- Arnao, M.B., & Hernández-Ruiz, J. (2014). Melatonin: Plant growth regulator and/or biostimulator during stress? Trends in Plant Science, 19(12), 789–797. https://doi.org/10.1016/j.tplants.2014.07.006
- Balaguera-López, H.E., Martínez-Cárdenas, C.A., & Herrera-Arévalo, A. (2016). Effect of the maturity stage on the postharvest behavior of cape gooseberry (Physalis peruviana) fruits stored at room temperature. Bioagro, 28(2), 117–124.
- Bhardwaj, R., Pareek, S., Mani, S., Domínguez-Ávila, J.A., & González-Aguilar, G.A. (2022). A melatonin treatment delays postharvest senescence, maintains quality, reduces chilling injury, and regulates antioxidant metabolism in mango fruit. Journal of Food Quality, 2022, 2379556. https://doi.org/10.1155/2022/2379556
- Bravo, K., & Osorio, E. (2016). Characterization of polyphenol oxidase from cape gooseberry (Physalis peruviana) fruit. Food Chemistry, 197, 185–190. https://doi.org/10.1016/j.foodchem.2015.10.126
- Cao, S., Shao, J., Shi, L., Xu, L., Shen, Z., Chen, W., & Zhenfeng, Y. (2018). Melatonin increases chilling tolerance in post-harvest peach fruit by alleviating oxidative damage. Scientific Reports, 8, 806. https://doi.org/10.1038/s41598-018-19363-5
- Cedeño, M.M., & Montenegro, D.M. (2004). Export, logistics and marketing plan for cape gooseberry to the United States market for Frutexpo SCI LTDA (MSc. Thesis). Santo Tomas University. USTA Institutional Repository.
- D’Cunha, G.B., Satyanarayan, V., & Madhusudanan Nair, P. (1996). Purification of phenylalanine ammonia lyase from Rhodotorula glutinis. Phytochemistry, 42(1), 17–20. https://doi.org/10.1016/0031-9422(95)00914-0
- Dubbels, R., Reiter, R.J., Klenke, E., Goebel, A., Schnakenberg, E., Ehlers, C., Schiwara, H.W., & Schloot, W. (1995). Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. Journal of Pineal Research, 18(1), 28–31. https://doi.org/10.1111/j.1600-079x.1995.tb00136.x
- Falguera, V., Sánchez-Riaño, A.M., Quintero-Cerón, J.P., Rivera-Barrero, C.A., Méndez-Arteaga, J.J., & Ibarz, A. (2012). Characterization of polyphenol oxidase activity in juices from 12 underutilized tropical fruits with high agroindustrial potential. Food Bioprocess Technology, 5, 2921–2927. https://doi.org/10.1007/s11947-011-0521-y
- Fan, S., Xiong, T., Lei, Q., Tan, Q., Cai, J., Song, Z., Yang, M., Chen, W., Li, X., & Zhu, X. (2022). Melatonin treatment improves postharvest preservation and resistance of guava fruit (Psidium guajava). Foods, 11(3), 262. https://doi.org/10.3390/foods11030262
- Fischer, G., Herrera, A., & Almanza, P.J. (2011). Cape Gooseberry (Physalis peruviana L.). In E. M. Yahia (Ed.), Postharvest Biology and Technology of Tropical and Subtropical Fruits. Woodhead Publishing. pp. 374-397e. https://doi.org/10.1533/9780857092762.374
- Gao, H., Lu, Z., Yang, Y., Wang, D., Yang, T., Cao, M., & Cao, W. (2018). Melatonin treatment reduces chilling injury in peach fruit through its regulation of membrane fatty acid contents and phenolic metabolism. Food Chemistry, 245, 659–666. https://doi.org/10.1016/j.foodchem.2017.10.008
- Goulart Júnior, R., Mondardo, M., & Waintuch Reiter, J.M. (2017). Relatório sobre a fruticultura catarinense: Fruticultura em números – Safra 2014/15. Epagri Documentos No. 271, 114 pp. Epagri.
- Hayati, P., Hosseinifarahi, M., Abdi, G., Radi, M., & Taghipour, L. (2023). Melatonin treatment improves nutritional value and antioxidant enzyme activity of Physalis peruviana fruit during storage. Journal of Food Measurement and Characterization, 17(4), 2782–2791. https://doi.org/10.1007/s11694-023-01819-6
- Hiscox, J., & Israelstam, G.F. (1979). A method for the extraction of chlorophyll from leaf tissue without maceration. Botany, 57(11), 1332–1334.
- Hu, W., Yang, H., Tie, W., Yan, Y., Ding, Z., Liu, Y., Wu, C., Wang, J., Reiter, R.J., Tan, D.X., Shi, H., Xu, B., & Jin, Z. (2017). Natural variation in banana varieties highlights the role of melatonin in postharvest ripening and quality. Journal of Agricultural and Food Chemistry, 65(43), 9987–9994. https://doi.org/10.1021/acs.jafc.7b03354
- Jannatizadeh, A., Aghdam, M.S., Luo, Z., & Razavi, F. (2019). Impact of exogenous melatonin application on chilling injury in tomato fruits during cold storage. Food Bioprocess Technology, 12(5), 741–750. https://doi.org/10.1007/s11947-019-2247-1
- Jiang, Y., Duan, X., Joyce, D., Zhang, Z., & Li, J. (2004). Advances in understanding of enzymatic browning in harvested litchi fruit. Food Chemistry, 88, 443–446. https://doi.org/10.1016/j.foodchem.2004.02.004
- Kumar, R., Khurana, A., & Sharma, A.K. (2014). Role of plant hormones and their interplay in development and ripening of fleshy fruits. Journal of Experimental Botany, 65(17), 4561–4575. https://doi.org/10.1093/jxb/eru277
- Liu, C., Zheng, H., Sheng, K., Liu, W., & Zheng, L. (2018). Effects of melatonin treatment on the postharvest quality of strawberry fruit. Postharvest Biology and Technology, 139, 47-55. https://doi.org/10.1016/j.postharvbio.2018.01.016
- Liu, N., Jin, Z., Wang, S., Gong, B., Wen, D., Wang, X., Wei, M., & Shi, Q. (2015). Sodic alkaline stress mitigation with exogenous melatonin involves reactive oxygen metabolism and ion homeostasis in tomato. Scientia Horticulturae, 181, 18-25. https://doi.org/10.1016/j.scienta.2014.10.049
- LoNDoÑo, J. (Ed.). (2013). Physalis Peruviana: Fruta Andina Para El Mundo: Cultivo, Recurso Genético, Agroindustria, Normativa Y Mercado. Madrid, Spain: Editorial Académica Española.
- Lou, J., Wu, C., Wang, H., Cao, S., Wei, Y., Chen, Y., Jiang, S., Shao, X., & Xu, F. (2023). Melatonin treatment delays postharvest senescence of broccoli with regulation of carotenoid metabolism. Food Chemistry, 408, 135185. https://doi.org/10.1016/j.foodchem.2022.135185
- Luo, S., Hu, H., Wang, Y., Zhou, H., Zhang, Y., Zhang, L., & Li, P. (2020). The role of melatonin in alleviating the postharvest browning of lotus seeds through energy metabolism and membrane lipid metabolism. Postharvest Biology and Technology, 167, 111243. https://doi.org/10.1016/j.postharvbio.2020.111243
- Luo, Z., Zhang, J., Xiang, M., Zeng, J., Chen, J., & Chen, M. (2022). Exogenous melatonin treatment affects ascorbic acid metabolism in postharvest 'Jinyan' kiwifruit. Frontiers in Nutrition, 9, 1081476. https://doi.org/10.3389/fnut.2022.1081476
- Miranda, S., Vilches, P., Suazo, M., Pavez, L., García, K., Méndez, M.A., González, M., Meisel, L.A., Defilippi, B.G., & del Pozo, T. (2020). Melatonin triggers metabolic and gene expression changes leading to improved quality traits of two sweet cherry cultivars during cold storage. Food Chemistry, 319, 126360. https://doi.org/10.1016/j.foodchem.2020.126360
- Noctor, G., & Foyer, C.H. (1998). Ascorbate and glutathione: Keeping active oxygen under control. Annual Review of Plant Biology, 49, 249–279.
- Onik, J.C., Wai, S.C., Li, A., Lin, Q., Sun, Q., Wang, Z., & Duan, Y. (2021). Melatonin treatment reduces ethylene production and maintains fruit quality in apple during postharvest storage. Food Chemistry, 337, 127753. https://doi.org/10.1016/j.foodchem.2020.127753
- Pennycooke, J.C., Cox, S., & Stushnoff, C. (2005). Relationship of cold acclimation, total phenolic content, and antioxidant capacity with chilling tolerance in petunia (Petunia × hybrida). Environmental and Experimental Botany, 53(3), 225–232. https://doi.org/10.1016/j.envexpbot.2004.04.002
- Puerta-Gomez, A.F., & Cisneros-Zevallos, L. (2011). Postharvest studies beyond fresh market eating quality: Phytochemical antioxidant changes in peach and plum fruit during ripening and advanced senescence. Postharvest Biology and Technology, 60(3), 220–224. https://doi.org/10.1016/j.postharvbio.2011.01.005
- Rastegar, S., Hassanzadeh Khankahdani, H., & Rahimzadeh, M. (2020). Effects of melatonin treatment on the biochemical changes and antioxidant enzyme activity of mango fruit during storage. Scientia Horticulturae, 259, 108835. https://doi.org/10.1016/j.scienta.2019.108835
- Seifi, H.S., Curvers, K., De Vleesschauwer, D., Delaere, I., Aziz, A., & Höfte, M. (2013). Concurrent overactivation of the cytosolic glutamine synthetase and the GABA shunt in the ABA-deficient sitiens mutant of tomato leads to resistance against Botrytis cinerea. New Phytologist, 199(2), 490–504. https://doi.org/10.1111/nph.12283
- Shenstone, E., Lippman, Z., & Van Eck, J. (2020). A review of nutritional properties and health benefits of Physalis Plant Foods for Human Nutrition, 75(3), 316–325. https://doi.org/10.1007/s11130-020-00821-3
- Soleimani Aghdam, M., Mukherjee, S., Flores, F.B., Arnao, M.B., Luo, Z., & Corpas, F.J. (2023). Functions of melatonin during postharvest of horticultural crops. Plant & Cell Physiology, 63(12), 1764–1786. https://doi.org/10.1093/pcp/pcab175
- Song, L., Wang, J., Shafi, M., Liu, Y., Wang, J., Wu, J., & Wu, A. (2016). Hypobaric treatment effects on chilling injury, mitochondrial dysfunction, and the ascorbate-glutathione (AsA-GSH) cycle in postharvest peach fruit. Journal of Agricultural and Food Chemistry, 64(22), 4665–4674. https://doi.org/10.1021/acs.jafc.6b00623
- Sun, C., Liu, L., Wang, L., Li, B., Jin, C., & Lin, X. (2021). Melatonin: A master regulator of plant development and stress responses. Journal of Integrative Plant Biology, 63(1), 126–145. https://doi.org/10.1111/jipb.12993
- Sun, Q., Liu, L., Zhang, L., Lv, H., He, Q., Guo, L., Zhang, X., He, H., Ren, S., Zhang, N., Zhao, B., & Guo, Y.D. (2020). Melatonin promotes carotenoid biosynthesis in an ethylene-dependent manner in tomato fruits. Plant Science, 298, 110580. https://doi.org/10.1016/j.plantsci.2020.110580
- Taghipour, L., & Assar, P. (2022). The effect of postharvest polyamine application on the physicochemical traits, bioactive compounds, and antioxidant activity of sweet lime fruit. Iranian Journal of Horticultural Science and Technology, 23(1), 167–178. (In Persian with English abstract). https://journal-irshs.ir/article-1-589-en.html.
- Taghipour, L., Rahemi, M., Assar, P., Mirdehghan, S.H., & Ramezanian, A. (2021). Intermittent warming as an efficient postharvest treatment affects the enzymatic and non-enzymatic responses of pomegranate during cold storage. Journal of Food Measurement and Characterization, 15(1), 12–22. https://doi.org/10.1007/s11694-020-00607-w
- Tan, D.X., Chen, L.D., Poeggeler, B., Manchester, L.C., & Reiter, R.J. (1993). Melatonin: A potent, endogenous hydroxyl radical scavenger. Endocrine Journal, 1(1), 57–60.
- Tian, S. (2013). Molecular mechanisms of fruit ripening and senescence. Chinese Bulletin of Botany, 48(5), 481. https://doi.org/10.3724/SP.J.1259.2013.00481
- Wang, F., Zhang, X., Yang, Q., & Zhao, Q. (2019). Exogenous melatonin delays postharvest fruit senescence and maintains the quality of sweet cherries. Food Chemistry, 301, 125311. https://doi.org/10.1016/j.foodchem.2019.125311
- Xu, B.Y., Su, W., Liu, J.H., Wang, J.B., & Jin, Z.Q. (2007). Differentially expressed cDNAs at the early stage of banana ripening identified by suppression subtractive hybridization and cDNA microarray. Planta, 226(2), 529–539. https://doi.org/10.1007/s00425-007-0502-6
- Xu, T., Chen, Y., & Kang, H. (2019). Melatonin is a potential target for improving post-harvest preservation of fruits and vegetables. Frontiers in Plant Science, 10, 1388. https://doi.org/10.3389/fpls.2019.01388
- Zhang, N., Sun, Q., Li, H., Li, X., Cao, Y., Zhang, H., Li, S., Zhang, L., Qi, Y., Ren, S., Zhao, B., & Guo, Y.D. (2016). Melatonin improved anthocyanin accumulation by regulating gene expressions and resulted in high reactive oxygen species scavenging capacity in cabbage. Frontiers in Plant Science, 7, 197. https://doi.org/10.3389/fpls.2016.00197
- Zhang, Y., Huber, D.J., Hu, M., Jiang, G., Gao, Z., Xu, X., Jiang, Y., & Zhang, Z. (2018). Delay of postharvest browning in litchi fruit by melatonin via the enhancing of antioxidative processes and oxidation repair. Journal of Agricultural and Food Chemistry, 66(30), 7475–7484. https://doi.org/10.1021/acs.jafc.8b01922
- Zhao, H., Ye, L., Wang, Y., Zhou, X., Yang, J., Wang, J., Cao, K., & Zou, Z. (2016). Melatonin increases the chilling tolerance of chloroplast in cucumber seedlings by regulating photosynthetic electron flux and the ascorbate-glutathione cycle. Frontiers in Plant Science, 7, 1814. https://doi.org/10.3389/fpls.2016.01814
- Zheng, H., Liu, W., Liu, S., Liu, C., & Zheng, L. (2019). Effects of melatonin treatment on the enzymatic browning and nutritional quality of fresh-cut pear fruit. Food Chemistry, 299, 125116. https://doi.org/10.1016/j.foodchem.2019.125116
|