Iranian Journal of Numerical Analysis and Optimization
Vol. 7?7, No. 77,77, pp 7?7

!/ . Joe .~
https://doi.org/??
https://ijnac.um.ac.ir/
Research Article a
BY NC

The analysis of the mathematical stability

of a cholera disease model

I. Sahib*, M. Baroudi, H. Gourram, B. Khajji, A. Labzai and M. Belam

*Corresponding author

Received 777 ; revised 777 ; accepted 777

Issam Sahib

Laboratory LMACS, Sultan Moulay Slimane University, MATIC Research Team: Ap-
plied Mathematics and Information and Communication Technologie, Department of
Mathematics and Computer Science, Khouribga Polydisciplinary Faculty, Morocco.. e-

mail: sahibissam@gmail.com

Mohamed Baroudi

Laboratory LMACS, Sultan Moulay Slimane University, MATIC Research Team: Ap-
plied Mathematics and Information and Communication Technologie, Department of
Mathematics and Computer Science, Khouribga Polydisciplinary Faculty, Morocco. e-

mail: m.mohamed.baroudi@gmail.com

Hicham Gourram

Laboratory LMACS, Sultan Moulay Slimane University, MATIC Research Team: Ap-
plied Mathematics and Information and Communication Technologie, Department of
Mathematics and Computer Science, Khouribga Polydisciplinary Faculty, Morocco. e-

mail: gourramhicham03@gmail.com

Bouchaib Khayjji
Laboratory of Analysis Modeling and Simulation, Department of Mathematics and Com-
puter Science, Faculty of Sciences Ben M’sik, Hassan II University of Casablanca, Mo-

rocco. e-mail: labzaiabdo1977@gmail.com

Abderrahim Labzai
Laboratory of Analysis Modeling and Simulation, Department of Mathematics and Com-

puter Science, Faculty of Sciences Ben M’sik, Hassan II University of Casablanca, Mo-


https://doi.org/10.22067/ijnao.2025.88685.1464
https://ijnao.um.ac.ir/

Sahib, Baroudi, Gourram, Khajji, Labzai and Belam 2

Abstract

In this study, we develop a deterministic model for cholera transmis-
sion dynamics, incorporating vaccination campaigns, treatment of infected
individuals, and water sanitation initiatives. A novel feature of our model
is the inclusion of healthcare centers, which enhances the simulation of
treatment dynamics, offering new insights into cholera management. The
model’s central metric is the basic reproduction number Ry, derived from
the disease-free equilibrium (DF E) condition. Stability analysis shows that
when Ry < 1, the DFE is asymptotically stable, ensuring cholera eradica-
tion, while Ry > 1 leads to an endemic equilibrium. Sensitivity analysis
highlights that vaccination, treatment, sanitation, and public awareness
campaigns are critical for reducing Rg. The inclusion of healthcare centers
further improves the model’s effectiveness by ensuring timely treatment.
Numerical simulations, validated using M ATLAB, confirm that compre-
hensive public health strategies, including expanded vaccination campaigns
and healthcare infrastructure, are essential for combating cholera out-
breaks. This model underscores the importance of timely medical inter-

vention in reducing infection rates and fatalities.

AMS subject classifications (2020): 49J15, 93C10, 92B05, 93A30.

Keywords: stability; sensitivity; optimal control; Disease cholera.

1 Introduction

Cholera remains a significant global public health threat, responsible for tens

of thousands of deaths each year [22]. This highly contagious disease, caused
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The analysis of the mathematical stability of a cholera disease model

by the bacterium Vibrio cholerae, spreads rapidly in communities through
contaminated water and food sources. The transmission dynamics of cholera
within a community are influenced by a complex interaction of social, envi-
ronmental, and behavioral factors. In certain regions, the periodic recurrence
of cholera outbreaks can be attributed in part to seasonal variations in con-
tact rates, water quality, and sanitation levels [6, 15]. Understanding and
accurately estimating the prevalence of Vibrio cholerae infections in endemic
populations, as well as the correlation between the concentration of the bac-
teria and its virulence, is crucial to controlling the spread of the disease and
mitigating its impact [3]. These seasonal fluctuations are particularly impor-

tant in explaining the cyclical nature of cholera outbreaks [8].

Mathematical models have played a crucial role in capturing these dy-
namics. In 2001, scientists enhanced Capasso’s model by incorporating the
environmental component, specifically the concentration of Vibrio cholerae in
the water supply, into a basic SIR (Susceptible-Infected-Recovered) model.
This modification allowed for a better understanding of how the presence
of the bacteria in water sources contributes to the incidence of cholera. The
saturation effect of bacterial concentration was modeled using a logistic func-
tion, reflecting the nonlinear relationship between bacterial load and infection

risk.

Further advancements in modeling cholera transmission were made by
Hartley [10], who introduced a hyper-infectious stage for Vibrio cholerae.
This addition, based on observations from laboratory settings, captured the
highly transmissible nature of recently shed Vibrio cholerae, which is par-
ticularly potent immediately after being excreted by infected individuals [8].
This feature significantly enhances the pathogen’s ability to spread during
an outbreak, emphasizing the need for rapid and targeted interventions to
control the transmission of this highly contagious form. Hartley’s work un-
derscored the importance of considering pathogen dynamics when designing
intervention strategies. It is imperative to explore whether other common
infectious diseases also exhibit such hyper-transmissible stages and, if so, to
incorporate these stages into their respective prevention models to ensure a

more comprehensive and effective response.
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Nelson et al. [17] further refined these models by incorporating a more
accurate representation of the pathogen’s infectious dose, recognizing that
the minimal dose required to cause an infection plays a critical role in de-
termining how quickly an outbreak can spread. Interventions that focus on
reducing exposure to the hyper-infectious form of Vibrio cholerae, such as im-
proved sanitation and clean water distribution, are essential for preventing
large-scale outbreaks. Moreover, evaluating other diseases for similar hyper-
infectious conditions and integrating such findings into disease prevention
models will allow for more targeted and efficient public health interventions
[19].

Raising public awareness through campaigns and educational initiatives
has proven to be an effective strategy for controlling the spread of infectious
diseases. By reducing the likelihood of contact transmission among vulner-
able populations, awareness campaigns play a pivotal role in managing epi-
demics. In the digital age, the rapid dissemination of information through
social media, coupled with increased global travel, has made awareness even
more critical. These campaigns can significantly decrease the probability of
transmission by educating the public on hygiene practices and the importance
of early detection and treatment, ultimately improving the overall dynamics
of epidemics [1, 16, 25].

The relationship between the spread of infectious diseases and human
social behavior has been extensively studied in both theoretical and empirical
research. Numerous mathematical models have been developed to explore
these interactions, particularly in the context of cholera [4, 5, 9, 11, 13, 16, 20].
These models have helped public health officials design strategies to reduce
the number of cholera cases and improve overall health outcomes in affected

communities [18].

In this study, we delve deeply into the foundational mathematical compo-
nents of cholera models, focusing on critical aspects such as the determination
of equilibrium points and the calculation of the epidemic threshold, commonly
referred to as the basic reproductive number Ry. The stability of these equi-
librium points is rigorously analyzed, revealing the conditions under which
the disease-free equilibrium (DFE) is globally asymptotically stable (GAS).

Descartes’ rule of signs is applied to derive global stability conditions, and
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the local stability of the endemic equilibrium is evaluated using the center
manifold theory [15]. These analyses provide valuable insights into the un-
derlying dynamics of cholera transmission and the potential for controlling
outbreaks through targeted interventions.

One critical aspect that has not been fully explored in many models is the
role of healthcare infrastructure in managing cholera outbreaks. Integrating
healthcare centers into the model is essential for accurately capturing the
real-world dynamics of disease transmission and control. Healthcare centers
are often the first line of defense during an outbreak, providing immediate
treatment to those infected and acting as central points for public health in-
terventions such as vaccination, water sanitation programs, and public aware-
ness campaigns. By incorporating healthcare facilities into the model, we can
simulate more realistic outbreak scenarios and assess the impact of different
intervention strategies in a variety of contexts.

The inclusion of healthcare centers also allows for the optimization of
resource allocation during an outbreak. For instance, the model can help
determine the most efficient distribution of medical supplies and personnel
across different regions, ensuring that healthcare resources are concentrated
in areas where they will have the greatest impact. This addition not only en-
hances the accuracy and realism of the model but also provides public health
officials with a powerful tool for decision-making in the midst of an outbreak.
The importance of this integration cannot be overstated, as it bridges the gap
between theoretical models and practical applications in public health policy.

In conclusion, this study builds upon existing cholera models by not only
refining the mathematical understanding of cholera dynamics but also by
emphasizing the critical role of healthcare infrastructure in controlling out-
breaks. By combining rigorous mathematical analysis with practical consid-
erations of public health intervention, this model provides a more compre-
hensive and applicable tool for managing cholera outbreaks and potentially
other infectious diseases as well.

The paper is organized as follows: A mathematical model and its basic
properties are presented in Section 2. The features of the model’s local and
global asymptotic stability are examined in Section 3. The sensitivity of the

basic reproduction number concerning the model parameters is investigated
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in Section 4. Numerical simulations and discussions are provided in Section

5. The paper is finally concluded in Section 6.

2 Fundamental properties and the mathematical model

2.1 A mathematical model

In the context of cholera, we introduce a continuous dynamics model of the
SICR-B (Susceptible-Infectious-Centers-Recovered-Bacterial) type, which in-
cludes a category for bacterial concentration. The total population, N(¢), is
divided into four classes: susceptible individuals S(t), infected individuals
I(t) exhibiting symptoms, individuals undergoing treatment in centers C(t),
and recovered individuals R(t). The total population at time ¢ is given by
N(t)=S(t)+I(t)+ C(t) + R(t). The graphical representation of this model

is shown in Figure 1.

Figure 1: The dynamics among the five compartments SICR-B of cholera disease.

We study five nonlinear differential equations:
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ds(t) ST SB
C%_A;IMS_BlN_BQM, .

E :ﬂlﬁ —I(p+6 +o +a2)+ﬁ2m7

A Y e CyTe) e

—= =asl +0C — uR,

22— oI — 5,B.

The initial states are given as S(0) > 0, I(0) > 0, C(0) > 0, R(0) > 0,
and B(0) > 0. The total population N(¢) at time ¢ > 0 is categorized into
four classes: Susceptible individuals S(t), infectious individuals I(¢) showing
symptoms, individuals undergoing treatment in centers C(t), and recovered
individuals R(t).

Additionally, we introduce a class B(t) representing bacterial concentra-
tion at time ¢t. We assume a positive recruitment rate A into the susceptible

class S(t) and a positive natural death rate p for all time ¢. Susceptible indi-
viduals can contract cholera at a rate ,BQK_,’_LBt()t), where (2 > 0 is the ingestion
rate of bacteria from contaminated sources, x is the half-saturation constant
B(t)
r+B(t)

of the bacteria population, and represents the probability of infection

given exposure.

Infected individuals can opt for treatment in centers for a period, where
they are isolated and receive appropriate medication at rates a; and as.
Recovery from treatment occurs at rate o. Disease-related death rates for
infected individuals undergoing treatment and those not in treatment are d;

and u, respectively.

Each infected individual contributes to an increase in bacterial concentra-
tion at rate p, while the bacterial concentration decreases due to mortality

at rate do.
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2.2 Fundamental characteristics of the model

2.2.1 Region of invariance

It is necessary to demonstrate that all solutions of system (1) starting from

positive initial values will remain positive for all ¢ > 0. This will be estab-

lished through the following lemma.

Lemma 1. All admissible solutions S(t), I(t), C(t), R(t), and B(t) of system

(1) are bounded within the region Q = Qu % Qp, where

Qn = (S,I7C,R)6Ri:S+I+O+R§%},
Qp = BGRJF:Bg%},

Proof. From the equation of system (1)

dN (t)
dt

:A—MN(t)—I(sh

implies the following equation:

AN (t)
dt

<A —uN(t).
Therefore, it is clear that
N(t) < =(1—e ")+ N(0)e .

Since N (0) is the initial value of the total number of people,

Then A
S(t)+1I(t) +C(t) + R(t) < "
Similarly,
% = pl — 53B(t) < p — 02B(t),
B(t) < ég + B(0)e %,
2

(2)
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[B(t) < % (11)

For the analysis of model (1), we get the regions, which is given by the set
Q= Qpn xQp, where

Qn = (S,I,C,R)eRi:S+I+C+R§%},

(12)
Op = BeR+;B§§},

which is a positively invariant set for (1). Therefore, it is only necessary to
consider the dynamics of the system (1) in relation to the set of nonnegative

solutions €. O

2.2.2 Positivity of the model’s solutions.

Theorem 1. If S(0) > 0, I(0) > 0, C(0) > 0, R(0) > 0, and B(0) > 0,
then the solutions of system equation (1), S(t),I(t),C(t), R(t), and B(t) are
positive for all ¢ > 0.

Proof. Starting from the first equation of system (1), we obtain

as() _
T A — M(t)S(t). (13)
Given that s B
M(t)=u+51](\ft)+ﬂgl%, (14)

We multiply (13) by exp (fot M(s) ds); then we obtain

t

digt) * exp(/0 M(s)ds) = [A — M(t) = S(t)] * exp(/M(s)ds), (15)
0
dS(t) t *S(t)xex i s)ds) = Axex i s)ds
oL vesp( | M(s)ds) + M0+ 5(0) e / M(s)ds) = Asexp( / M(s)ds).
(16)
Therefore
%[S(t) * exp(/M(s)ds] =Ax exp(/o M(s)ds). (17)

0
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When we take the integral with respect to s from 0 to ¢, we obtain
A t w
S(t) + exp( / M(s)ds) — S(0) = A # / (exp( / M(s)ds))dw.  (18)
J 0 0
Multiplying (18) by exp ( f M(s )ds) we obtain

S(t) — S(0) * exp(f/ M(s)ds)

= A xexp(— /M )ds) /eXp/ M(s)ds)) (19)

S(t) =S(0) = exp(—/o M(s)ds)

Then

+ A xexp(— /Ot M(s)ds) * /Ot(exp(/ow M(s)ds))dw > 0.

Thus, S(t) is a positive solution. Similarly, based on the other equations in

system (1), we obtain

(N+51+a1+a2—51®)d8 >0, (20)

I(t) > I(0) x exp(— N

—

C(t) > C(0). exp(—(o + p)t) > 0,

R(t) > R(0).exp(—(ag + p)t) >0, (21)
B(t) > B(0).exp(—dat) > 0.

As a result, the proof is finished since we can see that for all ¢ > 0, the
solutions S(¢), I(t), C(t), R(t), and B(t) to the system (1) are positive.
Since the variables C' and R do not affect the first three equations in system

(1), the dynamics of equation system (1) is equal to the dynamics of equation

system:
ds(t
7()=A—M5—51 - B35,
dI(t) ST SB
— B, == 22
i Py — I(p+ 61+ a1+ ) + fo—n =t (22)

dB(t)
2 o1 — 6,B.
a0
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11 The analysis of the mathematical stability of a cholera disease model

2.3 An examination of the model’s sensitivity and

stability.

2.3.1 Points of equilibrium:

There are two equilibrium points in this model: The DFE point, which occurs
when cholera is absent, and the epidemic equilibrium point, which occurs
when cholera is present. By setting the derivatives of the rate of change
expressions in the (22) system to zero, these points can be determined.

In the absence of a virus (I = B = 0), the Cholera DFE E?, = (3, 0,0) is
reached. When the disease exists (I # 0 and B # 0), the present equilibrium
of the Cholera disease is reached, denoted by E7, = (S§*; E*; I*). To calculate
the fundamental reproduction number Ry, we will apply the next-generation
operator method.

Ry is the basic reproduction number.
Diekmann et al. [2] defined the basic reproduction number (Ry), which is
an important indicator of the transmissibility of an infectious disease in epi-
demiology. In a population that is fully susceptible, it denotes the average
number of secondary infections caused by one infected person. The mathe-
matical method Ry is computed using the next-generation matrix approach
[21].

The spectral radius of the product matrix FV ! is denoted by the basic
reproduction number Ry. In other words, Ry = p(FV ~1), where the spectral
radius is indicated by p.

We define F' as a nonnegative matrix accounting for the new infective
terms within the next-generation matrix approach framework. Comparably,
both of the remaining transfer terms are represented by V', which is a non-

singular M-matrix evaluated at the DFE. Then

A A
o R (23)
0 0

v ((u+§1)+(a1+a2) 0>’
— 02
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1

0
oo | Gt ) (25)
Sal(ii+ 01) + (a1 + a2)] 05
Fy~! (26)
A Ap A

NI+ 00 1 (an +az)] 2 Eorila 4 61 + (ar az)] e

0 0

This suggests that Ry, the basic reproduction number, can be found by using

the following relationships (where p is the spectral radius):

Ry = p(FV ), (27)
Ap
Ry = , 28
0 ﬁlﬂN(M+(51+OL1+O&2)+6252HILL(/J,+51+041+O[2) (28)
A
Ry = B 627@] (29)

Cop(p i tartag)' N Gak
The basic reproduction number, or Ry, measures the average number of newly
infected people that are created in a population of susceptible people by a
single infected person. Its value indicates the probability that an epidemic

will occur [3, 21].

2.3.2 Analysis of local stability.

We are now going to look at equilibrium behavior and stability, qu and E7, .

The state of DFE
This section looks at the Cholera DFE’s local stability.

. A .
Theorem 2. The equilibrium E¢, = (—,0,0) for the system (22) that is free

of the Cholera disease is asymptotically stable when Ry < 1 and unstable
when Ry > 1.
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Proof. At E.q, the Jacobian matrix is provided by

J(Eeq) (30)

B S S B) - SB

—#—51§—52K+B _BIN —5QW

_ I B S S(k+B)—SB

o ﬁlﬁ+ﬁ2n—|—73 51N_(M+51)_(041+042) BZW
0 [9) —02

For the DFE, the Jacobian matrix is provided by

A A
—H _617]\7 —fBo—
0 A g K'u
JE) =1 o BlMTV = (p+01) = (1 + az) 52@ : (31)
0 o) —02

This matrix’s characteristic equation is det(J(EY,) — A3) = 0, where I3 is
an order three square identity matrix.
Consequently, we can observe that J (qu) has the following characteristic

equations ¢(A):
/\———A[ﬁA—( +d + )—A(—é—/\)—ﬁA} 32
P(A) = (—p )(1#7\, fet 01+ a1+ ag) = A)(=02 @2HTL~( )

The characteristic equation of J (qu) has the following eigenvalues:

>\1 =K,

and

A A A
N\[=6 ——(p+o —0a(B1——=—(p+9 —pPa— =0.
[—d2+51 N (ptd1+ontaz)]|—02(f1 N (Hto1t+ar+az))—pB2 ” 0
(33)
One eigenvalue is obviously negative. The characteristic equation of the

following submatrix J; is now (33):

Jl_(51$—(u+61+a1+a2)ﬁ2$>_ (3)

Y —02

If the trace of J; < 0 and the det(J;) > 0, then the eigenvalues are negative.

The trace is
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A
tT(Jl) =p1— — (M+51 + o +Oé2) — 09
uN A

= (u+ 61+ a1+ as)[—
(01 o)l 61MN(M+51 + oy +a212
=(p+01+a1+ )1+ (Ry— P2

+1] - 5,

. -6
52/"»’#(# + 51 + a1 + 052)

Trace of J; < 0if Ry < 1, and

A A
det(Jy) = —52ﬁ1'u7N +02(p+ 01 + a1 + az) — p52a > 0. (36)

That is,
So(p+61 + a1 +az)[1 -8 A
SR YANT(p+ 01) + (o + az)]
Ap
T o) + (e Faa)]) (37)
A Bi | Bop

(52(/1,4— (51 + a1 + Ckg)[l —

220y 0), (38
w(p+ 01 + a1 + as) N+5gf<a)] ) (38)

52(/1,+51 + o +C¥2)[1—R0] >0, (39)
1— Ry > 0, (40)

if
1> Ryp. (41)

Consequently, given that each of the characteristic equation’s eigenvalues
(33) possess a negative real part, it is demonstrated that qu has a locally

asymptotically stable value. O

3 Global stability

3.1 The global stability of a cholera DFE

It is essential to show that the DFE of the model (22), as defined, is GAS
in order to ensure that the eradication of cholera infection is unaffected by

population sizes. We will use a concept presented in [18] to demonstrate this.

Lemma 2. [12] Let us express system (22) in the following form:

Iran. J. Numer. Anal. Optim., Vol. 7?7, No. 7?7, 7?7 pp 77



15 The analysis of the mathematical stability of a cholera disease model

ax _ N(X,Z),

42
%M(X’Z)aM(X,O)o, (42)

In this case, the components associated with the number of uninfected
people are represented by X € R™, and the components associated with
the number of infected people, including latent, infectious, and so on, are
represented by Z € R”.

The DFE state of system (22) is denoted by EJ, = (X*,0),X* = (%)
Furthermore, let us assume the following conditions, H; and Hs:

(Hy) : dd—)t( = N(X,0). Hence X* is GAS.

(Hy): M(X,Z)=AZ - M(X,Z),M(X,Z) = 0 for (X,Z) € Q.

Where ) denotes the region where the model is biologically meaningful, the
Jacobian A = 97 —(X™*,0) is an M-matrix, and the off-diagonal elements of
A are nonnegative.

If Ry <1, then the DFE state, EY, = (X*,0), is globally stable.
Theorem 3. If Ry < 1, then the DFE state of the model (22) is GAS.

Proof. All we have to do is demonstrate that when Ry < 1, conditions (H;)
and (Hz) hold.
Given that X = (S), M = (I,B), and X* = (%) in our system (1), then

SI SB
S (0 ar )+
M(X, Z) = b1 N (1461 + a1 + az) 62&+B ’ (43)
@I — 52B
and A A
— — (46 4o+ —
A= BlﬂN (M 1T Q1 OQ)ﬂlfw . (44)
& —02
Undoubtedly, this is an M-matrix. Meanwhile,
MX,2)=| ""k(k+ B (45)

It is clear that for ]/\4\(X Z) > 0, the conditions (H;) and (H2) have been
satisfied, and as a result, E0 is GAS since 0 < § < — O

IJ>
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3.2 The equilibrium of the cholera disease is examined

for global stability.

The following is the ultimate outcome of the global stability of E7, =
(S*, I*, B*) in this section.

Theorem 4. The current equilibrium point of the cholera epidemic, EZ,, is
GAS if Ry > 1.

Proof. When the model (22) is solved steadily, the result is

B =2, (46)

o
g* — N (626 + 1) (1 + 61 + a1 + an)
61(52H+g)[*)+62N@ '

The following results from substituting (35) and (36) into system (22)’s first

(47)

equation:
ar 1" + axI* + a3 =0, (48)

where

a; = —(u+ 8+ a1 + az)Bip,
as = APap — N(pu+ 02 + ay + az)(up + 52652 + Bap), (49)
as = (p+ 02 + ag + OZQ)MN(sgﬁ[RO — 1].

If (48) has real, positive roots, then the system (22) is in endemic equilibrium.
We apply Descartes’ rule of signs to ascertain whether positive roots exist
[15]. It follows that the model has a unique endemic equilibrium whenever
Ry >+ 1 since the sign of a; is negative and the sign of ay is positive.

O

4 Sensitivity analysis of Ry

Sensitivity analysis is an effective method for assessing how modifications to
parameter values impact the robustness of a model. It assists in determining
the important parameters affecting the reproduction number Ry, particularly

when taking into account assumptions about parameter values and data col-
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17 The analysis of the mathematical stability of a cholera disease model

lection uncertainties. Using the methodology described in Chitnis et al. [5],
we calculate the Ry normalized forward sensitivity indices.

Let
8R0 u

—_— % —.
ou RO

Table 1 provides the sensitivity index of Ry with respect to the parameter u.

T = (50)

Table 1 demonstrates that the threshold Ry is correspondingly sensitive to

Table 1: Sensitivity indices of Rg

Parameter Description Sensitivity indices
A New populations are added to the model at a constant rate. 1.0000
w The natural death rate 1.0000
51 Transmission rate from human to human 1.0000
B Transmission rate from environment to human 1.0000
ay Qo Recovery rate from cholera -1.5504
K Concentration of Vibrio cholera -1.0000
01 The death rate induced by the cholera -0.1008
O Bacteria death rate -0.9706
© Shedding rate of bacteria by infectious population 1.0000

variations in the parameter values A, 81, f2, and p. This suggests that the
models will have an increase or decrease in Ry when the values of each of the
parameters in this instance increase or decrease. Conversely, the threshold
Ry is inversely proportional to the variation in u, aq, as, d1, and . In this
case, a rise or fall in the values of each parameter results in an equivalent rise

or fall in Ry.

5 Numerical simulations

We provide numerical solutions to model (Figure 1) for a variety of parameter
values in this section. In order to solve system (1), Gumel, Shivakumar, and
Sahai [9] created the Gauss-Sade-like implicit finite-difference method (GSS1
method), which is described in [12].
The fundamental data values:

The model’s parameters are displayed in Table 2. The sources are also
cited. First, we graphically depict the cholera DFE qu. Our initial values

and parameters are the same as those in Table 2 Ry < 1.
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Using the different values of the initial variables S(0), I(0), C'(0), and
R(0), the following observations were obtained from these Figures 2-9. The

number of possible individuals increases and gets closer to S(0) = 250.

Susceptible Individuals

Susceptible individuals(s)

a 10 20 il 40 0 &0 70 &0 %0 100
Time(Days)

Figure 2: Susceptible individuals.

Individuals Within Treatment Center

40 T T T T T T T T T
! ! ! ! ! s
35 C20=30 H
— C3[0F40

£ L TR SO .S T S - S S

Individuals Within Treatment Center(C)

a 10 20 30 40 50 60 70 80 90 100
Time{Days)

Figure 3: Individuals within treatment center.

The number of carriers and symptomatic infected individuals rises ini-

tially, then falls until it almost reaches zero.

The quantity of recovered cases declines until it almost reaches zero.
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Pooplo nfocted With Syrptoms.
T

T : . ! ! — g0
—oor0
=k —n0-0

People Infected With Symptoms

T ——

Figure 4: People Infected with symptoms.

The Remaved Cases

——RIO=2
—— RN

NS

The Removed cases.

E
Time(Days)

Figure 5: The Removed cases.

We possess an equilibrium for cholera disease with Ry > 1. As per The-
orem 3, the cholera disease equilibrium E7, of the system (1) is GAS. Fur-
thermore, we begin with a graphic representation of the current equilibrium
of the cholera disease E¥q and apply the same parameters and initial values
in Table 2, Ry > 1.

The total number of possible individuals rises initially, then somewhat
declines and gets close to S* = 42. The percentage of infected cases that
show no symptoms or only minor symptoms initially declines quickly before
slightly increasing.

The patient population at the treatment center is advancing towards the
threshold of (22).

The number of carriers of the bacteria and symptomatic infected individ-

uals converge at I'* = 24.
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Patients with asymptomatic infaction or mild symptoms.
T

Figure 6: Patients with asymptomatic infection or mild symptoms.

E
Time(Days)

Indiiduale

E
Time(Days)

Figure 7: Individuals within treatment center.

Table 2: Baseline parameter values for system (22)

Parameter Baseline value Reference
A 10 Assumed

I 0.025 [7]

51 0.02 [10]

Ba 0.02 [10]

ay ;o 0.214 [7]
K 10%cell/day ~ Assumed

01 0.013 [23]

0 0.33 [14]

© 10 cell/day [23]

Discussion of result:

20

A further qualitative examination of the model indicates that its solutions

are both positively invariant and bound. For the study of cholera infection,
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Figure 8: People Infected With Symptoms.
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Figure 9: People Removed cases.

the basic reproduction number is required, as follows:

A + Ap
N(p+ 01+ a1 + ag) 252mu(,u+51+a1+a2)'

Ry = 51u (51)

The calculation was performed utilizing the next-generation methodology,
serving as a benchmark to anticipate outbreaks and evaluate control mea-
sures. The stability analysis of the DFE was also conducted employing the
linearization method, with Ry as the pivotal parameter. When the basic
reproduction number is less than one, Theorem 2 and Lemma 2 indicate
that the DFE is asymptotically stable both locally and globally. This means
that cholera can be eliminated from the population if the initial population
sizes are within the DFE’s basin of attraction, Ey. Furthermore, Lemma 2
demonstrates that the DF'FE is GAS, implying that cholera can be eliminated

regardless of the initial population size.
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6 Conclusion

In this work, we formulated and presented a continuous SICR-B mathemat-
ical model of cholera disease that describes the dynamics of individuals in-
fected with this disease. We found that

A L5 Agp
w61+ a1+ asz) 252&“(/1-1-51 + a1 + ag)

Ry —
0 51,UN(

is the basic reproduction number of the system, which is a crucial indicator
in understanding the system’s dynamics and the progression of the disease.
These results help us identify the key factors influencing disease spread and
control. We also performed a sensitivity analysis of the model parameters to
determine which parameters have the most significant impact on the repro-
duction number Ry. This study highlights the importance of identifying the
factors that contribute the most to the spread of the disease, thereby guiding

policymakers in optimizing prevention and treatment strategies.

We applied the stability analysis theory for nonlinear systems to analyze
the mathematical model of cholera and to study the local and global stability
of the disease. The results show that the local asymptotic stability of the
DFE qu can be achieved if Ry < 1, meaning the disease will eventually
die out over time. On the other hand, if Ry > 1, then cholera reaches an
equilibrium state EY, and remains locally stable, indicating the persistence

of the disease.

These results significantly contribute to achieving the overall objectives of
the study by improving the understanding of cholera transmission dynamics
and providing deeper insights into how to control the disease. Highlighting
the most influential factors affecting the basic reproduction number allows
for the development of more effective preventive strategies to reduce cholera

spread.

Looking ahead, we aim to explore the use of fractional derivatives within
a spatiotemporal framework to deepen our understanding of cholera trans-
mission dynamics. This approach is expected to capture complex spatial and
temporal patterns, thereby enhancing the accuracy of disease forecasts and

control strategies.
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