- Aazami, M.A., Rasouli, F., & Panahi Tajaragh, R. (2022). Evaluation of almond cultivars for the morphological, physiological and nutritional traits under water deficit conditions. Journal of Elementology, 27, 423-436. https://doi.org/10.5601/jelem.2022.26.4.2189
- Alimohammadi, A., Shiran, B., Martínez-Gómez, P., & Ebrahimie, E. (2013). Identification of water-deficit resistance genes in wild almond Prunus scoparia using cDNA-AFLP. Scientia Horticulturae, 159, 19-28. https://doi.org/10.1016/j.scienta.2013.04.023
- Alizadeh, A. (1995). Principles of Applied Hydrology. Publication of Imam Reza International University, Mashhad, Iran, 963 pp. (in Persian)
- Aspinall, D., & Paleg, L.G. (1981). Proline Accumulation: Physiological Aspects. p. 205-241. In: L.G. Paleg & D. Aspinall (eds.), The physiology and biochemistry of drought resistance in plants. Academic Press, Sydney, New York, London.
- Arzani, K., Yadollahi, A., A Ebadi., & Wirthensohn, M. (2010). The relationship between bitterness and drought resistance of almond (Prunus dulcis ). African Journal of Agricultural Research, 5(9), 861-866.
- Babadaei, R., Mousavi, A., & Jafarpour, M. (2018). Guide to Almond Production. Publication of Khorasgan Azad University,Isfahan, Iran, 280 p. (in Persian)
- Barzegar, K., Yadollahi, A., Imani, A., & Ahmadi, N. (2012). Response to drought stress of almond cultivars and genotypes grown under field conditions. International Journal of Agriculture: Research and Review, 2(3), 205-210.
- Bates, L.S., Waldren, R.P., & Teare, I.D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205-207. https://doi.org/10.1007/BF00018060
- Blum, A., & Ebercon, A. (1981). Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Science, 21, 43-47. https://doi.org/10.2135/cropsci1981.0011183X002100010013x
- Cheng, L., Han, M., Yang, L.M., Yang, L., Sun, Z., & Zhang, T. (2018). Changes in the physiological characteristics and baicalin biosynthesis metabolism of Scutellaria baicalensis Georgi under drought stress. Industrial Crops and Products, 122, 473-482. https://doi.org/10.1016/j.indcrop.2018.06.030
- De Herralde, F. (2000). Integral study of the eco physiological responses to water stress: Characterization of almond varieties. Nucis-Newsletter, 9, 20-21.
- Elfeel, A.A., & Al-Namo, M.L. (2011). Effect of imposed drought on seedlings growth, water use efficiency and survival of three arid zone species (Acacia tortilis subsp raddiana, Salvadora persica and Leptadenia pyrotechnica). Agriculture and Biology Journal of North America, 2, 493-498. http://doi.org/10.5251/abjna.2011.2.3.493.498
- Fathi, H., Amiri, M., Imani, A., Nikbakht, J., & Hajilou, J. (2019). Investigation on the changes of some biochemical traits of almond genotypes leaves under drought stress on the GN15 rootstock. Journal of Plant Process and Function, 8(29), 15-30.
- Gholami, A., Sharafi, S., & Abbasdokht, H. (2010). Effects of salinity and drought levels in seed germination of five crop species. World Academy of Science, Engineering and Technology, 68, 935-938.
- Gispert, J.R., & Vargas, F.J. (2011). Assessment of drought tolerance in almond varieties. Acta Horticulture, 912, 121-127. https://doi.org/10.17660/ActaHortic.2011.912.17
- Gohari, S., Imani, A., Talaei, A.R., Abdossi, V., & Asghari, M.R. (2023). Physiological responses of almond genotypes to drought stress. Russian Journal of Plant Physiology, 70, 1-11. https://doi.org/10.1134/S1021443723601751.
- Heath, R.L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, 189-198. https://doi.org/10.1016/0003-9861(68)90654-1
- Isaakidis, A., Sotiropoulos, T., Almaliotis, D., Therios, I., & Stylianidis, D. (2004). Response to severe water stress of the almond Prunus amygdalus. ‘Ferragnes’ grafted on eight rootstocks. New Zealand Journal Crop and Horticultural Science, 32, 355-362. https://doi.org/10.1080/01140671.2004.9514316
- Jaafar, H.Z.E., Ibrahim, M.H., & Karimi, E. (2012). Phenolics and flavonoids compounds, phenylanine ammonia lyase and antioxidant activity responses to elevated CO2 in Labisia pumila (Myrisinaceae). Molecules, 17, 6331-6347. https://doi.org/10.3390/molecules17066331
- Jamalluddin, N., Massawe, F.J., Mayes, S., Ho, W.K., Singh, A., & Symonds, R.C. (2021). Physiological screening for drought tolerance traits in vegetable amaranth (Amaranthus tricolor) germplasm. Agriculture, 11, 994. https://doi.org/10.3390/agriculture11100994
- Javadi, T., Rohollahi, D., Ghaderi, N., & Nazari, F. (2017). Mitigating the adverse effects of drought stress on the morpho-physiological traits and anti-oxidative enzyme activities of Prunus avium through β-amino butyric acid drenching. Scientia Horticulturae, 218, 156-163. https://doi.org/10.1016/j.scienta.2017.02.019
- Karimi, S., Yadollahi, A., & Arzani, K. (2013). Responses of almond genotypes to osmotic stress induced in vitro. Journal of Nuts, 4(4), 1-7. https://doi.org/10.22034/jon.2013.515700
- Karimi, S., Yadollahi, A., Arzani, K., Imani, A., & Aghaalikhani, M. (2015). Gas-exchange response of almond genotypes to water stress. Photosynthetica, 53, 29-34. https://doi.org/10.1007/s11099-015-0070-0
- Kovalikova, Z., Jiroutova, P., Toman, J., DobroVolna, D., & Drbohlavova, L. (2020). Physiological responses of apple and cherry in vitro culture under different levels of drought Agronomy, 10, 1689. https://doi.org/10.3390/agronomy10111689
- Lichtenthaler, H.K., & Wellburn, A.R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11, 591.
- Liu, C., Liu, Y., Guo, K., Fan, D., Li, G., Zheng, Y., Yu, L., & Yang, R. (2011). Effect of drought on pigments, osmotic adjustment and antioxidant enzymes in six woody plant species in Karst habitats of southwestern China. Environmental and Experimental Botany, 71, 174-183. https://doi.org/10.1016/j.envexpbot.2010.11.012
- López-López, M., Espadador, M., Testi, L., Lorite, I.J., Orgaz, F., & Fereres, E. (2018). Water use of irrigated almond trees when subjected to water deficits. Agricultural Water Management, 195, 84-93. https://doi.org/10.1016/j.agwat.2017.10.001
- Mansourmoghaddam, M., Rousta, I., Zamani, M., Mokhtari, M.H., Karimi Firozjaei, M., & Alavipanah, S.K. (2021). Study and prediction of land surface temperature changes of Yazd city: Assessing the proximity and changes of land cover. Journal of Remote Sensing and GIS for Natural Resources, 12, 127.
- Moradi, H., Esna-Ashari, M., & Ershadi, A. (2019). Evaluation of some physiological responses to drought stress in grafted and ungrafted almond rootstocks. Iranian Journal of Horticultural Science, 50(2), 311-323.(in Persian with English abstract). https://doi.org/10.22059/ijhs.2018.246776.1356
- Mousavi, A., Tatari, M., Mehnatkesh, A.M., & Haghighati, B. (2009). Vegetative growth response of young seedlings of five almonds cultivars to water deficit. Seed and Plant Improvement Journal, 25, 551-567. (in Persian with English abstract)
- Nie, W., Gong, B., Chen, Y., Wang, J., Wei, M., & Shi, Q. (2018). Photosynthetic capacity, ion homeostasis and reactive oxygen metabolism were involved in exogenous salicylic acid increasing cucumber seedlings tolerance to alkaline stress. Scientia Horticulturae, 235, 413-423. https://doi.org/10.1016/j.scienta.2018.03.011
- Okunlola, G.O., Olatunji, O.A., Akinwale, R.O., Tariq, A., & Adelusi, A.A. (2017). Physiological response of the three most cultivated pepper species (Capsicum spp.) in Africa to drought stress imposed at three stages of growth and development. Scientia Horticulturae, 224, 198-205. https://doi.org/10.1016/j.scienta.2017.06.020
- Osakabe, Y., Osakabe, K., Shinozaki, K., & Tran, L.S.P. (2014). Response of plants to water stress. Frontiers in Plant Science, 5, 1-7. https://doi.org/10.3389/fpls.2014.00086
- Ranjbar, A., Imani, A., Piri, S., & Abdoosi, V. (2022). Grafting commercial cultivars of almonds on accurate rootstocks mitigates adverse effects of drought stress. Scientia Horticulturae, 293, 110725. https://doi.org/10.1016/j.scienta.2021.110725
- Rao, P.B., Kaur, A., & Tewari, A. (2008). Drought resistance in seedlings of five important tree species in Tarai region of uttarakhand. Tropical Ecology, 49, 43-49.
- Safavi, E. Yadegari, M., Mousavi, S.A., & Haghighati, B. (2023). Investigation the different levels of drought stress on almond cultivars. Journal of Horticultural Science, 37(2), 523-540. https://doi.org/10.22067/jhs.2022.77478.1184
- Sarker, U., & Oba, S. (2018). Drought stress effects on growth, ROS markers, compatible solutes, phenolics, flavonoids, and antioxidant activity in Amaranthus tricolor. Applied Biochemistry and Biotechnology, 186, 999-1016. https://doi.org/10.1007/s12010-018-2784-5
- Schlemmer, M.R., Francis, D.D., Shanahan, J., & Schepers, J.S. (2005). Remotely measuring chlorophyll content in corn leaves with differing nitrogen levels and relative water content. Agronomy Journal, 97, 106-112. https://doi.org/10.2134/agronj2005.0106
- Sinha, R., Zandalinas, S.I., Fichman, Y., Sen, S., Zeng, S., Gómez-Cadenas, A., Joshi, T., Fritschi, F.B., & Mittler, R. (2022). Differential regulation of flower transpiration during abiotic stress in annual plants, New Phytologist, 235, 611. https://doi.org/10.1111/nph.18162
- Zhang, C., Shi,, Liu, Z., Yang, F., & Yin, G. (2019). Drought tolerance in alfalfa (Medicago sativa L.) varieties is associated with enhanced anti-oxidative protection and declined lipid peroxidation. Journal of Plant Physiology, 232, 226-240. https://doi.org/10.1016/j.jplph.2018.10.023
|