- Ahmad, I., Ahmad, M. O., Alqarni, M. A., Almazroi, A. A. and Khalil, M. I. K. (2021). Using algorithmic trading to analyze short term profitability of Bitcoin. PeerJ Computer Science, 7(1), A. e337. https://doi.org/10.7717/peerj-cs.337
- Ariyo, A. A., Adewumi, A. O. and Ayo, C. K. (2014). Stock price prediction using the ARIMA model. In 2014 UKSim-AMSS 16th international conference on computer modelling and simulation, (pp. 106-112). IEEE. Cambridge, UK
- Aycel, Ü. and Santur, Y. (2022). A new moving average approach to predict the direction of stock movements in algorithmic trading. Journal of New Results in Science, 11(1), pp. 13-25. https://doi.org/10.54187/jnrs.979836
- Bertsimas, D. and Sim, M. (2004). The price of robustness. Operations Research, 52(1), pp. 35-53. https://doi.org/10.1287/opre.1030.0065
- Brock, W., Lakonishok, J. and LeBaron, B. (1992). Simple technical trading rules and the stochastic properties of stock returns. The Journal of Finance, 47(5), pp. 1731-1764. https://doi.org/10.1111/j.1540-6261.1992.tb04681.x
- Chaboud, A. P., Chiquoine, B., Hjalmarsson, E. and Vega, C. (2014). Rise of the machines: Algorithmic trading in the foreign exchange market. The Journal of Finance, 69(5), pp. 2045-2084. https://doi.org/10.1111/jofi.12186
- Chang, Y. H., Jong, C. C. and Wang, S. C. (2017). Size, trading volume, and the profitability of technical trading. International Journal of Managerial Finance, 13(4), pp. 475-494. https://doi.org/10.1108/IJMF-09-2016-0179
- Chen, W., Zhang, H., Mehlawat, M. K. and Jia, L. (2021). Mean–variance portfolio optimization using machine learning-based stock price prediction. Applied Soft Computing, 100(1), A. 106943. https://doi.org/10.1016/j.asoc.2020.106943
- Cipiloglu Yildiz, Z. and Yildiz, S. B. (2022). A portfolio construction framework using LSTM‐based stock markets forecasting. International Journal of Finance & Economics, 27(2), pp. 2356-2366. https://doi.org/10.1002/ijfe.2277
- Dai, Z. and Zhu, H. (2020). Stock return predictability from a mixed model perspective. Pacific-Basin Finance Journal, 60, A. 101267. https://doi.org/10.1016/j.pacfin.2020.101267
- Eskorouchi, A., Ghanbari, H., & Mohammadi, E. (2024). Exploring the evolution of robust portfolio optimization: a scientometric analysis. Iranian Journal of Accounting, Auditing and Finance, 8(3), pp. 75-92. https://doi.org/22067/ijaaf.2024.44518.1402
- Eskorouchi, A., Mohammadi, E. and Sadjadi, S. J. (2022). Robust portfolio optimization based on evidence theory. Scientia Iranica. Articles in Press (In Persian). https://doi.org/10.24200/sci.2022.59575.6330
- Ferdiansyah, F., Othman, S. H., Radzi, R. Z. R. M., Stiawan, D., Sazaki, Y. and Ependi, U. (2019). A lstm-method for bitcoin price prediction: A case study yahoo finance stock market. In 2019 international conference on electrical engineering and computer science (ICECOS) (pp. 206-210). IEEE. Cambridge, UK
- Frattini, A., Bianchini, I., Garzonio, A. and Mercuri, L. (2022). Financial technical indicator and algorithmic trading strategy based on machine learning and alternative data. Risks, 10(12), p. 225. https://www.mdpi.com/2227-9091/10/12/225#
- Fu, A. and Wang, B. (2020). Portfolio optimization based on LSTM neural network prediction. In 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC) (pp. 1-5). IEEE. Cambridge, UK
- Garcia, D. and Schweitzer, F. (2015). Social signals and algorithmic trading of Bitcoin. Royal Society open science, 2(9), A. 150288. https://doi.org/10.1098/rsos.150288
- Goldfarb, D. and Iyengar, G. (2003). Robust portfolio selection problems. Mathematics of Operations Research, 28(1), pp. 1-38. https://doi.org/10.1287/moor.28.1.1.14260
- Graves, A. and Schmidhuber, J. (2005). Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Networks, 18(5-6), pp. 602-610. https://doi.org/10.1016/j.neunet.2005.06.042
- Hendershott, T., Jones, C. M. and Menkveld, A. J. (2011). Does algorithmic trading improve liquidity? The Journal of Finance, 66(1), pp. 1-33. https://doi.org/10.1111/j.1540-6261.2010.01624.x
- Imajo, K., Minami, K., Ito, K. and Nakagawa, K. (2021). Deep portfolio optimization via distributional prediction of residual factors. In Proceedings of the AAAI Conference on Artificial Intelligence, 35(1), pp. 213-222. https://doi.org/10.1609/aaai.v35i1.16095
- Iqbal, J., Ahmad, I. and Shah, A. (2019). Competitive algorithms for online conversion problem with interrelated prices. International Journal of Advanced Computer Science and Applications, 10(6), pp. 1-9.
- Kalariya, V., Parmar, P., Jay, P., Tanwar, S., Raboaca, M. S., Alqahtani, F., ... and Neagu, B. C. (2022). Stochastic neural networks-based algorithmic trading for the cryptocurrency market. Mathematics, 10(9), A. 1456. https://doi.org/10.3390/math10091456
- Kim, J. H., Kim, W. C. and Fabozzi, F. J. (2018). Recent advancements in robust optimization for investment management. Annals of Operations Research, 266, pp. 183-198. https://doi.org/10.1007/s10479-017-2573-5
- Lassance, N. (2022). Reconciling mean-variance portfolio theory with non-Gaussian returns. European Journal of Operational Research, 297(2), pp. 729-740. https://doi.org/10.1016/j.ejor.2021.06.016
- Lee, J. W. (2001). Stock price prediction using reinforcement learning. In ISIE 2001. 2001 IEEE International Symposium on Industrial Electronics Proceedings (Cat. No. 01TH8570), 1, pp. 690-695. IEEE. Cambridge, UK
- Lei, Y., Peng, Q. and Shen, Y. (2020). Deep learning for algorithmic trading: enhancing MACD strategy. In Proceedings of the 2020 6th International Conference on Computing and Artificial Intelligence, University of Tsukuba, Tsukuba, Japan (pp. 51-57). https://doi.org/10.1145/3404555.3404604
- Lim, A. E. and Zhou, X. Y. (2002). Mean-variance portfolio selection with random parameters in a complete market. Mathematics of Operations Research, 27(1), pp. 101-120. https://doi.org/10.1287/moor.27.1.101.337
- Lin, Q., Luo, Y. and Sun, X. (2022). Robust investment strategies with two risky assets. Journal of Economic Dynamics and Control, 134, A. 104275. https://doi.org/10.1016/j.jedc.2021.104275
- Low, R. K. Y., Faff, R. and Aas, K. (2016). Enhancing mean–variance portfolio selection by modeling distributional asymmetries. Journal of Economics and Business, 85, pp. 49-72. https://doi.org/10.1016/j.jeconbus.2016.01.003
- Ma, Y., Han, R. and Wang, W. (2021). Portfolio optimization with return prediction using deep learning and machine learning. Expert Systems with Applications, 165, A. 113973. https://doi.org/10.1016/j.eswa.2020.113973
- Markowitz, H. (1952). The utility of wealth. Journal of political Economy, 60(2), pp. 151-158. https://doi.org/10.1086/257177
- Ming-Ming, L. and Siok-Hwa, L. (2006). The profitability of the simple moving averages and trading range breakout in the Asian stock markets. Journal of Asian Economics, 17(1), pp. 144-170. https://doi.org/10.1016/j.asieco.2005.12.001
- Mohr, E., Ahmad, I. and Schmidt, G. (2014). Online algorithms for conversion problems: a survey. Surveys in Operations Research and Management Science, 19(2), pp. 87-104. https://doi.org/10.1016/j.sorms.2014.08.001
- Moldovan, D., Moca, M. and Nitchi, S. (2011). A stock trading algorithm model proposal, based on technical indicators signals. Informatica Economica, 15(1), p. 183.
- Mondal, P., Shit, L. and Goswami, S. (2014). Study of effectiveness of time series modeling (ARIMA) in forecasting stock prices. International Journal of Computer Science, Engineering and Applications, 4(2), p. 13.
- Obthong, M., Tantisantiwong, N., Jeamwatthanachai, W. and Wills, G. (2020). A survey on machine learning for stock price prediction: Algorithms and techniques. 2nd International Conference on Finance, Economics, Management and IT Business, Vienna House Diplomat Prague, Prague, Czech Republic, 63-71. http://dx.doi.org/10.5220/0009340700630071
- Raffinetti, E. (2023). A rank graduation accuracy measure to mitigate artificial intelligence risks. Quality & Quantity, 57(Suppl 2), 131-150. https://doi.org/10.1007/s11135-023-01613-y
- Rather, A. M. (2021). Lstm-based deep learning model for stock prediction and predictive optimization model. EURO Journal on Decision Processes, 9(1), A. 100001. https://doi.org/10.1016/j.ejdp.2021.100001
- Salkar, T., Shinde, A., Tamhankar, N. and Bhagat, N. (2021). Algorithmic trading using technical indicators. In 2021 International Conference on Communication information and Computing Technology (ICCICT) (pp. 1-6). IEEE. Cambridge, UK
- Schmidt, G., Mohr, E. and Kersch, M. (2010). Experimental analysis of an online trading algorithm. Electronic Notes in Discrete Mathematics, 36, pp. 519-526. https://doi.org/10.1016/j.endm.2010.05.066
- Scholtus, M., Van Dijk, D. and Frijns, B. (2014). Speed, algorithmic trading, and market quality around macroeconomic news announcements. Journal of Banking & Finance, 38, pp. 89-105. https://doi.org/10.1016/j.jbankfin.2013.09.016
- Schöneburg, E. (1990). Stock price prediction using neural networks: A project report. Neurocomputing, 2(1), pp. 17-27. https://doi.org/10.1016/0925-2312(90)90013-H
- Sen, J., Mondal, S. and Nath, G. (2021). Robust portfolio design and stock price prediction using an optimized LSTM model. In 2021 IEEE 18th India Council International Conference (INDICON) (pp. 1-6). IEEE. Cambridge, UK
- Shahvaroughi Farahani, M. (2021). Prediction of interest rate using artificial neural network and novel meta-heuristic algorithms. Iranian Journal of Accounting, Auditing and Finance, 5(1), pp. 1-30 (In Persian). https://doi.org/10.22067/ijaaf.2021.67957.1017
- Shavandi, A. and Khedmati, M. (2022). A multi-agent deep reinforcement learning framework for algorithmic trading in financial markets. Expert Systems with Applications, 208, A. 118124. https://doi.org/10.1016/j.eswa.2022.118124
- Siami-Namini, S., Tavakoli, N. and Namin, A. S. (2019). The performance of LSTM and BiLSTM in forecasting time series. In 2019 IEEE International Conference on Big Data (Big Data) (pp. 3285-3292). IEEE. New York
- Soyster, A. L. (1973). Convex programming with set-inclusive constraints and applications to inexact linear programming. Operations Research, 21(5), pp. 1154-1157. https://doi.org/10.1287/opre.21.5.1154
- Spearman, C. (1961). The proof and measurement of association between two things. Appleton-Century-Crofts. (pp. 45–58). https://psycnet.apa.org/doi/10.1037/11491-005
- Ta, V. D., Liu, C. M. and Tadesse, D. A. (2020). Portfolio optimization-based stock prediction using long-short term memory network in quantitative trading. Applied Sciences, 10(2), p. 437. https://doi.org/10.3390/app10020437
- Vo, A. and Yost-Bremm, C. (2020). A high-frequency algorithmic trading strategy for cryptocurrency. Journal of Computer Information Systems, 60(6), pp. 555-568. https://doi.org/10.1080/08874417.2018.1552090
- Weller, B. M. (2018). Does algorithmic trading reduce information acquisition? The Review of Financial Studies, 31(6), 2184-2226. https://doi.org/10.1093/rfs/hhx137
- Yu, J. R., Chiou, W. J. P., Lee, W. Y. and Lin, S. J. (2020). Portfolio models with return forecasting and transaction costs. International Review of Economics & Finance, 66, pp. 118-130. https://doi.org/10.1016/j.iref.2019.11.002
- Zhu, H., Jiang, Z. Q., Li, S. P. and Zhou, W. X. (2015). Profitability of simple technical trading rules of Chinese stock exchange indexes. Physica A: Statistical Mechanics and its Applications, 439, pp. 75-84. https://doi.org/10.1016/j.physa.2015.07.032
|