بررسی آزمایشگاهی همبستگی مدول برجهندگی و مقاومت فشاری تک محوری در تثبیت شیمیایی و زیستی خاک رس بستر راه
مهندسی عمران فردوسی
مقاله 5 ، دوره 38، شماره 1 - شماره پیاپی 49 ، فروردین 1404، صفحه 83-100 اصل مقاله (1.95 M )
نوع مقاله: مقاله پژوهشی
شناسه دیجیتال (DOI): 10.22067/jfcei.2024.83919.1248
نویسندگان
سیامک شفقتیان* 1 ؛ غلام مرادی 2
1 گروه عمران، دانشکده عمران و معماری، دانشگاه آزاد اسلامی واحد خدابنده، ایران
2 دانشکده عمران، دانشگاه تبریز، تبریز، ایران
چکیده
با توجه به پرهزینه و زمان بر بودن آزمایش، برای تعیین مدول برجهندگی (MR) در اهداف طراحی، استفاده از روابط معتبر همبستگی با پارامترهای معمول خاک، مفید و رایج می باشد که اعتبار این روابط برای خاکهای تثبیت شده، کمتر بررسی شده است. تثبیت خاک ضعیف بستر راه، یکی از روشهای پرهیز از هزینههای مالی و زمانی روش جایگزینی میباشد. طبق توصیه پیمان زیست محیطی کیوتو، تحقیق بر روی استفاده از مصالح نوین مانند پلیمرها و روشهای نوین مانند تثبیت زیستی با اهداف ژئوتکنیکی مانند راهسازی گسترش یافته است. در این پژوهش تاثیر تثبیت شیمیایی و زیستی بر مقاومت فشاری تک محوری (qu) و MR و دقت مدل تامسون در همبستگی این دو پارامتر در خاک رس بستر مورد مطالعه، بررسی شد. در تثبیت شیمیایی از یک پلیمر جامد به نام نیکوفلاک و در تثبیت زیستی از یک بیوپلیمر به نام بتاگلوکان استفاده شد. هر دو مثبت، وزن مخصوص خشک خاک را کاهش و رطوبت بهینه و همچنین qu آن را افزایش میدهند. برخلاف نتایج نزدیک در آزمایش qu، پلیمر جامد، MR خاک تثبیت شده را بیش از بیوپلیمر افزایش میدهد. براساس نتایج تحلیل پراکندگی دادههای آزمایش، مدل تامسون برای تخمین MR برحسب qu، در خاک تثبیت شده با نیکوفلاک مناسب بوده و در خاک تثبیت شده با بتاگلوکان از دقت کافی برخوردار نیست.
کلیدواژهها
مدول برجهندگی(MR) ؛ مدل تامسون ؛ تثبیت شیمیایی و زیستی بستر رسی ؛ نیکوفلاک ؛ بتاگلوکان
مراجع
American Association of State Highway and Transportation Officials (AASHTO), Mechanistic-empirical pavement design guide: A manual of practice , 2008.
Yousefi, W.M. Hasan, A. Saghayi, P. Ayar, M. Ameri, “Evaluation of mechanical properties of asphalt mixtures containing anti-stripping additives of GRIPPER® L, TeraGrip and WETMUL-95,” Ferdowsi Civil Engineering , vol. 34, no. 4, pp. 31-34, 2021. (In Persian) https://doi.org/10.22067/jfcei.2022.72939.1070
J. Qazizadeh, A. Kavussi, A.A. Sadeghi, H. Farhad, “Development of Fatigue Predictive Models for Asphalt Concrete Mixes Containing Electric Arc Furnace Steel Slag Based on Fracture Energy Concept,” Ferdowsi Civil Engineering , vol. 32, no. 2, pp. 17-34, 2019. (In Prsian) https://doi.org/10.22067/civil.v32i2.66310
Arm, “Variation in deformation properties of processed MSWI bottom ash: results from triaxial tests,” Waste Management , vol. 24, no. 10, pp. 1035-1042, 2019. https://doi.org/10.1016/j.wasman.2004.07.013
O. Tastan, T.B. Edil, C.H. Benson, A.H. Aydilek, “Stabilization of organic soils with fly ash,” Journal of geotechnical and Geoenvironmental Engineering , vol. 137, no. 9, pp. 819-833, 2011. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000502
Ardah, Q. Chen, M. Abu-Farsakh, “Evaluating the performance of very weak subgrade soils treated/stabilized with cementitious materials for sustainable pavements,” Transportation Geotechnics , vol. 11, pp. 107-119, 2017. https://doi.org/10.1016/j.trgeo.2017.05.002
Bhuvaneshwari, R. Robinson, S. Gandhi, “Resilient modulus of lime treated expansive soil,” Geotechnical and Geological Engineering , vol.37, no. 1, pp. 305-315, 2019. https://doi.org/10.1007/s10706-018-0610-z
Pishvaei, M.J. Sharahi, M. Amelsakhi, “Laboratory Investigating into the Stabilization of Clay with Calcium Lignosulfonate and Polyethylene Fibers under Wetting and Drying Cycles,” Ferdowsi Civil Engineering , vol 14, no. 1, pp. 85-96, 2023. (In Prsian) https://doi.org/10.22067/jfcei.2023.74674.1112
Kolay, A. Pant, V. Puri, S. Kumar, “Effect of Liquid Polymer Stabilizer on Geotechnical Properties of Fine-Grained Soil,” In Indian Geotechnical Conference , 2016, pp. 15-17.
H. Hamdi, “Evaluation the Effect of Polyvinyl Chloride on Moisture Sensitivity of HMAt,” Ferdowsi Civil Engineering , vol. 32, no. 2, pp. 1-16, 2019. (In Persian) https://doi.org/10.22067/civil.v32i2.65335
Miller, R. Willis, G. Levy, “Aggregate stabilization in kaolinitic soils by low rates of anionic polyacrylamide,” Soil use and management , vol. 14, no. 2, pp. 101-105, 1998. https://doi.org/10.1111/j.1475-2743.1998.tb00623.x
Zhang, Y. Deng, H. Lan, F. Zhang, H. Zhang, C. Wang, Y. Tan, R. Yu, “Experimental Investigation of the Compactability and Cracking Behavior of Polyacrylamide-Treated Saline Soil in Gansu Province,” China Polymers , vol. 11, no. 1, p. 90, 2019. https://doi.org/10.3390/polym11010090
J. Orts, A. Roa-Espinosa, R.E. Sojka, G.M. Glenn, S.H. Imam, K. Erlacher, J.S. Pedersen, “Use of synthetic polymers and biopolymers for soil stabilization in agricultural, construction, and military applications,” Journal of materials in civil engineering , vol. 19, no. 1, pp. 58-66, 2007. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:1(58)
Yongfeng, L. Songyu, H. Jian'an, L. Kan, D. Yanjun, J. Fei, “Strength and permeability of cemented soil with PAM,” Proceedings of the Fourth International Conference on Grouting and Deep Mixing , 2012, pp. 1800-1807. https://doi.org/10.1061/9780784412350.0155
M. Gridchin, S. Zlotykh, “PMC Nicoflok research effect as mechanochemical activator on the cement characterestic used,” Bulletin of Belgorod State Technological University Named. After V. G. Shukhov, vol. 5, no. 8, 2018. https://doi.org/10.12737/article_5af5a72640c9f7.36216170
Gavrilina, A. Bondar, “Analysis of using nicoflok polymer-mineral additive for replacing stone materials as road bases,” In IOP Conference Series: Materials Science and Engineering, IOP Publishing, vol. 451, 2018. pp. 26-28. https://doi.org/10.1088/1757-899X/451/1/012086
Kolay, B. Dhakal, “Geotechnical Properties and Microstructure of Liquid Polymer Amended Fine-Grained Soils,” Geotechnical and Geological Engineering , vol. 38, pp. 2479-2491, 2020. doi.org/10.1007/s10706-019-01163-x
Chiet, K. Kassim, K. Chen, U. Martula, C. Yah, A. Arefnia, Effect of Reagents Concentration on Biocementation of Tropical Residual Soil,” In IOP Conference Series: Materials Science and Engineering, IOP Publishing , vol. 136, 2015, pp. 27-29. https://doi.org/10.1088/1757-899X/136/1/012030
Chang, J. Im, G.-C. Cho, “Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering,” Sustainability , vol. 8, no. 3, p. 251, 2016. https://doi.org/10.3390/su8030251
S. Dassanayake, S. Acharya, N. Abidi, “Biopolymer-based materials from polysaccharides: Properties, processing, characterization and sorption applications,” Advanced Sorption Process Applications, ch. 1, 2018. 10.5772/intechopen.80898
Van de Velde, P. Kiekens, “Biopolymers: overview of several properties and consequences on their applications,” Polymer testing , vol. 21, no. 4, pp. 433-442, 2002. https://doi.org/10.1016/S0142-9418(01)00107-6
Khayat, A. Yahia, “Effect of welan gum-high-range water reducer combinations on rheology of cement grout,” ACI Materials Journal , vol. 94, no. 5, pp. 365-372, 1997.
M. Cole, D.B. Ringelberg, C.M. Reynolds, “Small-scale mechanical properties of biopolymers,” Journal of Geotechnical and Geoenvironmental engineering , vol. 138, no. 9, pp. 1063-1074, 2012. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000680
De Muynck, N. De Belie, W. Verstraete, “Microbial carbonate precipitation in construction materials: a review,” Ecological Engineering , vol. 36, no. 2, pp. 118-136, 2010. https://doi.org/10.1016/j.ecoleng.2009.02.006
B. Ebrahimialavijeh Bahareh, Mokhtari Maryam, “Investigation of the effect of Polypropylene Fibers on compression strength and tensile strength of organic soil stabilized with lime and Xanthan-Gum biopolymer,” AUT Journal of Civil Engineering , vol. 53, no. 5, pp. 1853-1870, 2021. (In Persian) https://doi.org/10.22060/ceej.2020.17185.6490
Dione, M. Fall, Y. Berthaud, F. Benboudjama, A. Michou, “Implementation of Resilient Modulus–CBR relationship in Mechanistic Pavement Design,” Sciences Appliquées et de l'Ingénieur , vol. 1, no. 2, pp. 65-71, 2014.
E. UZ, M. Saltan, İ. GÖKALP, “Comparison of DCP, CBR, and RLT test results for granular pavement materials and subgrade with structural perspective,” International Symposium on Non-Destructive Testing in Civil Engineering, 2015.
R. Christopher, C.W. Schwartz, R. Boudreaux, R.R. Berg, Geotechnical aspects of pavements Reference Manual, United States. Federal Highway Administration, 2006.
Toohey, M. Mooney, R. Bearce, “Relationship between resilient modulus and unconfined compressive strength for lime-stabilized soils,” Journal of geotechnical and geoenvironmental engineering , vol. 139, no. 11, pp. 1982-1985, 2013. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000925
-W. Park, H.V. Vo, Y. Lim, “Recycling of Dredged Soil Waste Using Air-foam Stabilization Method as Highway Construction Material,” Geo-Hubei 2014 International Conference on Sustainable Civil Infrastructure, 2014. https://doi.org/10.1061/9780784478455.006
V. Khruleva, G.I. Sobko, Application of Innovative Technologies in the Construction of Highways by the Stabilized Soils (Experience of the Nizhny Novgorod Region), Main Direction of Highway-Nizhny Novagorod Region-Russian , 2012. Available: http://www.guad.nnov.ru/?id=2936
Chang, G.-C. Cho, “Geotechnical behavior of a beta-1, 3/1, 6-glucan biopolymer-treated residual soil,” Geomechanics and Engineering , vol. 7, no. 6, pp. 633-647, 2014. https://doi.org/10.12989/gae.2014.7.6.633
R. Prusinski, S. Bhattacharja, “Effectiveness of Portland cement and lime in stabilizing clay soils,” Transportation research record , vol. 1652, no. 1, pp. 215-227, 1999. https://doi.org/10.3141/1652-28
Rezaie Moghaddam, B. Jafari Nader, T. Rezaie Moghaddam, “Laboratory Investigation of the Effect of “NICOFLOK” Polymer on the Compressive and Tensile Strength of Desert and Coastal Sand at the pavement Layers,” Amirkabir Journal of Civil Engineering, vol. 53, no. 2, pp. 733-748, 2021. https://doi.org/10.22060/ceej.2020.16612.6288
آمار
تعداد مشاهده مقاله: 267
تعداد دریافت فایل اصل مقاله: 143