
Iranian Journal of Numerical Analysis and Optimization
Vol. ??, No. ??, ??, pp ??
https://doi.org/??
https://ijnao.um.ac.ir/

Research Article

A study on the convergence and error
bound of solutions to 2D mixed
Volterra–Fredholm integral and
integro-differential equations via
high-order collocation method

A.A. Shalangwa*, M.R. Odekunle and S.O. Adee

Abstract

The integral equation is transformed into systems of algebraic equations us-
ing standard collocation points, and then the algebraic equations are solved
using matrix inversion. Their solutions are substituted into the approxi-
mate equation to give the numerical results. We establish the analysis of
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the developed method, which shows that the solution is unique, convergent,
and error bound. To illustrate the effectiveness, ease of use, and depend-
ability of the approach, illustrative examples are provided. It demonstrates
that the method outperforms other methods.

AMS subject classifications (2020): Primary 45A05; Secondary 65R20.

Keywords: Volterra integral equation; Fredholm integral equation; Mixed
Volterra–Fredholm integral equation; Collocation; Two-dimensional integral.

1 Introduction

Due to certain scientists’ inability to solve differential equations, integral
equations first appeared in writing in the middle of the seventeenth century.
The numerous applications of integral equations can be found in the fields of
elasticity, plasticity, heat and mass transfer, fluid dynamics, filtration theory,
electrostatics, electrodynamics, bio-mechanics, game theory, control, queuing
theory, electrical engineering, economics, and medicine, among other scien-
tific disciplines. In many branches of natural science, exact (closed-form)
solutions to integral equations are essential to comprehending the qualitative
aspects of numerous processes and occurrences [13].

The integral equations provide a significant tool for describing diverse
processes and for solving several sorts of boundary value issues relating to
ordinary and partial differential equations. The topic of integral equations is
one of the most useful mathematical tools in both pure and practical math-
ematics and it has vast applications in a variety of scientific situations.

Two-dimensional integral equations provide an important tool for mod-
eling several problems in engineering and research [5, 8]. Many processes in
physics and engineering domains give rise to two-dimensional integral equa-
tions and are frequently difficult to solve analytically. In many circumstances,
it is needed to find the approximate solutions. As we know, substantial ef-
fort has been done on creating and studying numerical methods for solving
one-dimensional integral equations of the second sort, but in two-dimensional
cases, a very little amount of work has been done [19].
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3 A study on the convergence and error bound of solutions to 2D mixed ...

An equation is considered integral if the unknown function appears inside
the integral sign. The various forms of integral equations primarily depend
on the equation’s kernel and the integration’s limits. According to [19], an
integral equation is referred to as a Volterra integral equation if at least one
of the limits is variable and a Fredholm integral equation if the limits of
integration are fixed. The Fredholm integral equation is characterized by
fixed integration limits, whereas the Volterra integral equation exhibits at
least one variable integration limit.

An essential tool for modeling a wide range of phenomena and resolv-
ing various boundary value issues involving ordinary and partial differential
equations is the integral equation. One of the most helpful mathematical
fields in both pure and applied mathematics is integral equations, which has
numerous applications in science, engineering, and so on [11]. An equation
that combines the Fredholm integral and the Volterra integral in one equation
is known as the Volterra–Fredholm integral equation.

Numerous methods have been developed for solving one-dimensional inte-
gral equations and two-dimensional mixed Volterra–Fredholm integral equa-
tions (2D MVFIEs). These methods include perturbed collocation method
[18], collocation method [2] and [3], boukakar collocation method [1] and [1],
multiquadric radial basis functions [4], Two-dimensional Legendre wavelets
method [6], applications of two-dimensional triangular functions [12], series
solution methods [15], successive approximation method and method of suc-
cessive substitutions [16], and Adomian decomposition method [17]. In this
study, we develop the polynomial collocation method to solve 2D MVFIE of
the form:

m(x, t) = h(x, t) + ρ

∫ t

0

∫ b

a

k(x, t, y, z)m(y, z)dydz (1)

and
mn(x, t) = h(x, t) + ρ

∫ t

0

∫ b

a

k(x, t, y, z)m(y, z)dydz, (2)

where m(x, t) is considered an unknown function to be determined, the func-
tions h(x, t) is analytic on C

(
[0, 1]2,R

)
, k(x, t, y, z) is analytic on C

(
[0, 1]4,R

)
,

m(y, z) is a continuous function with respect to m(y, z), and ρ is a constant
coefficient.
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Definition 1. In order to apply the Bernstein polynomials in the interval
[0, 1], Bi,n(x) is defined as [10]

Bi,n(x) =

(n

i

)
xi(1− x)n−i, i = 0, 1, 2, . . . , n. (3)

Definition 2. Bernstein polynomials of degree n in the interval [0, 1] can
also be written in the following equivalent form:

Bi,n(x) =

n−i∑
p=0

(n

i

)(n−i

p

)
(−1)pxi+p. (4)

Definition 3. Bernstein polynomials of degree n can be defined recursively
by blending together two Bernstein polynomials of degree n−1. That is, the
kth nth-degree Bernstein polynomial can be written as

Bk,n(x) = (1− x)Bk,n−1(x) + xBk−1,n−1(x), k = 0(1)n, n ≥ 1. (5)

Definition 4 (Standard Collocation Method (SCM)). This method is used
to determine the desired collocation points within an interval, that is, [a, b]
and is given by

xi = a+
(b− a)i

N
, i = 0(1)N,

tj = a+
(b− a)j

N
, j = 0(1)N. (6)

Definition 5.

(i) Lipschitzian [7]
Let (X, ∥.∥) be a norm space. Mapping T : X −→ X is L-Lipschitz if
there exists L > 0 such that ∥Tx− Ty∥∞ ≤ L ∥x− y∥∞,q ∈ [0, 1] for
all x, y ∈ X.

(ii) Lipschitz continuity [14]
A function f is Lipschitz continuous if there exists K < ∞ such that
∥f(y)− f(x)∥ ≤ K ∥y − x∥.

Definition 6 (Infinity norm ∥v∥∞). [14]
The infinity norm (also known as the L∞-norm, l∞, max norm, or uniform
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5 A study on the convergence and error bound of solutions to 2D mixed ...

norm) of a vector v is denoted by ∥v∥∞ and is defined as the maximum of
the absolute values of its components, that is,

∥v∥∞ = max {|vi| : i = 1, 2, . . . , n}

2 Uniqueness, convergence, error analysis and method
of solution

2D MVFIEs can be solved numerically using the polynomial collocation
method, which is based on the collocation approach and takes into account
the linear combination of the Bernstein polynomial as our approximated solu-
tion. In this section, we will develop a method by using standard collocation
points to reduce the 2D MVFIE to a system of algebraic equations.

2.1 Integral form

Let MN (x, t) be the approximate solution of

mn(x, t) = h(x, t) + ρ

∫ t

0

∫ b

a

k(x, t, y, z)m(y, z)dydz, (7)

with initial condition given as mn−1(x0, t) = mn−1, where mn(x, t) =
dn

dxnm(x, t) is the nth order derivative of m(x, t), m(x, t) is an unknown func-
tion to be determined, h(x, t) and k(x, t, y, z) are analytic function on [a, b].

Here, L is an operator defined as L = dn

dxn and L−1 =
∫ x

0

∫ x

0
· · ·
∫ x

0
dxdx . . . dx

operating L−1 on both sides of (7) is given by

L−1 (mn(x, t)) = L−1 (h(x, t)) + L−1

(
ρ

∫ t

0

∫ b

a

k(x, t, y, z)m(y, z)dydz

)
.

(8)
Integrating (7) n times from 0 to x gives∫ x

0

∫ x

0

· · ·
∫ x

0

mn(x, t)dxdx . . . dx

=

∫ x

0

∫ x

0

· · ·
∫ x

0

h(x, t)dxdx . . . dx
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+

∫ x

0

∫ x

0

· · ·
∫ x

0

(
ρ

∫ t

0

∫ b

a

k(x, t, y, z)m(y, z)dydz

)
dxdx . . . dx(9)

∫ x

0

∫ x

0

· · ·
∫ x

0

mn(x, t)dxdx . . . dx

=

∫ x

0

∫ x

0

· · ·
∫ x

0

h(x, t)dxdx . . . dx (10)

+ ρ

∫ x

0

∫ x

0

· · ·
∫ x

0

(∫ t

0

∫ b

a

k(x, t, y, z)m(y, z)dydz

)
dxdx . . . dx.

Converting multiple integrals to single integral from (10) gives

m(x, t) =
xn−1

(n− 1)!
u0 +

xn−2

(n− 2)!
u1 +

xn−3

(n− 3)!
u2

+ · · ·+ un−1 +
1

(n− 1)!

∫ x

0

(x− t)n−1h(x, t)dt

+ ρ
1

(n− 1)!

∫ x

0

(x− t)n−1

(∫ t

0

∫ b

a

k(x, t, y, z)m(y, z)dydz

)
dt.(11)

Simplifying (11) gives

m(x, t) =

n−1∑
i=1

1

i!
uix

i +
1

(n− 1)!

∫ x

0

(x− t)n−1h(x, t)dt

+ ρ
1

(n− 1)!

∫ x

0

(x− t)n−1

(∫ t

0

∫ b

a

k(x, t, y, z)m(y, z)dydz

)
dt,

(12)

where

H(x, t) =
xn−1

(n− 1)!
u0 +

xn−2

(n− 2)!
u1 +

xn−3

(n− 3)!
u2

+ · · ·+ un−1 +
1

(n− 1)!

∫ x

0

(x− t)n−1h(x, t)dt

(13)

or

H(x, t) =

n−1∑
i=1

1

i!
uix

i +
1

(n− 1)!

∫ x

0

(x− t)n−1h(x, t)dt

and
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7 A study on the convergence and error bound of solutions to 2D mixed ...

ρ(x, t) =
ρ

(n− 1)!

∫ x

0

(x− t)n−1dt, (14)

m(x, t) = H(x, t) + ρ

∫ t

0

∫ b

a

K(x, t, y, z)m(y, z)dydz. (15)

Therefore, (15) is a 2D MVFIE of the second kind, which is the integral form
of (2).

2.2 Method of solution to 2D MVFIE

We recall that (1) and (2) can be written as

m(x, t) = h(x, t) + λ

∫ t

0

∫ b

a

k(x, t, y, z)m(y, z)dydz. (16)

Let MN (x, t) be the approximate solution to (15), where

mN (x, t) =

N∑
i=0

N∑
j=0

ci,jBi,N (x)Bj,N (t) = ϕ(x, t)C. (17)

Substituting (17) into (16) gives

ϕ(x, t)C = h(x, t) + ρ

∫ t

0

∫ b

a

k(x, t, y, z) (ϕ(y, z)C) dydz, (18)

ϕ(x, t)C − ρ

∫ t

0

∫ b

a

k(x, t, y, z) (ϕ(y, z)C) dydz = h(x, t), (19){
ϕ(x, t)− ρ

∫ t

0

∫ b

a

k(x, t, y, z)ϕ(y, z)dydz

}
C = h(x, t). (20)

Collocating (20) and using standard collocation points at x = xi and t = tj

with

xi = a+
(b− a)i

N
, i = 0(1)N,

tj = a+
(b− a)j

N
, j = 0(1)N, (21)

we have

Iran. J. Numer. Anal. Optim., Vol. ??, No. ??, ??, pp ??



Shalangwa, Odekunle and Adee 8{
ϕ(xi, tj)− ρ

∫ t

0

∫ b

a

k(xi, tj , y, z)ϕ(y, z)dydz

}
C = h(xi, tj), (22)

where γ(xi, tj) =
{
ϕ(xi, tj)− ρ

∫ t

0

∫ b

a
k(xi, tj , y, z)ϕ(y, z)dydz

}
and

C = [c0,0, c0,1, c0,2, . . . , c0,N , . . . , cN,0, cN,1, cN,2, . . . , cN,N ],

γ(xi, tj)C = h(xi, tj). (23)

Multiplying both sides of (23) by γ(xi, tj)
−1 gives

C = γ(xi, tj)
−1h(xi, tj). (24)

Substituting C into the approximate solution to (17) gives

MN (x, t) = ϕ(x, t)γ(xi, tj)
−1h(xi, tj), i, j = 0(1)N. (25)

The system of equations is then solved using Maple 18 software and the
unknown constants obtained are then substituted back into the approximate
solution to get the required solution.

2.3 Uniqueness, convergence and error analysis

Hypothesis
The following assumptions were made:
Z1:Let (C([0, 1]× [0, 1]), ∥.∥) be the space of all continuous functions on the
interval [0, 1]× [0, 1] with the norm ∥M∥∞ = Max︸ ︷︷ ︸

x ∈ [0, 1]︸ ︷︷ ︸
t∈[0,1]

|M(x, t)|.

Z2 : M(x, t) ̸= 0 .
Z3 : |K(x, t, y, z)| ≤ L (L is a positive real number) for all (x, t) ∈ [0, 1]×[0, 1],
and
Z4 : for all (x, t) ∈ [0, 1]×[0, 1] and β = {(x, t, y, z) : 0 ≤ z ≤ t ≤ 1; 0 ≤ y ≤ x ≤ 1}.

With this conditions, we present the uniqueness and convergence of the
solution.

Theorem 1 (Uniqueness of solution for 2D MVFIE). Let M(x, t) be an
exact solution to (1), and let MN,N (x, t) be the approximate solution to (1),
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9 A study on the convergence and error bound of solutions to 2D mixed ...

where

MN,N (x, t) =
N∑
i=0

N∑
j=0

ci,jBi,N (x)Bj,N (t).

Then (1) has a unique solution whenever 0 ≤ α ≤ 1 and α = 1−L1λ (b− a) t.

Proof. Equation (1) can be written in the form

M(x, t) = h(x, t) + ρ

∫ t

0

∫ b

a

F (x, t, y, z,M(y, z)) dydz

such that the linear term F (M) is Lipschitz continuous with |F (M)− F (V )| ≤
L1 |M − V |.

Let MN,N and M ′
N,N be any two different approximate solutions to (1).

Then

MN,N (x, t)−M ′
N,N (x, t) =h(x, t) + ρ

∫ t

0

∫ b

a

F (x, t, y, z,mN,N (y, z)) dydz − h(x, t)

− ρ

∫ t

0

∫ b

a

F
(
x, t, y, z,M ′

N,N (y, z)
)
dydz

∣∣MN,N (x, t)−M ′
N,N (x, t)

∣∣
=

∣∣∣∣∣ρ
∫ t

0

∫ b

a

F (x, t, y, z,MN,N (y, z)) dydz − ρ

∫ t

0

∫ b

a

F
(
x, t, y, z,M ′

N,N (y, z)
)
dydz

∣∣∣∣∣ ,
∣∣MN,N (x, t)−M ′

N,N (x, t)
∣∣

≤ |ρ|
∫ t

0

∫ b

a

∣∣F (x, t, y, z,MN,N (y, z))− F
(
x, t, y, z,M ′

N,N (y, z)
)∣∣ dydz,

∣∣MN,N (x, t)−M ′
N,N (x, t)

∣∣ ≤ |ρ|
∫ t

0

∫ b

a

∣∣F (MN,N )− F
(
M ′

N,N

)∣∣ dydz,
∣∣mN,N −M ′

N,N

∣∣ ≤ |ρ|L1

∫ t

0

∫ b

a

∣∣MN,N −M ′
N,N

∣∣ dydz,∣∣MN,N −M ′
N,N

∣∣− |ρ|L1(b− a)t
∣∣MN,N −M ′

N,N

∣∣ ≤ 0,

{1− |ρ|L1(b− a)t}
∣∣MN,N −M ′

N,N

∣∣ ≤ 0.

If α = {1− |ρ|L1(b− a)t}, then

α
∣∣MN,N −M ′

N,N

∣∣ ≤ 0.
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As 0 ≤ α ≤ 1,
∣∣MN,N −M ′

N,N

∣∣ = 0, which implies MN,N = M ′
N,N . Hence,

the uniqueness proof is complete.

Theorem 2 (Convergence of the method for 2D MVFIE). Let U(x, t) be an
exact solution to (1), and let MN,N (x, t) be the approximate solution to (1),
where

MN,N (x, t) =

N∑
i=0

N∑
j=0

ci,jBi,N (x)Bj,N (t).

Then, the solution of L2D-LMVFIE by using Bernstein polynomial as a basis
function is unique and convergent if 0 ≤ η1 ≤ 1.

Proof. Since we have already proved for the uniqueness, we now prove the
convergence using the definition of norms and our assumptions Z1 −Z4. We
have

∥M(x, t)−MN,N (x, t)∥∞ = Max︸ ︷︷ ︸
x ∈ [0, 1]︸ ︷︷ ︸

t∈[0,1]

|M(x, t)−MN,N (x, t)|

∥M(x, t)−MN,N (x, t)∥∞
Max︸ ︷︷ ︸

x ∈ [0, 1]︸ ︷︷ ︸
t∈[0,1]

=

∣∣∣∣∣h(x, t) + ρ

∫ t

0

∫ b

a

k(x, t, y, z)M(y, z)dydz − h(x, t)

−ρ

∫ t

0

∫ b

a

k(x, t, y, z)MN,N (y, z)dydz

∣∣∣∣∣ ,
∥M(x, t)−MN,N (x, t)∥∞

≤ |ρ| Max︸ ︷︷ ︸
x ∈ [0, 1]︸ ︷︷ ︸

t∈[0,1]

∫ t

0

∫ b

a

|k(x, t, y, z)| |M(y, z)−MN,N (y, z)dydz| ,

∥M(x, t)−MN,N (x, t)∥∞ ≤ |ρ|Lβ ∥M(y, z)−mN,N (y, z)∥∞ ,

Iran. J. Numer. Anal. Optim., Vol. ??, No. ??, ??, pp ??



11 A study on the convergence and error bound of solutions to 2D mixed ...

∥M(x, t)−MN,N (x, t)∥∞ (1− |ρ|Lβ) ≤ 0.

If η1 = (|ρ|Lβ), then

(1− η1) ∥M(x, t)−MN,N (x, t)∥∞ ≤ 0.

Then, if 0 ≤ η1 ≤ 1 and N → ∞, then lim︸︷︷︸
N→∞

∥M(x, t)−MN,N (x, t)∥∞ =

0.

Theorem 3 (Error bound of 2D MVFIE). Let U(x, t) be an exact solution
to (1), and let MN,N (x, t) be the approximate solution to (1), where

MN,N (x, t) =

N∑
i=0

N∑
j=0

ci,jBi,N (x)Bj,N (t).

Then, the error of L2D-LMVFIE by using Bernstein polynomial as a basis
function is

∥eN,N (x, t)∥∞
∥eN,N (y, z)∥∞

≤ |ρ|Mαβα.

Proof. In establishing the error bound of this method, we substitute the
approximate solution into (1), which gives

,MN,N (x, t) = h(x, t) + ρ

∫ t

0

∫ b

a

k(x, t, y, z)MN,N (y, z)dydz,

and the exact solution is given by

M(x, t) = h(x, t) + ρ

∫ t

0

∫ b

a

k(x, t, y, z)M(y, z)dydz,

MN,N (x, t)−M(x, t) = eN (x, t),

MN,N (x, t)−M(x, t) =h(x, t) + ρ

∫ t

0

∫ b

a

k(x, t, y, z)MN,N (y, z)dydz

− h(x, t)− ρ

∫ t

0

∫ b

a

k(x, t, y, z)M(y, z)dydz,

|MN,N (x, t)−M(x, t)| =

∣∣∣∣∣ρ
∫ t

0

∫ b

a

k(x, t, y, z)MN,N (y, z)dydz
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−ρ

∫ t

0

∫ b

a

k(x, t, y, z)M(y, z)dydz

∣∣∣∣∣ ,
|MN,N (x, t)−M(x, t)| ≤ |ρ|

∫ t

0

∫ b

a

|k(x, t, y, z)| |MN,N (y, z)−M(y, z)| dydz,

|MN,N (x, t)−M(x, t)|
|MN,N (y, z)−M(y, z)|

≤
|ρ|
∫ t

0

∫ b

a
|k(x, t, y, z)| |MN,N (y, z)−M(y, z)| dydz

|MN,N (y, z)−M(y, z)|
,

|eN,N (x, t)|
|eN,N (y, z)|

≤ |ρ|
∫ t

0

∫ b

a

|k(x, t, y, z)| dydz,

∥eN,N (x, t)∥∞
∥eN,N (y, z)∥∞

≤ |ρ|
∫ t

0

∫ b

a

|k(x, t, y, z)| dydz,

∥eN,N (x, t)∥∞
∥eN,N (y, z)∥∞

≤ |ρ|Mαβα.

Therefore the error is bounded and hence the solution of the method is con-
vergent.

Theorem 4. Let M(x, t) be the solution to (1). Then the solution is

MN (x, t) = ϕ(x, t)γ(xi, tj)
−1h(xi, tj); i, j = 0(1)N,

where

γ(xi, tj) =

{
ϕ(xi, tj)− ρ

∫ t

0

∫ b

a

k(xi, tj , y, z)ϕ(y, z)dydz

}
.

Proof. The approximate solution to (1) is

mN (x, t) =

N∑
i=0

N∑
j=0

ci,jBi,N (x)Bj,N (t) = ϕ(x, t)C.

From (23)
C = γ(xi, tj)

−1h(xi, tj),

where

γ(xi, tj) =

{
ϕ(xi, tj)− ρ

∫ t

0

∫ b

a

k(xi, tj , y, z)ϕ(y, z)dydz

}
.

Substituting for C in the approximate solution gives

Iran. J. Numer. Anal. Optim., Vol. ??, No. ??, ??, pp ??



13 A study on the convergence and error bound of solutions to 2D mixed ...

MN (x, t) = ϕ(x, t)γ(xi, tj)
−1h(xi, tj), i, j = 0(1)N.

3 Numerical examples

In this research, numerical examples are utilized to assess the simplicity and
efficiency of the method and are presented in tables except where it delivers
the exact solution. All computations are done with the help of the MAPLE 18
program. Let MN (x, t) and M(x, t) be the approximate and exact solution,
respectively. Then ErrorN = |MN (x, t)−M(x, t)|. Table 1 gives a brief
description of some abbreviations made.

Table 1: Notations

Tag Description

ErrorOurMethod AbsoluteErrorofOurMethod

ErrorNKH AbsoluteErrorFrom[9]
ErrorAM AbsoluteErrorFrom[4]

Example 1. Consider a linear 2D MVFIE of the second kind [9]

m(x, t) = x2 + et +
2

3
x3t2 −

∫ t

0

∫ 1

0

t2e−zm(y, z)dydz, (26)

which has an exact solution given as m(x, t) = x2 + et in the interval x, t =
[0, 1].

Let the approximate solution to (26) for N = 5 be

mN (x, t) =

5∑
i=0

5∑
j=0

ci,jBi,5(x)Bj,5(t). (27)

Substituting (27) in (26) gives

5∑
i=0

5∑
j=0

ci,jBi,5(x)Bj,5(t) =x2 + et +
2

3
x3t2 (28)
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−
∫ t

0

∫ 1

0

t2e−z

 5∑
i=0

5∑
j=0

ci,jBi,5(y)Bj,5(z)

 dydz,

5∑
i=0

5∑
j=0

ci,jBi,5(x)Bj,5(t) +

∫ t

0

∫ 1

0

t2e−z

 5∑
i=0

5∑
j=0

ci,jBi,5(y)Bj,5(z)

 dydz

= x2 + et +
2

3
x3t2.

(29)

Collocating (29) and using standard collocation points at x = xi and t = tj

with

xi =
i

5
; i = 0(1)5,

tj =
j

5
; j = 0(1)5,

we have

5∑
i=0

5∑
j=0

ci,jBi,5(xi)Bj,5(tj) +

∫ t

0

∫ 1

0

t2je
−z

 5∑
i=0

5∑
j=0

ci,jBi,5(y)Bj,5(z)

 dydz

= x2
i + etj +

2

3
x3
i t

2
j .

(30)

The method was implemented using MAPLE 18 software, and M5(x, t) was
obtained as

M5(x, t) =− 2.912943530× 10−8t3x+ 2.240094596× 10−7t4x

− 1.948800244× 10−7t5x+ 4.595065836× 10−8t2x

+ 2.000000000× 10−8tx5 + 1.000000000× 10−8tx3+

− 3.000000000× 10−8tx4 + 1.000082530tx2 + .49906830t2x2

+ 0.4866× 10−4t2x4 − 0.4651× 10−4t2x3 + x2

+ 0.1385710011× 10−1t5x2 − 0.1187446705× 10−3t4x3

− 0.2236348902× 10−3t3x4 + 0.230× 10−5t2x5

+ 0.1086523352× 10−3t3x3 − 0.1622× 10−4t5x5
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− 0.8256489016× 10−4t5x4 − 0.11620× 10−3t4x5

+ 0.5474233524× 10−4t5x3 + 0.3259097803× 10−3t4x4

+ 0.5115× 10−4t3x5

+ 0.1704088951t3x2 + 0.3486396978× 10−1t4x2. (31)

Table 2: Results using Bernstein polynomial for Example 1

(x, t) Exact OurMethodN=5 ErrorOurMethod

(0, 0) 0.0000000000 0.0000000000 0.0000000000

(0.1, 0.1) 0.01105170918 0.01105172941 2.023× 10−8

(0.2, 0.2) 0.04885611032 0.04885610125 9.07× 10−9

(0.3, 0.3) 0.1214872927 0.1214871746 1.181× 10−7

(0.4, 0.4) 0.2386919517 0.2386917676 1.841× 10−7

(0.5, 0.5) 0.4121803178 0.4121800093 3.085× 10−7

(0.6, 0.6) 0.6559627680 0.6559619662 8.018× 10−7

(0.7, 0.7) 0.9867388264 0.9867372530 1.5734× 10−6

(0.8, 0.8) 1.424346194 1.424344379 1.815× 10−6

(0.9, 0.9) 1.992278520 1.992276313 2.207× 10−6

(1.0, 1.0) 2.718281828 2.718268380 1.3448× 10−5

Table 3: Comparison Absolute Error for Example 1

(x, t) Exact ErrorOurMethod ErrorNKH

(0.1, 0) 0.01 0.0000000000 0.0000000000

(0.1, 0.1) 0.01105170918 2.023× 10−8 3.34691× 10−6

(0.1, 0.3) 0.01349858808 9.43× 10−9 3.03472× 10−5

(0.1, 0.5) 0.01648721271 1.5× 10−10 8.22639× 10−5

(0.1, 0.7) 0.02013752707 1.460× 10−8 1.48971× 10−4

(0.1, 0.9) 0.02459603111 1.745× 10−8 2.05545× 10−4

Example 2. Consider a linear 2D MVFIE of the second kind [4]
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m(x, t) = t2ex +
1

3
t3x2 +

∫ t

0

∫ 1

0

x2e−ym(y, z)dydz, (32)

which has an exact solution given as m(x, t) = t2ex in the interval (x, t) =
[0, 1].

Let the approximate solution to (32) for N = 5 be

mN (x, t) =

5∑
i=0

5∑
j=0

ci,jBi,5(x)Bj,5(t). (33)

Substituting (33) into (32) gives

5∑
i=0

5∑
j=0

ci,jBi,5(x)Bj,5(t)

= t2ex +
1

3
t3x2 +

∫ t

0

∫ 1

0

x2e−y

 5∑
i=0

5∑
j=0

ci,jBi,5(y)Bj,5(z)

 dydz, (34)

5∑
i=0

5∑
j=0

ci,jBi,5(x)Bj,5(t)−
∫ t

0

∫ 1

0

x2e−y

 5∑
i=0

5∑
j=0

ci,jBi,5(y)Bj,5(z)

 dydz

= t2ex +
1

3
t3x2.

(35)

Collocating (35) and using standard collocation points at x = xi and t = tj

with

xi =
i

5
; i = 0(1)5,

tj =
j

5
; j = 0(1)5,

we have

5∑
i=0

5∑
j=0

ci,jBi,5(xi)Bj,5(tj)−
∫ t

0

∫ 1

0

x2
i e

−y

 5∑
i=0

5∑
j=0

ci,jBi,5(y)Bj,5(z)

 dydz

= t2je
xi +

1

3
t3jx

2
i .

(36)
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17 A study on the convergence and error bound of solutions to 2D mixed ...

The method was implemented using MAPLE 18 software, and M5(x, t) was
obtained as

M5(x, t) =1.× 10−8t3x+ 1.000082530t2x+ 0.171638e−3t5x5

− 0.11186e−3t4x5 − 0.2793619605e−4t3x5 + 0.1385620746e−1t2x5

− 0.32928e−3t5x4 + 0.26711e−3t5x3 + 0.24133e−3t4x4

− 0.18882e−3t4x3 + 0.1951239210e−4t3x4 + 0.3486292507e−1t2x4

− 0.5431e−4t5x2 − 0.1628619605e−4t3x3 + 0.1704115775t2x3

+ 0.2330e−4t4x2 + 0.117e−5t3x2 + .499067752t2x2

+ 1.468779972× 10−7tx2 + 2.0× 10−8t5x− 3.0× 10−8t4x+ 1.0t2.

(37)

Table 4: Result of Absolute Error for Example 2

(x, t) Exact ErrorOurMethod ErrorAM

(0, 0) 0.0000000000 0.0000000000 2.46× 10−5

(0.1, 0.1) 0.01105170918 2.064× 10−8 1.46× 10−5

(0.2, 0.2) 0.04885611032 1.22× 10−9 3.37× 10−4

(0.3, 0.3) 0.1214872927 8.31× 10−8 2.45× 10−3

(0.4, 0.4) 0.2386919517 1.192× 10−7 1.00× 10−2

(0.5, 0.5) 0.4121803178 3.200× 10−7 3.05× 10−2

(0.6, 0.6) 0.6559627680 1.2541× 10−6 7.58× 10−2

(0.7, 0.7) 0.9867388264 3.1681× 10−6 1.63× 10−1

(0.8, 0.8) 1.424346194 5.121× 10−6 3.17× 10−1

(0.9, 0.9) 1.992278520 5.352× 10−6 5.69× 10−1

(1.0, 1.0) 2.718281828 5.121× 10−6 5.70× 10−1

Example 3. Consider a linear 2D MVFIE of the second kind [19]

m′(x, t) = 2x− 1

4
t2 +

1

6
t4 +

∫ t

0

∫ 1

0

rtm(r, s)drds, (38)

with initial condition m(0, t) = −t2 which has an exact solution given as
m(x, t) = x2 − t2 in the interval (x, t) = [0, 1].
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Let the approximate solution to (38) for N = 5 be

mN (x, t) =

5∑
i=0

5∑
j=0

ci,jBi,5(x)Bj,5(t). (39)

Integrating both sides of (38) from 0 from x∫ x

0

(m′(x, t)) dx =

∫ x

0

(
2x− 1

4
t2 +

1

6
t4
)
+

∫ x

0

(∫ t

0

∫ 1

0

rtm(r, s)drds

)
dx,

(40)

m(x, t)−m(0, t) = x2− 1

4
xt2+

1

6
xt4+

∫ x

0

(∫ t

0

∫ 1

0

rtm(r, s)drds

)
dx, (41)

m(x, t) = x2 − t2 − 1

4
xt2 +

1

6
xt4 +

∫ x

0

(∫ t

0

∫ 1

0

rtm(r, s)drds

)
dx. (42)

substituting (39) into (42) gives

5∑
i=0

5∑
j=0

ci,jBi,5(x)Bj,5(t) =x2 − t2 − 1

4
xt2 +

1

6
xt4 (43)

+

∫ x

0

∫ t

0

∫ 1

0

rt

 5∑
i=0

5∑
j=0

ci,jBi,5(r)Bj,5(s)

 drds

 dx,

5∑
i=0

5∑
j=0

ci,jBi,5(x)Bj,5(t)−
∫ x

0

∫ t

0

∫ 1

0

rt

 5∑
i=0

5∑
j=0

ci,jBi,5(r)Bj,5(s)

 drds

 dx

= x2 − t2 − 1

4
xt2 +

1

6
xt4.

(44)

Collocating (44) and using standard collocation points at x = xi and t = tj

with

xi =
i

5
; i = 0(1)5,

tj =
j

5
; j = 0(1)5,

we have
5∑

i=0

5∑
j=0

ci,jBi,5(xi)Bj,5(tj)
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−
∫ x

0

∫ t

0

∫ 1

0

rtj

 5∑
i=0

5∑
j=0

ci,jBi,5(r)Bj,5(s)

 drds

 dx

= x2
i − t2j −

1

4
xit

2
j +

1

6
xit

4
j . (45)

The method was implemented using MAPLE 18 software and M5(x, t) was
obtained as

M5(x, t) = x2 − t2, (46)

is the exact solution.

Example 4. Consider a linear 2D MVFIE of the second kind [19]

m′(x, t) = 1− 1

6
t2 − 1

6
t3 +

∫ t

0

∫ 1

0

rsm(r, s)drds (47)

with initial conditionm(0, t) = t that has an exact solution given asm(x, t) =

x+ t in the interval (x, t) = [0, 1].
Let the approximate solution to (47) for N = 5 be

mN (x, t) =

5∑
i=0

5∑
j=0

ci,jBi,5(x)Bj,5(t). (48)

Integrating both sides of (47) from 0 to x, we have∫ x

0

(m′(x, t)) dx =

∫ x

0

(
1− 1

6
t2 − 1

6
t3
)
+

∫ x

0

(∫ t

0

∫ 1

0

rsm(r, s)drds

)
dx,

(49)

m(x, t) = x+ t− 1

6
xt2 − 1

6
xt3 +

∫ x

0

(∫ t

0

∫ 1

0

rsm(r, s)drds

)
dx. (50)

Substituting (48) into (50) gives

5∑
i=0

5∑
j=0

ci,jBi,5(x)Bj,5(t)

−
∫ x

0

∫ t

0

∫ 1

0

rs

 5∑
i=0

5∑
j=0

ci,jBi,5(r)Bj,5(s)

 drds

 dx

= x+ t− 1

6
xt2 − 1

6
xt3. (51)
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Collocating (51) and using standard collocation points at x = xi and t = tj

with

xi =
i

5
; i = 0(1)5,

tj =
j

5
; j = 0(1)5,

we have
5∑

i=0

5∑
j=0

ci,jBi,5(xi)Bj,5(tj)

−
∫ x

0

∫ t

0

∫ 1

0

rs

 5∑
i=0

5∑
j=0

ci,jBi,5(r)Bj,5(s)

 drds

 dx

= xi + tj −
1

6
xit

2
j −

1

6
xit

3
j (52)

The method was implemented using MAPLE 18 software and M5(x, t) was
obtained as

M5(x, t) =0.166e−5t4x− 0.141e−5t3x− 0.61e−5t2x2 − 0.240e−5tx3

+ 0.170e−4t3x2 + 0.211e−4t2x3 + 0.318e−5tx4 − 0.595e−4t3x3

− 0.285e−4t2x4 − 0.1435e−5tx5 − 0.3660e−4t3x5 + 0.681e−4t4x3

+ 0.801e−4t3x4 + 0.1294e−4t2x5 − 0.196e−4t4x2 + 0.826e−5t5x2

− 0.16695e−4t5x5 + 0.3678e−4t5x4 − 0.2778e−4t5x3

+ 0.41300e−4t4x5 − 0.914e−4t4x4 + 1.000000000t+ 1.000000000x

− 7.1e−7t5x+ 7.0e−7tx2 + 5.0e−7t2x− 6.0e−8tx (53)

4 Conclusion

In this section, a new numerical method was developed for solving 2D MV-
FIEs of the second kind utilizing polynomial collocation. The findings ob-
tained from each case were compared with the exact solution and some exist-
ing studies in the literature, the new approach established is simple, reliable,
and efficient to compute. Maple 18 software is utilized for all computations
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Table 5: Results using Bernstein polynomial for Example 4

(x, t) Exact OurMethodN = 5 ErrorOurMethod

(0, 0) 0.0000000000 0.0000000000 0.0000000000

(0.1, 0.1) 0.0200000000 0.0200000000 0.0000000000

(0.2, 0.2) 0.0400000000 0.3999999998 2.0e−10

(0.3, 0.3) 0.6000000000 0.5999999993 7.0e−10

(0.4, 0.4) 0.8000000000 0.7999999978 2.2e−9

(0.5, 0.5) 0.1000000000 0.9999999930 7.0e−9

(0.6, 0.6) 1.2000000000 1.199999981 1.9e−8

(0.7, 0.7) 1.4000000000 1.3999999564 4.4e−8

(0.8, 0.8) 1.6000000000 1.599999896 1.04e−7

(0.9, 0.9) 1.8000000000 1.799999750 2.50e−7

(1.0, 1.0) 2.0000000000 1.999999430 5.70e−7

in this work. The accuracy of the method is proved by considering various
examples, which shows that the method is efficient and appropriate for this
type of situations. We compare our absolute errors of Example 1 with [9] as
shown in Table 2 and also absolute errors of Example 2 with [4] as shown in
Table 4. We can therefore conclude that our method is superior and more
preferable than the existing methods.

The results obtained from problem 1 at N = 5 and at different values
of (x, t) shows clearly that the developed method is better than the method
presented by [9]. From Table 3 for (x, t) = (0.1, 0.1) and N = 5, for instance
the absolute errors are ErrorB = 2.023 × 10−8 and ErrorNKH = 3.3469 ×
10−6. Again from Table 3 for (x, t) = (0.1, 0.3) and N = 5, the absolute
errors are ErrorB = 9.43 × 10−9 and ErrorNKH = 3.03472 × 10−5 which
shows clearly that the developed method is consistent, reliable, and performs
favorably.

The results obtained from problem 2 at N = 5 and at different values
of (x, t) shows clearly that the developed method is better than the method
presented by [4]. From Table 4, for instance the absolute errors for (x, t) =

(0.0, 0.0) and at N = 5 gives ErrorB = 0.0000000 and ErrorAM = 2.46 ×
10−5, for (x, t) = (0.1, 0.1) and at N = 5, gives ErrorB = 2.064× 10−8 and
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ErrorAM = 1.46 × 10−5. Again From Table 3 for (x, t) = (1.0, 1.0) and at
N = 5, the absolute errors are ErrorB = 5.121 × 10−6 and ErrorAM =

5.70 × 10−1 shows clearly that the developed method is consistent, efficient
and converges faster than the method presented by [4].

It was observed that the results obtained for Example 3 at N = 5 give
the exact solution, hence the reason it is not in tabular form. This clearly
indicates that the method is efficient and convergent.

The solution obtained from Example 4 at N = 5 and at various values
of (x, t) indicates the method is stable and converges to the exact solution.
From Table 5 for instance, the result obtained at N = 5 and (x, t) = (0, 0),
(x, t) = (0.1, 0.1), (x, t) = (0.2, 0.2) and (x, t) = (0.3, 0.3) gives 0.0000000,
0.0000000, 2.0× 10−10, 7.0× 10−10 respectively.

It has been observed and examined that when the values of N increase,
the error decreases and the approximate solution converges rapidly to the
exact solution, the value of N = 5 was chosen arbitrarily and for simplicity.
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