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control approaches for dengue
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Abstract

This research explores a continuous-time mathematical model that outlines
the transmission dynamics of the dengue virus across different regions, in-
volving both human and mosquito hosts. We propose an optimal strat-
egy that includes awareness campaigns, safety measures, and health inter-
ventions in dengue-endemic areas, with the goal of reducing transmission
between individuals and mosquitoes, thus lowering human infections and
eliminating the virus in mosquito populations. Utilizing the discrete-time
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Pontryagin’s maximum principle, we identify optimal control measures and
employ an iterative approach to solve the optimal system. Numerical sim-
ulations are carried out using MATLAB, and a cost-effectiveness ratio is
computed. Through an in-depth cost-effectiveness analysis, we highlight
the effectiveness of strategies focused on protecting at-risk populations, pre-
venting contact between infected humans and mosquitoes, and promoting
the use of quarantine facilities as the most powerful methods for controlling
the spread of the dengue virus.

AMS subject classifications (2020): 49J15, 93C10, 92B05, 93A30.

Keywords: Optimal control; Dengue virus; Spread of dengue.

1 Introduction

Dengue is a disease caused by four closely related serotypes of the dengue
virus (DENV 1 − 4) and is transmitted through the bite of female Aedes
aegypti mosquitoes [1, 14]. Symptoms typically manifest within 3 to 14 days
following a bite from an infected mosquito. The World Health Organiza-
tion reports that approximately 284.528 million cases occur worldwide each
year, affecting individuals across nearly all age groups [13]. Early diagnosis is
critical for providing appropriate medical treatment and for monitoring and
managing outbreaks of dengue fever. Timely detection is essential to effec-
tively control the spread of the disease. Diagnosing dengue can be done by
identifying viral DNA, antigens, antibodies, or a combination thereof. The
virus is commonly detectable in bodily fluids and certain tissues around five
days after the onset of symptoms [5, 8, 21].

In India, control strategies are developed, including causative factors,
early identification of cases and prompt treatment, vector control, personal
protection against mosquito bites, environmental management, and com-
munity awareness [4, 17]. These strategies encourage people to keep their
surroundings clean, ultimately leading to the removal of mosquito breeding
sites. Public health initiatives and educational campaigns play a pivotal role
in enhancing community participation in mosquito control efforts. Enhanced
surveillance systems and diagnostic capabilities are also crucial components
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of these strategies, allowing for more accurate tracking of disease spread
and better resource allocation (“Strategies for Effective Dengue Control,” by
Singh. S et al.) [20].

Despite these efforts, there remains a significant gap in the research re-
garding the integration of various control strategies and their combined ef-
fects on dengue transmission dynamics. Most existing models tend to focus
on individual control measures in isolation, failing to consider the synergis-
tic effects of implementing multiple strategies simultaneously. Furthermore,
the role of climate variables and socio-economic factors in influencing the ef-
fectiveness of these control measures has not been thoroughly explored [23].
Addressing these gaps is essential for developing a comprehensive approach to
dengue control that can adapt to different environmental and social contexts.

To study different aspects of dengue transmission dynamics, several math-
ematical models have been proposed. In [7], a mathematical model of dengue
disease was proposed, discussing vaccination and control strategies for the
model. They focused on two types of controls: Mechanical control to elimi-
nate mosquito breeding sites and chemical control to kill the dengue vector
using insecticides and larvicides. In [2], another mathematical model for
dengue fever was proposed, investigating the impact of available resources
on the spread and control of dengue disease. Recently, Srivastav et al. [22]
divided the infected population into undetected and detected groups and
concluded that adequate management of quarantine/hospitalization may re-
duce the spread of the disease. Ghosh, Tiwari, and Chattopadhyay [12]
indicates that health care organizations must agree on personal protection
and mosquito control to achieve a rapid reduction in dengue cases. Esteva
and Vargas [9] proposed an SIR-SI model by taking constant and variable
human populations, discovering the existence of different equilibrium points,
and discussing its stability properties . In [10], a cost-effective strategy is
studied where vaccination and the use of insecticides on mosquitoes are con-
sidered as primary controls. Additionally, recent advancements in modeling
have incorporated climate variables, highlighting the significant influence of
weather patterns on mosquito breeding and disease transmission rates [23].

Information plays a crucial role in disease dynamics. In the presence of
information, individuals take precautionary and preventive measures, leading
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to behavioral change in the population and making them less susceptible to
the disease. Public awareness campaigns and dissemination of accurate infor-
mation regarding dengue prevention and symptoms can significantly impact
the disease’s spread by encouraging timely medical intervention and reduc-
ing mosquito breeding sites [15]. In this paper, we propose a mathematical
model of dengue in which we consider infected individuals to be divided into
two subclasses: Known carriers and unknown carriers. We also consider that
the disease is transmitted through the bite of a mosquito carrying the virus,
as well as direct contact with infected individuals.

The proposed model is divided into eight compartments representing sus-
ceptible (S), exposed (E), asymptomatic infected (A), symptomatic infected
(I), hospitalized (H), recovered (R), susceptible mosquitoes (Sa), and in-
fected mosquitoes (Ia). This compartmental approach allows for a detailed
analysis of the disease progression and the effectiveness of various control
measures. By understanding the dynamics within each compartment, we
can better design and implement strategies to mitigate the impact of dengue
outbreaks and enhance public health responses [24]. Furthermore, the incor-
poration of optimal control strategies within this model can provide insights
into the most efficient and cost-effective ways to allocate resources and imple-
ment interventions. These strategies can be tailored to specific regions and
adapted to changing environmental and epidemiological conditions, thereby
improving their overall effectiveness.

The potential implications of this research are far-reaching. By developing
a more comprehensive understanding of dengue transmission dynamics and
control measures, policymakers and public health officials can make more
informed decisions that enhance the effectiveness of dengue prevention and
control programs. The model can also be adapted to study other vector-borne
diseases, thereby broadening its applicability and utility. Additionally, the
insights gained from this research can inform the development of integrated
vector management programs that combine multiple control strategies in a
synergistic manner, ultimately leading to more sustainable and impactful
public health outcomes [16, 18].
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2 Model formulation

We analyze a mathematical model denoted by SEAISmImHR, which repre-
sents the dynamics of dengue virus transmission among the human popula-
tion.

The model distinguishes between two main categories: the human popula-
tion Nh = S+E+A+I+H+R and the mosquito population Nm = Sm+Im.

Figure 1: Description of the model.

Hence, we present the spread of dengue mathematical model is governed
by the following system of differential equation:

dS(t)

dt
= Π− β1

S(t)A(t)

Nh
− β2

S(t)I(t)

Nh
− β3

S(t)Im(t)

Nh
− µ1S(t),

dE(t)

dt
= β1

S(t)A(t)

Nh
+ β2

S(t)I(t)

Nh
+ β3

S(t)Im(t)

Nh
− (d1 + d2 + µ2)E(t),

dA(t)

dt
= d1E(t)− (n1 + γ + µ3)A(t),

dI(t)

dt
= d2E(t) + γA(t)− (n2 + θ + µ4)I(t),

dH(t)

dt
= n1A(t) + n2I(t)− (λ+ µ5)H(t),

dR(t)

dt
= λH(t)− µ6R(t),

dSm(t)

dt
= Π1 − β4

Sm(t)Im(t)

Nm
− µ7Sm(t),

dIm(t)

dt
= β4

Sm(t)Im(t)

Nm
− β3

S(t)Im(t)

Nh
− µ8Im(t),

(1)
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where S(0) ≥ 0, E(0) ≥ 0, A(0) ≥ 0, I(0) ≥ 0, H(0) ≥ 0, R(0) ≥
0, Sm(0) ≥ 0, Im(0) ≥ 0 are the initial rates.

2.1 Fundamental characteristics of the model

2.1.1 Positivity of solutions.

Theorem 1. If S(0) ≥ 0, E(0) ≥ 0, A(0) ≥ 0, I(0) ≥ 0, H(0) ≥ 0, R(0) ≥
0, Sm(0) ≥ 0, Im(0) ≥ 0 are the initial rate t ≥ 0 the solution of system are
positive for all t ≥ 0.

Proof. The first equation of system (1) implies that

dS(t)

dt
= Π−

(
β1

A(t)

Nh
+ β2

I(t)

Nh
+ β3

Im(t)

Nh
+ µ1

)
S(t)

≥ −
(
β1

A(t)

Nh
+ β2

I(t)

Nh
+ β3

Im(t)

Nh
+ µ1

)
S(t),

where
L(t) = β1

A(t)

Nh
+ β2

I(t)

Nh
+ β3

Im(t)

Nh
+ µ1,

dS(t)

dt
+ L(t)S(t) ≥ 0.

By multiplying both sides of the last inequality by exp
(∫ t

0
L(s)ds

)
, we get

exp
(∫ t

0

L(s)ds

)
dS(t)

dt
+ L(t) exp

(∫ t

0

L(s)ds

)
S(t) ≥ 0,

d

dt

(
S(t) exp

(∫ t

0

L(s)ds

))
≥ 0.

By integrating this inequality over the interval from 0 to t, we obtain∫ t

0

(
d

ds

(
S(t) exp

(∫ t

0

L(s)ds

)))
ds ≥ 0.

Then
S(t) ≥ S(0) exp

(
−
∫ t

0

L(s)ds

)
,

S(t) ≥ 0.
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Similarly, we show

E(t) ≥ 0 , A(t) ≥ 0 , I(t) ≥ 0 , H(t) ≥ 0 , Im(t) ≥ 0, Sm(t) ≥ 0, and R(t) ≥ 0.

2.1.2 Boundedness of the solutions.

Theorem 2. The setsΩh =
{
(S,E, I, A,H,R) ∈ R6

+ : 0 ≤ S + E + I +A+H +R ≤ Π
µh

}
,

Ωm =
{
(Sa, Ia) ∈ R2

+ : 0 ≤ Sm + Im ≤ Π1

µm

}
,

are positively invariant under system (1) with initial conditions
S(0) ≥ 0, E(0) ≥ 0, A(0) ≥ 0, I(0) ≥ 0, H(0) ≥ 0, Im(0) ≥ 0 , Sm(0) ≥ 0,

and R(0) ≥ 0.

Proof. By the definition, we have

Nh = S + E +A+ I +H +R;

hence
dNh

dt
= Π− θI(t)− µhNh,

dNh

dt
= Π− θI(t)− µhNh ≤ Π− µhNh,

dNh

dt
≤ Π− µhNh,

Nh(t) ≤
Π

µh
+Nh(0)e

−µht.

If t → ∞, then
lim
t→∞

supN(t) =
Π

µh
.

This indicates that the region Ωh is a positively invariant set for system (1).
Also,

Nh(t) ≤
Π

µh
.

Afterward, it can be demonstrated that
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Nm(t) ≤ Π1

µm
.

2.2 Existence of solutions.

The system (1) can be expressed in the following form: Φ(X) = AX+M(X).
Then

X =



S(t)

E(t)

A(t)

I(t)

H(t)

R(t)

Sm(t)

Im(t)


, M(X) =



dS(t)

dt
dE(t)

dt
dA(t)

dt
dI(t)

dt
dH(t)

dt
dR(t)

dt
dSm(t)

dt
dIm(t)

dt



,

where

A =



−µ1 0 0 0 0 0 0 0

0 A1 0 0 0 0 0 0

0 d1 A2 0 0 0 0 0

0 d2 γ A3 0 0 0 0

0 0 n1 n2 −(λ+ µ5) 0 0 0

0 0 0 0 λ −µ6 0 0

0 0 0 0 0 0 −µ7 0

0 0 0 0 0 0 0 −µ8


,

A1 = −(d1 + d2 + µ2), A2 = −(n1 + γ + µ3), and A3 = −(n2 + θ + µ4),
and
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M(X) =



Π− β1
S(t)A(t)

Nh
− β2

S(t)I(t)

Nh
− β3

S(t)Im(t)

Nh

β1
S(t)A(t)

Nh
+ β2

S(t)I(t)

Nh
+ β3

S(t)Im(t)

Nh

0

0

0

0

Π1 − β4
Sm(t)Im(t)

Nm

β4
Sm(t)Im(t)

Nm
− β3

S(t)Im(t)

Nh



.

Assuming that X1 and X2 are solutions to the system of equations presented
in (1), it follows that

|B(Y1)−B(Y2)| ≤2

∣∣∣∣β1
S1A1

Nh
+ β2

S1I1
Nh

+ β3
S1Im1

Nh

−β1
S2A2

Nh
− β2

S2I2
Nh

− β3
S2Im2

Nh

∣∣∣∣
+ 2

∣∣∣∣β4
Sm1Im1

Nm
− β3

Sm2Im2

Nm

∣∣∣∣
=2

∣∣∣∣β1S1

Nh
(A1 −A2) +

β1A2

Nh
(S1 − S2) +

β2S1

Nh
(I1 − I2)

+
β2I2
Nh

(S1 − S2) +
β3S1

Nh
(Im1 − Im2) +

β3Im2

Nh
(S1 − S2)

∣∣∣∣
+ 2

∣∣∣∣β4Sm1

Nm
(Im1 − Im2) +

β4Im2

Nm
(Sm1 − Sm2)

∣∣∣∣
≤2

(
β1S1

Nh
|A1 −A2|+

β1A2

Nh
|S1 − S2|+

β2S1

Nh
|I1 − I2|

+
β2I2
Nh

|S1 − S2|+
β3S1

Nh
|Im1 − Im2|+

β3Im2

Nh
|S1 − S2|

)
+ 2

(
β4Sm1

Nm
|Im1 − Im2|+

β4Im2

Nm
|Sm1 − Sm2|

)
,

where

|S1| ≤
Π

Nh
, |A2| ≤

Π

Nh
, |Sm1| ≤

Π1

Nm
, and |Im2| ≤

Π1

Nm
,

|B(Y1)−B(Y2)| ≤
2Π

Nh
(β1 |A1 −A2|+ β1 |S1 − S2|+ β2 |I1 − I2|
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+β2 |S1 − S2|+ β3 |Im1 − Im2|+ β4 |S1 − S2|)

+
2Π1

Nm
(β4 |Im1 − Im2|+ β4 |Sm1 − Sm2|) .

By factoring out the common element, we obtain the following expression:

|B(Y1)−B(Y2)| ≤
2β1Π

Nh
|A1 −A2|+

2Π

Nh
(β1 + β2 + β4) |S1 − S2|

+
2β2Π

Nh
|I1 − I2|

+

(
2β3Π

Nh
+

2β4Π1

Nm

)
|Im1 − Im2|+

2β4Π1

Nm
|Sm1 − Sm2|

≤M |Y1 − Y2| ,

M = max
(
2β1Π

Nh
,
2Π

Nh
(β1 + β2 + β4),

2β2Π

Nh
,
2β3Π

Nh
+

2β4Π1

Nm
,
2β4Π1

Nm
, ∥A∥

)
.

Thus, we can conclude that the function B is uniformly Lipschitz continuous,
ensuring that small changes in the input lead to proportionally small changes
in the output, maintaining stability within the system. Additionally, by
considering the constraints S(t) ≥ 0, E(t) ≥ 0, A(t) ≥ 0, I(t) ≥ 0, H(t) ≥
0, R(t) ≥ 0, Sm(t) ≥ 0, and Im(t) ≥ 0 in R+, we can ensure that all
state variables remain nonnegative throughout the system’s evolution. This
nonnegativity is crucial for the physical realism of the model, as negative
values for these variables would not make sense in the context of the problem.
Therefore, we can assert the existence of a solution to the system, which
respects these nonnegativity conditions. This solution not only validates the
model but also aligns with the initial conditions and the constraints imposed
on the system. This comprehensive approach confirms that the system’s
behavior is accurately captured under the specified initial conditions and
system constraints [3].

3 The controlled mathematical model

In response to the spread of dengue fever, it is crucial to implement effective
control measures by enhancing public awareness and maintaining vigilance
against the disease to curb its transmission. To address this need, our study
introduces two carefully crafted control strategies designed to combat the
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spread of dengue fever. We present two distinct control strategies, each tar-
geting a specific aspect of the epidemic’s spread dynamics.

In the subsequent sections, we delve into each control method in detail,
explaining their mechanisms and assessing their potential impact on the con-
tainment and mitigation of dengue fever. These strategies are founded on
thorough research and aim to provide a comprehensive approach to disease
control.

The first control strategy, represented as u(t), aims to minimize direct
contact between the public and asymptomatic carriers of the dengue virus.
This is especially critical for those who may not be aware of the associated
risks. This strategy is executed through educational campaigns and commu-
nity outreach programs designed to improve public understanding of dengue
fever. By doing so, we seek to promote a higher level of caution and pre-
ventive behavior among the population, thereby reducing the probability of
disease transmission. These educational initiatives include distributing infor-
mational materials, organizing workshops, and leveraging media platforms to
raise awareness.

The second control strategy, designated as v(t), focuses on protecting in-
dividuals from infection by advocating proactive health measures. This strat-
egy highlights the importance of avoiding contact with infected mosquitoes,
the primary vectors of dengue fever. It also promotes the widespread adop-
tion of available vaccinations to build community immunity. Moreover, this
strategy encourages symptomatic individuals to seek immediate medical care
and follow recommended treatment protocols. The objective is to allevi-
ate the disease burden by ensuring timely and appropriate care for infected
individuals, thereby preventing further transmission. This approach encom-
passes public health announcements, vaccination campaigns, and support for
healthcare facilities to effectively manage and treat dengue cases.

By incorporating these control measures into our mathematical model, we
aim to establish a robust framework for predicting and managing the spread
of dengue fever. The combined impact of these strategies is expected to
significantly reduce the incidence of the disease, leading to improved health
outcomes for affected populations. Hence, the resulting controlled mathe-
matical system is described as follows:
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dS(t)

dt
=Π− β1

S(t)A(t)

Nh
(1− u(t))− β2

S(t)I(t)

Nh
(1− u(t))

− β3
S(t)Im(t)

Nh
(1− v(t))− µ1S(t),

dE(t)

dt
=β1

S(t)A(t)

Nh
(1− u(t)) + β2

S(t)I(t)

Nh
(1− u(t))

+ β3
S(t)Im(t)

Nh
(1− v(t))− (d1 + d2 + µ2)E(t),

dA(t)

dt
=d1E(t)− (n1 + γ + µ3)A(t),

dI(t)

dt
=d2E(t) + γA(t)− (n2 + θ + µ4)I(t),

dH(t)

dt
=n1A(t) + n2I(t)− (λ+ µ5)H(t),

dR(t)

dt
=λH(t)− µ6R(t),

dSm(t)

dt
=Π1 − β4

Sm(t)Im(t)

Nm
− µ7Sm(t),

dIm(t)

dt
=β4

Sm(t)Im(t)

Nm
− β3

S(t)Im(t)

Nh
(1− v(t))− µ8Im(t).

(2)

4 The challenge of achieving optimal control

The primary challenge in this optimization problem is to minimize the ob-
jective functional, which aims to achieve an optimal balance between the
application of control measures and their associated costs over a specified
time period. The objective functional is defined as

J(u, v) =I(T ) +A(T ) + Im(T )

+

∫ T

0

(
I(t) +A(t) + Im(t) +

e1
2
u2(t) +

e2
2
v2(t)

)
dt. (3)

In this context, I(T ), A(T ), and Im(T ) represent the number of symptomatic
and asymptomatic individuals, as well as mosquito virus carriers at the final
time T , respectively. The integral term accounts for the total cost over the
time interval [0, T ], combining the number of symptomatic individuals I(t),
asymptomatic individuals A(t), as well as virus carriers from mosquitoes
Im(t), and the quadratic costs associated with the control measures u(t) and
v(t).
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The coefficients e1 ≥ 0 and e2 ≥ 0 are cost factors that are carefully
chosen to reflect the relative importance and expense of applying the control
functions u(t) and v(t) at any given time t. These coefficients ensure that
the costs associated with the control measures are properly weighted in the
objective functional. The final time tf = T marks the endpoint of the period
under consideration for the optimization.

The goal of our optimization problem is to find the optimal control func-
tions u∗ and v∗ that minimize the objective functional J(u, v). Mathemati-
cally, this is expressed as

J(u∗, v∗) = min
(u,v)∈Vad

J(u, v), (4)

where Uad denotes the set of admissible controls. These controls must satisfy
certain constraints to be considered valid within the optimization framework.

The set of admissible controls Uad is defined by the following constraints:

Uad = {(u, v)/0 ≤ umin ≤ u(t) ≤ umax ≤ 1

and0 ≤ vmin ≤ v(t) ≤ vmax ≤ 1fort ∈ [0, tf ]} .

These constraints ensure that the control functions v(t) and w(t) remain
within feasible and realistic bounds throughout the entire time period. The
lower and upper bounds vmin, vmax, wmin, and wmax are determined based
on practical considerations and limitations of the control measures.

By carefully selecting and applying these control functions within the de-
fined constraints, we aim to achieve an optimal reduction in the number of
symptomatic and asymptomatic individuals, as well as virus carriers from
mosquitoes while managing the costs associated with the control measures.
This approach ensures that the implemented control strategies are both ef-
fective and economically viable.

4.1 The optimal control: Existence

Theorem 3. We address the task of optimizing the regulation of the system
(2). There exists an optimal control pair (u∗(t), v∗(t)) ∈ Uad such that
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409 Mathematical modeling and optimal control approaches for dengue

J(u∗(t), v∗(t)) = min
(u,v)∈Uad

J(u(t), v(t)).

This is valid under the following conditions:

1. The set of admissible control actions Uad and their corresponding state
variables must be nonempty.

2. The right-hand side of the differential equations governing the system
is bounded by a linear function involving both the state and control
variables.

3. The set Uad of control actions is both convex and closed.

4. The integral N(S,E,A, I,H,R, Sm, Im, u, v) in the objective function
is required to be convex over the set of permissible controls Uad.

In more detail, consider the problem of determining an optimal con-
trol strategy for regulating the given system (2). An optimal control
(u∗(t), v∗(t)) can be identified within the set Uad, ensuring that the cost func-
tion J(u∗(t), v∗(t)) achieves its minimum value over all admissible controls
u(t) and v(t) within Uad. The conditions that need to be satisfied include
the nonemptiness of the control action set and state variables, a bounded
right-hand side of the system in relation to the state and control variables,
the convexity and closure of the control set, and the convexity of the integral
in the objective function over the admissible controls.

Proof. Condition 1.
To verify the nonemptiness of the control actions set and associated state

variables, we reference a simplified existence result from Boyce, DiPrima, and
Mead [6]. Consider the system governed by
Żi = ZKi

(t, Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8) for i ∈ {1, . . . , 8},
where (Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8) = (S,E,A, I,H,R, Sm, Im).
Here, ZS , ZE , ZA, ZI , ZH , ZR, ZSm and ZIm represent the right-hand side of
equation (4). Assume that the control functions are defined as u(t) = c1 and
v(t) = c2 for some constants c1, c2. Given that all parameters are constants
and that K1,K2,K3,K4,K5,K6,K7 and K8 are continuous functions, it fol-
lows that YS , YE , YA, YI , YH , YR, YSm

, and YIm are also continuous. More-
over, the partial derivatives ∂YKi

∂Ki
for i ∈ {1, . . . , 8} are continuous. Therefore,
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there exists a unique solution (S,E,A, I,H,R, Sm, Im) satisfying the initial
conditions. Consequently, the set of control actions and their corresponding
state variables is nonempty, thereby satisfying the first condition.

Condition 2.

By the definition, the set of admissible controls Uad is closed. Consider
any controls u, v ∈ Uad and τ ∈ [0, 1]. We need to show that 0 ≤ τu + (1 −
τ)v ≤ 1. Indeed, we observe that τu ≤ τ and (1−τ)v ≤ (1−τ), which implies
that τu+(1−τ)v ≤ τ+(1−τ) = 1. Therefore, we have 0 ≤ τu+(1−τ)v ≤ 1

for all u, v ∈ Uad and τ ∈ [0, 1]. This demonstrates that Uad is both closed
and convex, thereby satisfying the second condition.

Condition 3.

The right-hand sides of the equations from system (2) are continuous
and remain bounded by the sum of the bounded state variables and control
inputs. Furthermore, they can be represented by a linear function in terms of
u and v, with coefficients that depend on both the state variables and time.

Condition 4.

The integral within the objective function I(t) + Ia(t) +A(t) + e1
2 u

2(t) +
e2
2 v

2(t) is inherently convex over the set Uad. Indeed, there exist constants
Θ1 and Θ2, with κ > 1, such that the integral in the objective functional
satisfies

N(S,E,A, I,H,R, Sm, Im, u, v) ≥ Θ1 +Θ2(|u|2 + |v|2)κ
2 ,

where

I(t) + Ia(t) +A(t) +
e1
2
u2(t) +

e2
2
v2(t) ≥ Θ1 +Θ2(|u|2 + |v|2)κ

2 .

Given that the state variables are bounded, let

Θ = 3 inf
t∈[0,T ]

(I(t) + Ia(t) +A(t)), Θ = inf
(e1
2
,
e2
2

)
, and κ = 2.

Therefore, based on the results presented by Fleming and Rishel in [11],
we can assert the existence of an optimal control.
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4.2 The optimal control: Characterization

In this section, we explore the application of Pontryagin’s maximum principle
as delineated in [19]. The primary strategy involves the introduction of the
adjoint variable, which serves to connect the system of differential equations
with the objective function. This connection is instrumental in formulating
a functional referred to as the Hamiltonian.

The essence of Pontryagin’s principle is to transform the challenge of iden-
tifying an optimal control for the objective function, under specified initial
conditions, into the task of determining a control strategy that maximizes the
Hamiltonian function at every moment throughout the defined time interval.

At a specific time t, we formulate the Hamiltonian, denoted by H, in the
following manner:

H =A(T ) + I(T ) + Im(T ) +
e1
2
u2(t) +

e2
2
v2(t)

+

8∑
i=1

ξi(t).qi(S,E,A, I,H,R, Sm, Im).

Within the framework of our analysis, each state variable i in the system of
differential equations (see (2)) is represented by qi, which forms the right-
hand side of these equations. The associated adjoint functions, denoted as
ξi, play a crucial role. They are intricately linked with their respective state
variables. The primary purpose of these adjoint functions is to encapsulate
the impact of variations in state variables on the objective cost functional.
This linkage is fundamental in optimizing the system behavior under study.

Theorem 4. We postulate that the control pair (u∗, v∗) belongs to the ad-
missible set Uad, serving as the optimal control variables within this frame-
work. Correspondingly, the optimal paths for the state variables are desig-
nated by S∗, E∗, A∗, I∗, H∗, R∗, S∗

m, and I∗m. Associated with each of these
trajectories are the adjoint functions ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7, and ξ8, each
fulfilling specific conditions that align with the dynamics of the system under
consideration:
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ξ1
′ =− ∂H

∂S
=

(
β1

A

Nh
+ β2

I

Nh

)
(1− u(t)) (ξ1 − ξ2)

+ β3
Im
Nh

(1− v(t)) (ξ1 − ξ2 + ξ8) + ξ1µ1,

ξ2
′ =− ∂H

∂E
= d1(ξ1 − ξ3) + d2(ξ2 − ξ4) + ξ2µ2,

ξ3
′ =− ∂H

∂A
= β1

S

Nh
(1− u(t)) (ξ1 − ξ2) + n1(ξ3 − ξ5) + γ(ξ3 − ξ4) + ξ3µ3,

ξ4
′ =− ∂H

∂I
= −1 + β2

S

Nh
(1− u(t)) (ξ1 − ξ2) + n2(ξ4 − ξ5) + ξ4(µ4 + θ),

ξ5
′ =− ∂H

∂H
= λ(ξ5 − ξ6) + ξ5µ5

ξ6
′ =− ∂H

∂R
= ξ6µ6,

ξ7
′ =− ∂H

∂Sm
= β4

Im
Nm

(ξ7 − ξ8) + ξ7µ7,

ξ8
′ =− ∂H

∂Im
= −1 + β3

S

Nh
(1− v(t)) (ξ1 − ξ2 + ξ8) + β4

Sm

Nm
(ξ7 − ξ8) + ξ8µ8,

with transversal conditions at a final time tf

ξ1(tf ) = 0, ξ2(tf ) = 0, ξ3(tf ) = 0, ξ4(tf ) = 1,

ξ5(tf ) = 0, ξ6(tf ) = 0, ξ7(tf ) = 0, ξ8(tf ) = 1.

The resolution of the optimal control problem relies on the determination of
the control variables u∗ and v∗. These optimal control settings are derived
through the following process:

u∗ = min
(
1,max

(
0, (ξ2−ξ1)

e1

(
β1

S(t)A(t)
Nh

+ β2
S(t)I(t)

Nh

)))
,

v∗ = min
(
1,max

(
0, (ξ4−ξ1−ξ8)

e2

(
β3

S(t)Im(t)
Nh

)))
.

(5)

Proof. At any specific moment t, the Hamiltonian, denoted as H, is charac-
terized in the following manner:

H =A (T ) + I (T ) + Im (T ) +
e1

2
u2(t) +

e2

2
v2(t)

+ ξ1

{
Π−

β1SA

Nh
(1− u)−

β2SI

Nh
(1− u)−

β3SIm

Nh
(1− v)− µ1S

}
+ ξ2

{
β1SA

Nh
(1− u) +

β2SI

Nh
(1− u) +

β3SIm

Nh
(1− v)− (d1 + d2 + µ2)E

}
+ ξ3 {d1E − (n1 + γ + µ3)A}+ ξ4 {d2E + γA− (n2 + θ + µ4)I}

+ ξ5 {n1A+ n2I − (λ+ µ5)H}+ ξ6 {λH − µ6R}
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+ξ7

{
Π1 −

β4SmIm

Nm
− µ7Sm

}
+ ξ8

{
β4SmIm

Nm
−

β3SIm

Nh
(1− v)− µ8Im

}
.

By applying Pontryagin’s maximum principle, as referenced in [19], we
have successfully formulated both the adjoint equations and the associated
transversality conditions. These formulations are presented in the following
manner:

ξ1
′ = − ∂H

∂Zi
and ξi(tf ) = 0 for i ∈ {1, 2, 3, 5, 6, 7},

where (Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8) = (S,E,A, I,H,R, Sm, Im)

The transversality conditions stipulate that the adjoint functions should be
orthogonal to the reachable set at the terminal state by the final time tf .
This orthogonality is critical to ensure the problem of optimal control is
properly defined, thus securing a reliable and consistent solution. To achieve
this, we will deploy the optimality conditions derived from these principles
to identify the optimal control trajectories for u∗(t) and v∗(t) over the time
interval t ∈ [0, tf ]:

∂H

∂u
= 0 and

∂H

∂v
= 0

Consequently,

−∂H

∂u
= −e1u+ β1

S(t)A(t)

Nh
(ξ2 − ξ1) + β2

S(t)I(t)

Nh
(ξ2 − ξ1) = 0,

−∂H

∂v
= −e2v + β3

S(t)Im(t)

Nh
(ξ2 − ξ1 − ξ8) = 0.

For this reason,

u∗ =
(ξ2 − ξ1)

C1

(
β1

S(t)A(t)

Nh
+ β2

S(t)I(t)

Nh

)
v∗ =

(ξ4 − ξ1 − ξ8)

C2

(
β3

S(t)Im(t)

Nh

)
.

Given the constraints imposed by the admissible set Uad on the control vari-
ables, we are enabled to effectively identify the optimal control functions
u∗(t) and v∗(t). These optimal solutions are formalized and detailed in the
equations denoted by (5).
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5 Simulation

In this section, we present the findings derived from the numerical solution of
our optimization system. To address our control problem, we initially set the
conditions for the state variables at the start of the time period (t = 0) and
the conditions for the adjoint variables at the end of the period (t = T ). As
a result, our optimization framework is structured as a two-point boundary
value problem with specific boundary conditions at designated time intervals.

The optimal solution to this system was obtained iteratively. We began
by solving the state equations forward in time, followed by solving the adjoint
equations backward. This iterative process started with an initial guess for
the control variables during the first iteration. Subsequently, before each new
iteration, we refined the control variables using a method known as profiling.
This iterative cycle continued until convergence was achieved in the results
of successive iterations.

The parameter values used in our model were selected based on hypothet-
ical scenarios due to the lack of real-world data. This approach was necessary
because actual data to support our choices were unavailable. The relevant
parameter data are presented in Table 1.

The control strategy implemented in this study aims to accomplish sev-
eral objectives. By understanding the dynamics of disease transmission and
applying appropriate control measures, we seek to mitigate the spread of
infection and safeguard public health.

Discussion

In this section, we delve into the numerical analysis of various optimal control
strategies, such as raising awareness through media channels and educational
initiatives about the seriousness of the disease, avoiding direct contact with
both infected individuals and mosquitoes via safety campaigns, and encour-
aging vaccination and medical care. Numerical simulations play a crucial role
in evaluating how effective these strategies are.
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Table 1: Standard parameter values for the system.

Parameter Description Value
Π The rate of new susceptible individual of humans. 350
Π1 The rate of new susceptible individual of animals. 0.5
β1 The rate of new infections from contact with asymptomatic individuals. 0.2
β2 The rate of new infections from contact with symptomatic individuals. 0.2
β3 The rate of new infections from contact humans with animals. 0.2
β4 The rate of new infection of animals. 0.2
γ The count of infected asymptomatic individuals becoming infected and symptomatic. 0.002
d1 The count of exposed individuals becoming asymptomatic and infectious. 0.3
d2 The count of exposed individuals becoming symptomatic and infectious. 0.002
µ Intrinsic mortality rate. 0.0002
n1 The count of asymptomatic individuals under lockdown. 0.3
n2 The count of symptomatic individuals under lockdown. 0.13
θ Mortality rate due to complications. 0.32
λ The rate of individuals recovering from hospitals. 0.3

By integrating these control measures into our mathematical model, we
can observe their influence on the disease’s progression. For instance, public
awareness campaigns can greatly reduce infection rates by enhancing com-
munity knowledge and promoting preventive actions. Similarly, preventing
contact with mosquitoes through safety campaigns and advocating for vac-
cination and medical care can help further reduce disease transmission and
enhance public health outcomes.

The numerical calculations were conducted using MATLAB, based on
specific parameter values and initial conditions for state variables as outlined
in Table 1. This method enables a thorough assessment of various strategies
and their efficacy in controlling the disease.

5.1 Strategy 1: Safeguarding vulnerable individuals by
ensuring they avoid any contact with those who are
infected.

We employ the optimal control function u to safeguard the population from
the virus and to diminish the spread of infections among asymptomatic,
symptomatic, and exposed individuals. This is aimed at minimizing function
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(3) while maintaining other control measures at zero. A range of strategies
has been executed, including awareness campaigns and preventive actions.
These strategies encompassed educating the public about the severity of the
virus via various media channels and promoting preventive measures with
strict adherence to medical guidelines. The objective is to foster a compre-
hensive understanding of the virus and encourage behaviors that mitigate
the risk of transmission, ultimately curbing the spread of infection (Figures
2 and 3).
In Figure 4 (illustrating the graph of infected individuals), it is evident that
without any control measures, the number of infected individuals continues
to rise, peaking at approximately 104. Conversely, with the implementation
of control measures, the number of infected individuals begins to decrease,
eventually dropping to around 16 individuals.

Figure 2: The compartment E without and with control u.

Figure 3: The compartment A without and with control u.
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Figure 4: The compartment I without and with control u.

5.2 Strategy 2: Shield vulnerable individuals from
exposure to animals (mosquitoes) that are carriers
of the virus.

In this approach, we applied control v while maintaining other preventive
measures at a minimum. The strategy involved isolating symptomatic in-
dividuals and those experiencing severe complications. Quarantine efforts
were extended to cover all infected persons, and some individuals received
vaccinations against the virus (Figures 5 and 6).

The success of this approach is demonstrated in Figure 7, which shows
a marked reduction in both symptomatic and asymptomatic cases following
the implementation of quarantine. This method was crucial in managing and
containing the spread of the infection within the population.

Figure 5: The compartment E without and with control v.
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Figure 6: The compartment A without and with control v.

Figure 7: The compartment I without and with control v.

5.3 The third approach: Safeguarding at-risk individuals
by ensuring they avoid contact with both infected
people and mosquitoes, and guiding them to
quarantine facilities.

We employed the optimal control functions u and v to shield the population
from dengue fever. The core focus of this critical strategy was on administer-
ing comprehensive tests to all individuals suspected of virus infection, with
a particular emphasis on testing family members, relatives, and neighbors of
confirmed cases. Additionally, preventive measures were implemented across
public transportation networks, such as subways, trains, and airports. These
measures included monitoring efforts and ensuring that all identified patients
were directed to hospitals and quarantine centers. The primary objective of
this approach was to curb the spread of the virus into areas that had not yet
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been affected, thereby minimizing its overall reach and impact, as illustrated
in Figures 8, 9, and 10.

Figure 8: The compartment E without and with control u and v.

Figure 9: The compartment A without and with control u and v.

Figure 10: The compartment I without and with control u and v.
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6 Conclusion

To summarize, this study delves into the complexities of dengue transmis-
sion by developing a comprehensive mathematical model. The main aim was
to assess the efficacy of various optimal control strategies aimed at curb-
ing the spread of dengue. These strategies included avoiding contact with
both infected individuals and mosquitoes. Additionally, the model incorpo-
rated critical interventions such as the treatment of dengue patients and their
timely referral to hospitals and quarantine facilities.

The mathematical framework, which includes both symptomatic and
asymptomatic cases, is grounded in robust control theory. By applying Pon-
tryagin’s maximum principle in discrete time, we were able to derive optimal
control strategies, which were subsequently resolved through an iterative nu-
merical method. Moreover, the study also explored the cost-effectiveness of
these controls, offering key insights into their economic viability.

Looking ahead, our future research will focus on incorporating fractional
derivatives into a spatiotemporal model. This sophisticated approach seeks
to improve our understanding of dengue transmission by capturing more com-
plex spatial and temporal patterns, thus enhancing the precision of disease
forecasts and control measures. This ongoing work is expected to make a sig-
nificant contribution to public health strategies and reduce the global impact
of dengue.
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