′(t) + ψf(t)f ′(t) + σf(t) + δf2(t) + ζf3(t) + γf5(t) = g(t), (1)

subject to
f(0) = ν1, f ′(0) = ν2, (2)

where 0 ≤ t ≤ 1, η, ψ, σ, δ, ζ, γ, ν1, ν2 are real coefficients, and g(t) is a con-
tinuous function.

Authors in [3, 10, 34] introduced a precise expression for the exact solution
of LEs applying the direct scheme. Matinfar, Hosseinzadeh, and Ghanbari
[18] proposed a method based on a variational iteration approach to obtain a
closed-form solution of LEs. Heydari, Hooshmandasl, and Ghaini [4] utilized
the block-pulse functions method for solving the LEs. Kaya and El-Sayed
[7] applied the Adomian decomposition method to solve the LEs. Adel [2]
adopted the Bernoulli collocation method to solve the LEs. The stability of
the periodic solution of the LEs was conducted in [35].

Over the past few years, significant focus has been placed on exploring
artificial neural networks for studying various differential equations, includ-
ing: linear and nonlinear differential equations (see [21, 20]), higher order
differential equations [14], elliptical partial differential equation [6], Emden–
Fowler equation [15], doubly singular nonlinear systems [28], nonlinear Bratu
type equation [16], Riccati differential equation [29], fractal-fractional pan-
tograph differential equations [24], nonlinear stochastic differential equations
with fractional Brownian motion [22], and stochastic biological systems [23].

The objective of this study is to adapt the Morgan–Voyce even Fibonacci
polynomials (MVEFPs) and neural network technique for obtaining the ap-
proximate solution of the nonlinear LEs using the given initial conditions.
We use the MVEFPs and sinh functions as activation functions of the hidden
layer and the output layer, respectively. Then, we use the classical opti-
mization method to train the presented neural network. The approximate
solutions by neural networks have many advantages. Some of the main fea-
tures of neural network schemes are listed as follows [25]:
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• The approximate solution of this scheme is continuous and differen-
tiable.

• By increasing the number of neurons, the accuracy of the method can
be increased.

• At any arbitrary point even between training points, the solution can
be obtained.

• Neural networks can be used for solving linear, nonlinear, and system
of differential equations, fractional differential equations, and so on.

The paper’s organization is as follows: In Section 2, some preliminaries about
the MVEFPs and the structure of neural networks are presented. In Section
3, we design the MVEFPs neural network method to solve (1)–(2). The
convergence analysis and estimated error (EE) are discussed in Section 4.
Section 5 offers some numerical examples to show the method’s effectiveness,
and conclusions are drawn in Section 6.

2 The requirement concepts

In this section, we recall the MVEFPs and Morgan–Voyce even Fibonacci
neural network (MVEFNN).

2.1 Morgan–Voyce even Fibonacci polynomials

The MVEFPs Bj(t) are defined by the following recurrence relation [5]:

Bj(t) = (2 + t)Bj−1(t)−Bj−2(t), (3)

with the initial conditions

B1(t) = 1, B2(t) = 2 + t. (4)

Also, we have

B0(t) = 0.
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The explicit summation expressions of the MVEFPs for (n ≥ 1) on the
interval [a, b] are defined as [5]

Bj(t) =

j−1∑
i=0

(
j + i

2i+ 1

)
ti. (5)

The coefficients and sums associated to MVEFPs [30] are presented in Table
1.

Table 1: Coefficients and sums associated with the MVEFPs.

j Diagonal Sums Row Partial
0 1 2 4 8 16 32 64 128 Sums Column Sums

0 0 0 0

1 1 1 1

2 2 1 3 3 1

3 3 4 1 8 6 5 1

4 4 10 6 1 21 10 15 7 1

5 5 20 21 8 1 55 15 35 28 9 1

6 6 35 56 36 10 1 144 21 70 84 45 11 1

7 7 56 126 120 55 12 1 377 28 126 210 165 66 13 1

2.2 Structure of Morgan–Voyce even Fibonacci neural
network

We consider an MVEFNN for finding the numerical approximation of the
nonlinear LEs.

• The first layer is the network’s input layer, containing a single node t
with ϱ data points as {t1, t2, . . . , tϱ}.

• The second layer of the network is the hidden layer, which uses a class
of polynomials as activation functions. In this study, the MVEFPs are
utilized as the activation functions in the hidden layer.
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• The output layer of the network receives a linear combination of the
MVEFPs from the second layer as input and produces an output by
applying an activation function (AF (·)) to this input.

Therefore, the output of the MVEFNN with the input data t and parameter
C is as

N(t, C) = AF (Θ). (6)

Here Θ is a linear combination of the MVEFPs, expressed as

Θ =

N∑
j=0

cjBj(t) = CTB(t). (7)

The vectors C and B(t) are established by the following expressions:

C = [c0, c1, c2, . . . , cN ]T ,

and

B(t) = [B0(t), B1(t), B2(t), . . . , BN (t)]T .

Additionally, AF (·) is another activation function that affects on the combi-
nation of the MVEFPs.

3 Description of the strategy

To solve the problem (1)–(2), we approximate the function f(t) as follows:

f(t) ≃ ν1 + ν2t+ t2N(t, C) = f̃(t). (8)

It is evident that the function f̃(t) meets the specified initial conditions. Here
we have

N(t, C) = AF (CTB(t)).

We use sinh function as the activation function as

N(t, C) = sinh(CTB(t)).

Since we require the approximate solution f̃(t) to satisfy (1), we define the
residual function (Res(t, C)) as follows:
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Res(t, C) = f̃ ′′(t) + ηf̃ ′(t) + ψf̃(t)f̃ ′(t) + σf̃(t) + δf̃2(t)

+ζf̃3(t) + γf̃5(t)− g(t). (9)

For each training point (ti), it yields

Res(ti, C) = f̃ ′′(ti) + ηf̃ ′(ti) + ψf̃(ti)f̃
′(ti) + σf̃(ti)

+δf̃2(ti) + ζf̃3(ti) + γf̃5(ti)− g(ti), (10)

where i = 1, 2, . . . , ϱ.

So, a data set {t1, t2, . . . , tϱ} is considered, and the following optimization
problem needs to be achieved

C∗ = min 1

2

ϱ∑
i=1

Res2(ti, C). (11)

Thus, (11) represents an unconstrained parametric optimization problem that
can be expressed as follows: Find the vector C that minimizes C∗. The
necessary conditions to determine the minimum value of C∗ are

∂

∂cj
C∗ = 0, j = 0, 1, 2, . . . , N. (12)

Using Newton’s iterative method, (12) can be solved for C. Once we obtain
C, we can determine the approximate solution f̃(t) as given in (8).

Remark 1. The training data are chosen according to the behavior of the
solution function. To have an adaptive algorithm, the points should be ac-
cumulated near the high frequencies of the underlying function. Because of
the nature of this problem, the training points should be near zero and so,
we used zeros of the shifted Legendre polynomials. In the numerical results
(NRs), we use ϱ roots of the shifted Legendre polynomials as the training
points of the method.

4 Error analysis

In this section, an error estimation will be given by means of the error function
and residual error function.

Iran. J. Numer. Anal. Optim., Vol. 15, No. 1, 2025, pp 375–395



Rahimkhani and Moeti 382

4.1 Estimation of the error function

This section will provide an error estimation of the MVEFNN solution (1)
using the residual error function. To achieve this aim, we express the error
function as

e(t) = f(t)− f̃(t), (13)

where f(t) and f̃(t) are the exact and numerical solution of relation (1),
respectively. The numerical solution f̃(t) satisfies the following problem:

f̃ ′′(t) + ηf̃ ′(t) + ψf̃(t)f̃ ′(t) + σf̃(t) + δf̃2(t)

+ζf̃3(t) + γf̃5(t) = g(t) +R(t), (14)

subject to
f̃(0) = ν1, f̃ ′(0) = ν2, (15)

where R(t) is the residual function. By subtracting (14) from (1), we get

e′′(t) + ηe′(t) + ψ(f(t)f ′(t)− f̃(t)f̃ ′(t)) + σe(t)

+δ(f2(t)− f̃2(t)) + ζ(f3(t)− f̃3(t)) + γ(f5(t)− f̃5(t)) = 0. (16)

By using (13), the above equations can be written as

e′′(t) + ηe′(t) + ψ(e(t)e′(t) + f̃ ′(t)e(t) + f̃(t)e′(t)) + σe(t)

+δ(e2(t) + 2f̃(t)e(t) + f̃2(t)) + ζ(e3(t) + 3f̃2(t)e(t) + 3f̃(t)e2(t) + f̃3(t))

+γ(e5(t) + 5f̃(t)e4(t) + 10f̃2(t)e3(t) + 10f̃3(t)e2(t) + 5f̃3(t)e2(t)

+5f̃4(t)e(t) + f̃5(t)) = 0, (17)

subject to
e(0) = 0, e′(0) = 0. (18)

We can obtain an approximation of the error function e(t) by the MVEFNN
as

e(t) ≃ t2N(t, A) = ẽ(t). (19)

Substituting (19) into (17), we yield

E(t) = ẽ′′(t) + ηẽ′(t) + ψ(ẽ(t)ẽ′(t) + f̃ ′(t)ẽ(t) + f̃(t)ẽ′(t))
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+σẽ(t) + δ(ẽ2(t) + 2f̃(t)ẽ(t) + f̃2(t))

+ζ(ẽ3(t) + 3f̃2(t)ẽ(t) + 3f̃(t)ẽ2(t) + f̃3(t))

+γ(ẽ5(t) + 5f̃(t)ẽ4(t) + 10f̃2(t)ẽ3(t)

+10f̃3(t)ẽ2(t) + 5f̃3(t)ẽ2(t) + 5f̃4(t)ẽ(t) + f̃5(t)) = 0.

(20)

Then, we obtain the following optimization problem:

A∗ = min 1

2

ϱ∑
i=1

E2(ti, A). (21)

By solving problem (21), we obtain an approximation of the error func-
tion.

Remark 2. In cases where the exact solution of the problem is unknown, the
error estimation (21) can be utilized to assess the accuracy of the obtained
results.

4.2 Residual error

When the analytical solution of the problem is unknown, the reliability and
accuracy of the technique are checked via the residual error function as

E(ti) = |f̃ ′′(ti)+ηf̃ ′(ti)+ψf̃(ti)f̃ ′(ti)+σf̃(ti)+δf̃2(ti)+γf̃5(ti)−g(ti)|, (22)

where

ti ∈ [0, 1], i = 1, 2, 3, . . . .

5 Computational experiments

Here, four numerical examples are provided to show the validity and appli-
cability of the presented scheme in Section 3.

Example 1. Consider the problem (1)–(2) with η = 0, ψ = 1, σ = δ = 1, ζ =

0, γ = 0, ν1 = 1, ν2 = 0, g(t) = cos2(t)− sin(t) cos(t) as [9]
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f ′′(t) + f(t)f ′(t) + f(t) + f2(t) = cos2 t− sin t cos t, (23)

f(0) = 1, f ′(0) = 0. (24)

Equation (23)–(24) has the exact solution given by

f(t) = cos(t). (25)

We compare the absolute error (AE) of the mentioned strategy for N =

4, 5, 7, 8, with the predictor-corrector method [9] for N = 10 in Table 2. Table
3 compares the results of the present method with the MVEFPs method
without neural network and activation function. The results show that using
a small number of basis functions, our approach yields the numerical solution
with high accuracy. Moreover, a graphical illustration of the NR and the EE
in (22) for N = 8, is shown in Figure 1.

Table 2: The comparison of AE of the mentioned method with [9] (Example 1).

t Ref. [9] mentioned method
N = 10 N = 4 N = 5 N = 6 N = 7 N = 8

0.1 2.68× 10−7 9.16× 10−7 1.03× 10−11 1.37× 10−10 9.09× 10−14 7.11× 10−13

0.2 5.72× 10−7 1.12× 10−6 1.52× 10−10 2.62× 10−10 5.43× 10−11 9.63× 10−14

0.3 8.88× 10−7 1.94× 10−7 4.02× 10−10 3.02× 10−10 1.96× 10−11 9.22× 10−13

0.4 1.20× 10−6 1.82× 10−6 1.47× 10−10 2.92× 10−10 7.95× 10−11 1.20× 10−11

0.5 1.28× 10−6 2.35× 10−6 8.21× 10−10 6.17× 10−10 9.95× 10−14 1.69× 10−14

0.6 − 1.29× 10−6 1.61× 10−9 7.06× 10−11 8.88× 10−11 1.68× 10−11

0.7 − 6.33× 10−7 8.47× 10−10 6.34× 10−10 7.07× 10−14 1.01× 10−11

0.8 − 1.90× 10−6 1.36× 10−9 3.57× 10−10 6.98× 10−11 7.26× 10−14

0.9 − 1.39× 10−6 2.07× 10−9 3.71× 10−10 1.69× 10−11 2.13× 10−14

1 − 2.51× 10−7 1.20× 10−10 9.49× 10−14 8.07× 10−14 3.08× 10−14

Example 2. Consider the problem (1)–(2) with η = 0.5, ψ = 0, σ = 25, δ =

0, ζ = 0, γ = 25, ν1 = 0.1, ν2 = 0, g(t) = 0, as (see [17, 32]):

f ′′(t) + 0.5f ′(t) + 25f(t) + 25f5(t) = 0, (26)

f(0) = 0.1, f ′(0) = 0. (27)

A closed-form exact solution for problem (26)–(27) is not available.
Table 4 shows the NR of the presented method for N = 18 with the

differential transform scheme [17] and the Chebyshev matrix approach [32].
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Table 3: The comparison of the AE of the mentioned method for N = 6, 8 with the
MVEFPs. (Example 1).

t N = 6 N = 8

MVEFPs mentioned method MV EFPs mentioned method

0.1 8.94× 10−10 1.37× 10−10 1.16× 10−11 7.11× 10−13

0.2 1.32× 10−9 2.62× 10−10 1.08× 10−10 9.63× 10−14

0.3 1.71× 10−9 3.02× 10−10 1.86× 10−11 9.22× 10−13

0.4 1.02× 10−9 2.92× 10−10 1.21× 10−10 1.20× 10−11

0.5 2.62× 10−9 6.17× 10−10 1.49× 10−11 1.69× 10−14

0.6 6.22× 10−10 7.06× 10−11 1.62× 10−10 1.68× 10−11

0.7 2.04× 10−9 6.34× 10−10 7.41× 10−11 1.01× 10−11

0.8 1.28× 10−9 3.57× 10−10 5.82× 10−11 7.26× 10−14

0.9 1.03× 10−9 3.71× 10−10 2.48× 10−11 2.13× 10−14

1.0 9.50× 10−12 9.49× 10−14 3.05× 10−11 3.08× 10−14

Figure 1: (a) : The NRs and (b) : The EE with N = 8 (Example 1).

Also, theEE in (22) of our method is reported in this table. In Table 5, we
compare the CPU times (seconds) of Examples 1 and 2 for different choices
of N . Also, a graphical illustration of the NR and the EE in (22) for N = 18,
is depicted in Figure 2.

Example 3. Consider the problem (1)–(2) with η = ψ = 0, σ = −1, δ =

0, ζ = 4, γ = −3, ν1 = 1√
2
, ν2 =

√
2
4 , g(t) = 0 as (see [2, 17, 32, 18, 7, 19, 1, 11])

f ′′(t)− f(t) + 4f3(t)− 3f5(t) = 0, (28)

f(0) =
1√
2
, f ′(0) =

√
2

4
. (29)

Equation (28)–(29) has the exact solution given by
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Table 4: The comparison of the NRs of the mentioned method for N = 18 with other
methods. (Example 2).

t Ref. [17] Ref. [32] mentioned method EE
0.01 0.099873987171430 0.0998745 0.0998752 5.39× 10−5

0.02 0.099497110553344 0.0995025 0.0995020 1.30× 10−4

0.03 0.098871588842452 0.0988894 0.0988826 1.10× 10−4

0.04 0.098000267574510 0.0980414 0.0980197 4.51× 10−5

0.05 0.096886607975937 0.0969644 0.0969167 3.21× 10−5

0.06 0.095534673995913 0.0956646 0.0955776 9.93× 10−5

0.07 0.093949117549958 0.0941484 0.0940068 1.44× 10−4

0.08 0.092135162006012 0.0924222 0.0922094 1.60× 10−4

0.09 0.090098583944017 0.0904924 0.0901910 1.51× 10−4

0.1 0.087845693220000 0.0883660 0.0178866 7.64× 10−4

Table 5: The CPU times of the mentioned method for Examples 1 and 2 and different
choices of N .

N = 4 N = 6 N = 8 N = 10

Example 1 0.469 1.702 12.234 43.469

Example 2 0.297 1.703 11.844 28.578

Figure 2: (a) : NRs and (b) : EE with N = 18 (Example 2).

f(t) =

√
1 + tanh(t)

2
. (30)

Table 6 shows a comparison between the maximum absolute error (MAE)
of the mentioned strategy with variational iteration [18], Adomian decomposi-
tion [7], variational Homotopy perturbation [19], differential transform [17],
and genetic algorithm [1] methods. The AE of the mentioned method for
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N = 8 with a modified numerical scheme [11], and Chebyshev operational
matrix method [32] are reported in Table 7. Also, the MAE (∥EN∥∞), max-
imum relative error (MRE) (∥EN∥R), and maximum error function (MEF)
(∥eN∥∞) of the mentioned method for different values of N with the Bernoulli
operational matrix method [2] are presented in Table 8. A graphical illus-
tration of the NR and the EE in (22) for N = 18, is demonstrated in Figure
3.

Table 6: The comparison of MAE for N = 8 with other methods. (Example 3).

Variational iteration [18] 1.9575× 10−4

Adomian decomposition [7] 2.1346× 10−7

Variational Homotopy perturbation [19] 4.5009× 10−5

Differential transform [17] 1.3692× 10−2

Genetic algorithm [1] 2.5110× 10−5

Mentioned method 5.1126× 10−9

Table 7: The comparison of the AE of the mentioned method for N = 8 with other
methods. (Example 3).

t Ref. [11] Ref. [32] mentioned method
0.01 − 1.75× 10−5 6.43× 10−10

0.02 1.87× 10−6 7.16× 10−5 1.93× 10−9

0.03 − 1.63× 10−4 3.79× 10−9

0.04 6.27× 10−6 2.92× 10−4 7.62× 10−10

0.05 − 4.61× 10−4 5.11× 10−9

0.06 4.95× 10−5 6.69× 10−4 4.24× 10−10

0.07 − 9.18× 10−4 3.91× 10−9

0.08 1.16× 10−4 1.21× 10−3 2.00× 10−9

0.09 − 1.54× 10−3 1.05× 10−9

0.1 2.25× 10−4 1.92× 10−3 4.69× 10−10

Example 4. Consider the problem (1)–(2) with η = ψ = 0, σ = −1, δ =

0, ζ = 4, γ = 3, ν1 = 1√
1+

√
2
, ν2 = 0, g(t) = 0 as (see [2, 17, 32, 18, 7, 19, 1,

11])
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Table 8: The comparison of the MAE, MRE, and MEF of the mentioned method for
different values of N with [2]. (Example 3).

N Ref. [2] mentioned method
∥EN∥∞ ∥EN∥R ∥eN∥∞ ∥EN∥∞ ∥EN∥R ∥eN∥∞

4 2.62× 10−4 2.79× 10−4 1.89× 10−2 1.32× 10−5 1.66× 10−5 1.32× 10−3

6 1.96× 10−5 2.09× 10−5 1.33× 10−3 9.21× 10−8 1.03× 10−7 7.23× 10−5

8 5.86× 10−7 6.24× 10−7 7.10× 10−5 5.11× 10−9 5.97× 10−9 1.40× 10−6

Figure 3: (a) : NRs and (b) : EE with N = 18 (Example 3).

f ′′(t)− f(t) + 4f3(t) + 3f5(t) = 0, (31)

f(0) =
1√

1 +
√
2
, f ′(0) = 0. (32)

Equation (31)–(32) has the exact solution given by

f(t) =

√
sech2(t)

2
√
2 + (1−

√
2)sech2(t)

. (33)

Table 9 exhibits a comparison between the MAE of the mentioned pro-
cess with variational iteration [18], Adomian decomposition [7], variational
Homotopy perturbation [19], differential transform [17], and genetic algo-
rithm [1]. The AE of our method at N = 8 and a modified numerical scheme
[11], and Chebyshev operational matrix method [32] are reported in Table
10. Also, the MAE (∥EN∥∞), MRE (∥EN∥R), and MEF (∥eN∥∞) of the
mentioned method for various values of N with the Bernoulli operational
matrix method [2] are presented in Table 11. In Table 12, we compare the
CPU times (seconds) of Examples 3 and 4 for different choices of N .
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Table 9: The comparison of MAE for N = 8 with other methods. (Example 4).

Variational iteration [18] 1.3667× 10−2

Adomian decomposition [7] 5.4649× 10−3

Variational Homotopy perturbation [19] 5.1335× 10−4

Differential transform [17] 4.4891× 10−2

Genetic algorithm [1] 9.3400× 10−5

Mentioned method 6.9955× 10−8

Table 10: The comparison of the AE of the mentioned method for N = 8 with other
methods. (Example 4).

t Ref. [11] Ref. [32] mentioned method
0.01 − 3.22× 10−5 3.65× 10−9

0.02 7.10× 10−5 1.31× 10−5 1.12× 10−8

0.03 − 2.96× 10−4 1.87× 10−8

0.04 2.84× 10−4 5.31× 10−4 2.40× 10−8

0.05 − 8.35× 10−4 2.59× 10−8

0.06 6.37× 10−4 1.21× 10−3 2.40× 10−8

0.07 − 1.66× 10−3 1.87× 10−8

0.08 1.13× 10−3 2.18× 10−3 1.06× 10−8

0.09 − 2.78× 10−3 4.89× 10−10

0.1 1.76× 10−3 3.45× 10−3 1.06× 10−8

Table 11: The comparison of the MAE, MRE, and MEF of the mentioned method for
different values of N with [2]. (Example 4).

N Ref. [2] mentioned method
∥EN∥∞ ∥EN∥R ∥eN∥∞ ∥EN∥∞ ∥EN∥R ∥eN∥∞

4 1.58× 10−3 2.68× 10−3 1.22× 10−1 1.10× 10−4 1.50× 10−4 7.51× 10−3

6 5.27× 10−5 8.23× 10−5 8.46× 10−3 3.47× 10−6 4.12× 10−6 5.10× 10−4

8 1.77× 10−7 5.17× 10−7 4.20× 10−4 7.00× 10−8 1.22× 10−7 4.10× 10−5
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Table 12: The CPU times of the mentioned method for Examples 3 and 4 and different
choices of N .

N = 4 N = 6 N = 8 N = 10

Example 3 0.281 2.031 8.969 30.093

Example 4 0.328 1.563 9.547 15.328

6 Conclusion

In this paper, we applied an effective algorithm utilizing the MVEFPs and
neural networks to solve the nonlinear LEs. We used the MVEFPs and
sinh functions as the activation functions of the hidden layer and the output
layer, respectively. Moreover, the network was trained using the classical
optimization approach. Comparison of the NRs obtained from our proposed
method, existing methods, and the exact solution demonstrates the high
accuracy and effectiveness of our approach.
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