
Journal of Computer and Knowledge Engineering, Vol. , No.. 2023. 

DOI:  

 

 

Model-Driven Development of Android Audio-based 

Applications 
 

1, x2 , y3 

Abstract-- This paper presents a model-driven engineering 

framework designed to enhance the development of flexible, high-

quality audio-based applications on mobile platforms. The 

framework comprises domain-specific metamodels, a graphical 

editor, and a transformation engine, enabling the automatic 

generation of application code and supporting customization 

within Android Studio. To address the challenges faced by 

developers in delivering effective audio applications, the 

framework provides a structured approach to simplify design and 

implementation processes. The framework’s applicability is 

demonstrated through four case studies, highlighting its ability to 

create diverse audio-based Android applications. A detailed 

evaluation includes a comparison of development effort between 

the proposed model-driven approach and traditional coding 

methods, showing significant reductions in time and manual 

effort. Additionally, the framework is assessed using key software 

quality metrics such as maintainability, understandability, and 

extensibility.  The findings demonstrate that the model-driven 

approach not only streamlines development but also improves the 

maintenance of applications, enabling developers to meet the 

growing demand for audio applications efficiently. By reducing 

development costs and enhancing productivity, this research 

contributes to the field of software engineering, offering a practical 

and adaptable methodology for audio-based application 

development. 

Index Terms—Model-Driven Development, Android 

Application, Audio-based Application, Modeling Language  

I.  INTRODUCTION 

HE development of modern software, particularly for 

complex systems, has driven the creation of new techniques 

like model-driven engineering (MDE) [1]. MDE uses high-

level models to facilitate the development process, thus 

minimizing the time and cost of production [2]. More recently, 

the growing prevalence of smartphones and portable devices in 

the last few decades has resulted in an increasing demand for a 

wide range of applications [3], spanning even into audio-based 

applications such as audiobooks and language-learning 

applications. The nature of this rapid growth of mobile users 

has made it even more obvious that we need development 

frameworks that speed this process of delivery to market. 

An audio-based Android application is designed to deliver 

content using recorded audio or text-to-speech (TTS) 

technology. Depending on their purpose, these apps may come 

with a wide range of features. Audio playback is a key feature 

(play, pause, and skip functions for audiobooks, podcasts, and 

                                                           
 Manuscript received    Revised,    , accepted             . 
1 Master Student, b   
2 Corresponding author. Assistant Professor, b 
3 Assistant Professor, b 

music). TTS will handle everything from text-to-speech (TTS) 

options that allow the app to speak back to you to setting 

potential language options and even speech speed. Additional 

features may include an audio file management system, offline 

playback, and playlist support. Some audio-based apps also 

offer customization options and support for multiple languages, 

enhancing the user experience. 

The explosion of smartphone usage, combined with the 

development of audio-based applications, has made the 

development of such applications difficult [4]. Flexibility, 

speed, and precision are all common challenges in software 

development, but the nature of audio-based applications may 

complicate matters with issues like real-time audio processing, 

multimedia integration, and even device compatibility. It 

proposes a framework to address these shortcomings by 

implementing a systematic, domain-centric strategy that 

streamlines development, improves maintainability, and 

accommodates a wide range of application requirements. The 

evaluation provides metrics such as understandability, 

extensibility, and maintainability to demonstrate the 

framework's effectiveness in addressing these challenges. 

One of the most challenging aspects of audio-

based application development is high flexibility. The user's 

needs are constantly changing, but the application must be able 

to accommodate them, and developers must take advantage of 

this flexibility to apply it when necessary. Furthermore, 

applications must be designed so that new features can be added 

without requiring extensive changes of existing code. Another 

major issue in this space is the need to streamline the personal 

maintenance and updating procedures for audio-based apps. As 

applications grow in size and complexity, making changes 

becomes more expensive and time-consuming. Such a problem 

is especially difficult for systems that need to be updated 

regularly. Traditional methods, with their inherent 

complexities, often fall short in addressing these issues. 

Research has demonstrated that MDE, by employing high-

level abstractions and automated code generation, allows 

developers to manage the complexities of software systems 

more effectively [5]. In the context of audio-based applications, 

this approach can significantly reduce development time, 

improve product quality, and enhance maintainability. 

This paper proposes a model-driven engineering framework 

T 



 

 

to address the challenges in creating adaptable audio-based 

applications at scale. More specifically, the research points 

towards adapting MDE techniques to improve the development, 

maintenance, and updating processes of android, audio-based 

applications. This study tackles the problem of how to apply 

model-driven engineering to enhance the process of 

developing, maintaining, and updating mobile audio-based 

applications. In other words, we combine domain-specific 

metamodels and a transformation engine to automate the code 

generation of audio-oriented applications. We intend to 

contribute to the filling of this significant gap in the literature, 

especially with regard to the development of flexible yet 

superior audio applications for android platforms. 

The paper is organized as follows. Section II reviews the 

related work on model-driven engineering (MDE) and its 

application in Android application development. Section III 

presents the proposed framework for developing Android 

audio-based applications, detailing its components and 

functionality. Section IV evaluates the proposed framework 

through case studies and comparisons with existing 

frameworks. It provides the results and analysis of the 

evaluation, including a comparison of maintainability, 

understandability, and extensibility with other frameworks. 

Finally, Section V concludes the paper and suggests future 

work. 

II.  RELATED WORK 

The use of model-driven engineering (MDE) as a novel 

approach in software development has attracted considerable 

attention from researchers in recent years. This methodology, 

by providing tools and techniques that help developers manage 

complex systems through high-level models and automation 

tools, has quickly gained popularity among traditional software 

development methods. 

Vaupel et al. [6], introduced a modeling language and 

infrastructure for developing Android applications that supports 

various user roles. This language allows developers to 

continuously adjust and modify application content, while end 

users utilize specific content. This approach enables the 

development of flexible applications at different levels of 

abstraction and includes the modeling of both standard and 

custom elements. They demonstrated this approach by creating 

two applications, a phonebook manager and a conference guide. 

The approach consists of three main parts: generating Android 

projects from models, deploying projects, and interpreting 

models by Android applications without needing redeployment. 

Derakhshandi et al. [7], proposed a solution called 

MAndroid for developing 2D board games on Android. This 

method uses MDE to model and automatically convert models 

into code, making it easier to detect and resolve errors. The 

MAndroid framework fully generates classic multiplayer 

games for Android devices. The approach was evaluated by 

implementing three games and assessing their usability and 

performance. The software development process is divided into 

two phases: modeling and conversion in Eclipse, followed by 

compiling and building the code in Android Studio. 

Blanco and Lucrecio [8] addressed the challenges of cross-

platform development and proposed a new approach that 

supports the expansion and inclusion of new platforms. This 

approach, by using a general-purpose language, raises the level 

of abstraction and separates the software from platform details. 

Automatic conversions generate executable codes that can be 

deployed across different platforms. The proposed approach 

was evaluated in four stages, including reconstructing an 

existing system and testing with both experts and novice 

developers. Additionally, support for cross-platform testing 

was introduced. 

Gharaat et al. [9], introduced a framework called ALBA for 

developing location-based Android applications. This 

framework includes a domain-specific modeling language, 

modeling tools, and a plugin for converting models into code. 

The modeling tool allows novice designers to model location-

based applications accurately. Evaluations showed that ALBA 

is promising in terms of usability and the quality of generated 

applications. The framework allows users to design location-

based applications using the ALBA editor and then convert 

them into Android code. 

Ammar [10] proposed a model-based approach for 

developing mobile application user interfaces. This approach, 

by using modeling and model transformation, enables the 

automatic generation of user interfaces. The proposed system 

utilizes standards and technologies such as the Eclipse 

Modeling Framework (EMF) and the ATL transformation 

language. The process involves two main stages: defining meta-

models (AUI, CUI, and FUI) and converting them into source 

code. This approach covers different levels of abstraction and 

generates the final user interface for the Android operating 

system. 

Mehrabi et al. [11], proposed a framework called HealMA 

for model-driven development of IoT-based Android health 

monitoring applications. This framework is designed to manage 

the heterogeneity of hardware and software systems and 

accelerate the development of such systems. HealMA includes 

a domain-specific modeling language, a graphical modeling 

editor, validation rules, and a model-to-code transformation 

engine. Evaluations showed that this framework is practical and 

useful for the automatic generation of health monitoring 

applications. HealMA aids in the rapid development of remote 

health monitoring applications and consists of four main 

components: domain concepts, a graphical editor, validation 

rules, and a code transformation engine. 

Shamsujoha et al. [12], in a comprehensive study, examined 

the use of model-driven engineering in the development of 

mobile applications. They reviewed more than a thousand 

research articles and demonstrated that this method, by 

simplifying the development process, increasing the level of 

abstraction, and improving software quality, can address the 

challenges of mobile application development. The most 

important objectives of MDE in this field are architecture, 

domain modeling, and automatic code generation. 

Additionally, the study showed that model-driven methods can 

significantly improve productivity, scalability, and software 

reliability. The results of this research can be very useful for 

developers and researchers in mobile software development. 



Journal of Computer and Knowledge Engineering, Vol. , No.. 2019. 3 

 

 

José Barriga et al. [13], proposed an innovative approach to 

the development and simulation of IoT systems. This model-

based approach enables the design and deployment of the most 

complex IoT environments without the need for manual 

programming. Using a comprehensive meta-model, this method 

allows users to graphically model various elements of an IoT 

system, such as sensors, actuators, and cloud nodes. The models 

are then automatically converted into code, creating the desired 

simulation environment. This approach demonstrated its 

practical applicability and efficiency through two case studies 

in the fields of smart buildings and agriculture. 

Núñez et al. [14], proposed an innovative approach called 

"Web Model-Driven" for the development of mobile 

applications, which focuses on the data layer. This approach is 

designed to provide access to data even in offline conditions, 

allowing applications to be used without network connectivity. 

Moreover, the Web Model-Driven approach is compatible with 

various operating systems, helping developers easily develop 

applications for diverse platforms. This approach, by using data 

persistence concepts and defining meta-models and specific 

architectural models, enables the design of stable data resources 

and the automatic generation of code for different platforms 

such as Android and Windows Phone. 

These studies are compared in TABLE I based on six 

criteria, including type of meta-model (MM) (UML profile or 

EMF), the generated programming language (Android or cross-

platform), the type of modeling language editor (graphical with 

GMF tools, graphical with Sirius tools, or textual), the type of 

modeling (structural or behavioral), and the domain of the 

generated application. 
TABLE I 

Comparison of related work 

 

R
es

ea
rc

h
 

Y
ea

r 

Type of 

MM 

P
ro

g
ra

m
m

in
g
 L

an
g

u
ag

e 

T
y
p

e 
o

f 
L

an
g
u

ag
e 

E
d

it
o

r 

A
u

to
 C

o
d

e 
G

en
er

at
io

n
 Type of 

Model 

A
p

p
li

ca
ti

o
n
 D

o
m

ai
n
 

U
M

L
 

E
M

F
 

S
tr

u
ct

u
ra

l 

B
eh

av
io

ra
l 

[6] 

2
0
1
4
 

  

A
n

d
ro

id
 

G
ra

p
h
ic

al
 

G
M

F
 

   

D
ai

ly
 

A
p

p
li

ca
ti

o
n

s 

[7] 

2
0
2
1
 

  

A
n

d
ro

id
 

G
ra

p
h
ic

al
 

   2
D

 

M
u
lt

ip
la

y
er

 

G
am

es
 

[8] 

2
0
2
1
 

  

M
u
lt

i-

p
la

tf
o

rm
 

T
ex

tu
al

 

   

G
U

I 
&

 

D
o

m
ai

n
 

M
o
d

el
 

[9] 

2
0
2
1
 

  

A
n

d
ro

id
 

G
ra

p
h
ic

al
 

G
M

F
 

   

L
o

ca
ti

o
n

-

b
as

ed
 

A
p

p
li

ca
ti

o
n

s 

[10] 

2
0
2
1
 

  

M
u
lt

i-

p
la

tf
o

rm
 

G
ra

p
h
ic

al
 

G
M

F
 

   

G
ra

p
h
ic

al
 

In
te

rf
ac

e 

[11] 

2
0
2
2
 

  

A
n

d
ro

id
 

G
ra

p
h
ic

al
 

S
ir

iu
s 

   

H
ea

lt
h
 

M
o
n
it

o
ri

n
g
 

A
p

p
li

ca
ti

o
n
 

[12] 

2
0
2
0
 

  

M
u
lt

i-

p
la

tf
o

rm
 

G
ra

p
h
ic

al
 

T
re

e-
b
as

ed
 

   

M
o
b
il

e 
D

at
a 

L
ay

er
 

[13] 

2
0
1
9
 

  

A
n

d
ro

id
 

T
ex

tu
al

 

   

C
o

m
m

er
ci

al
 

S
to

re
 

A
p

p
li

ca
ti

o
n
 

 

Although model-driven approaches for Android and cross-

platform applications have been the subject of numerous 

studies, audio-based applications have received relatively little 

attention in this context. By offering a coordinated, domain-

specific modeling, automated code generation, and 

customization approach tailored to the needs of audio 

applications development, our framework fills this gap. 

III.  PROPOSED FRAMEWORK 

In this section, the proposed framework for model-driven 

development of Android audio-based applications is examined. 

This framework is presented as a solution to accelerate and 

improve the development process of mobile audio-based 

applications. The various stages of this framework include 

modeling processes, validation, automatic code generation, and 

customization of the generated code for finalizing the product. 

The main goal of the proposed solution is to provide a 

framework that improves the development of Android audio-

based applications using model-driven engineering. This 

framework is based on domain-specific metamodels. The 

process of using the proposed framework includes several main 

steps, which are demonstrated in Figure 1. 

In the first step, the requirements of the audio-based 

application are accurately collected. These requirements 

include various features that the application must support, such 

as audio capabilities, playback controls, and user interactions. 

These requirements are then represented in a high-level model 

that provides an overview of the application. 

After defining the initial model, validation constraints are 

applied to the model. These constraints help ensure the model's 

correctness and completeness. Models containing defects or 



 

 

errors are identified and corrected by the system to prevent 

problems in later development stages. 

 
Fig. 1.  The process of using the proposed framework to develop an audio 

application 

After the model is approved, the transformation to code 

begins. For this purpose, automatic code generation tools like 

Acceleo are used to convert the defined models into Android 

executable code. This code includes all the necessary 

components for audio-based applications, such as classes 

related to activities, fragments, layouts, and resources. 

If the developer requires specific changes or further 

customization, the generated code can be imported into Android 

Studio. Android Studio, as a complete development 

environment, allows manual modifications to the generated 

code. This stage is used to improve and finalize the code. 

Innovation Boundary and Value Addition: The proposed 

framework is a novel solution specifically designed for the 

rapid development of audio-based mobile applications. The 

originality of the framework is evident in the following key 

aspects: 

 Metamodel Design: The domain-specific metamodel 

was designed from scratch to represent the essential 

components of audio-based applications, such as audio 

playback, navigation flows, and user interactions. This 

metamodel distinguishes our framework from generic 

modeling approaches. 

 Graphical Editor: A custom graphical editor was 

developed to enable intuitive modeling of 

applications, simplifying the design process for 

developers with limited coding knowledge. 

 Model-to-Code Transformation: While the 

framework uses Acceleo as the transformation engine, 

the transformation templates were written specifically 

for this framework. These templates address the 

unique requirements of audio-based applications and 

generate Android-specific code tailored to the 

metamodel's constructs. 

 Domain-Specific Customizations: The framework 

includes adaptations for efficiently handling audio 

assets and implementing real-time user interaction 

logic, which are not addressed by existing tools or 

frameworks. 

By integrating these components, the framework offers a 

unique, efficient, and automated approach to developing audio 

applications, reducing both development time and effort. The 

originality of this research lies in its tailored approach to 

addressing the unique requirements of audio-based 

applications. The framework provides novel approaches that 

can facilitate the design and development process in this 

specific domain by combining a domain-specific metamodel, a 

dedicated graphical editor, and an automation process 

generation engine. These zoning features also distinguish it 

from more general-purpose MDE frameworks. 

The framework is structured into four main sections, each 

focusing on a distinct aspect of the proposed solution. Section 

III.A introduces the metamodel that forms the foundation of the 

framework, III.B describes the graphical editor for visual 

modeling, III.C explains the transformation engine for 

automating code generation, and III.D details the final 

customization process in Android Studio.  

A.  Proposed Metamodel 

In this section, concepts such as activities and fragments are 

inspired by the Android application architecture, as described 

in [15]. These elements are integrated into the proposed 

metamodel to ensure compatibility with existing Android 

development practices while extending their functionality for 

audio-based applications. The metamodel is presented in Figure 

2. The provided image depicts a metamodel for an Android 

audio-based application. Here is an overview of each class and 

its relationships within the model: 

1. App: The central class representing the overall Android 

application. It defines the application’s name and method 

of handling audio (howToPlay), making it a starting point 

for defining the app's core attributes. 

2. Configuration: Contains essential settings for the app, 

such as version, language, SDK versions, and screen 

orientation. This class is defined to centralize all 

configuration-related data, which is critical for setting up 

the app environment.  

3. ScreenOrientation (enum): Specifies various screen 

orientations like portrait, landscape, and sensor. It helps 

standardize how the app adjusts to different device 

orientations. 

4. Language (enum): Defines the languages supported by 

the app, such as English and Persian. This ensures that 

the app can cater to different linguistic audiences. 

5. HowToPlay (enum): Indicates the method used to play 

audio, such as TextToSpeech or MediaPlayer. This class 

enables flexibility in how audio is handled within the app, 

based on its intended functionality. 

6. Activity: Represents a screen or activity within the app, 

managing its orientation and behavior. This class is 

fundamental for structuring the app’s interface and 

controlling how users interact with different screens. 

7. SplashActivity: A specific type of Activity used for the 

splash screen, with an added delay time. This class 

ensures that the splash screen can be timed and managed 

independently from other activities. 

8. Theme: Represents the app’s visual theme, specifically 

aspects like the status bar color. This class is necessary 



Journal of Computer and Knowledge Engineering, Vol. , No.. 2019. 5 

 

 

for maintaining the design consistency across the app's 

interface. 

9. Color: Defines specific colors used in the app’s theme. 

This class supports customization of the user interface by 

specifying named colors for different elements. 

10. Resource: Represents any type of app resources, such as 

audio or image files. It centralizes access to different 

resources, making resource management easier. 

11. String: Stores text strings used within the app. This class 

is essential for localization and for managing static text 

in a consistent way. 

12. File: Represents individual files (e.g., audio or image 

files). It allows the app to manage multimedia content 

efficiently by linking it to the resource management 

system. 

13. Layout: Defines the arrangement of UI components 

within an activity or fragment. This class is crucial for 

setting up how the app’s interface is structured visually. 

14. Fragment: Represents portions of a UI that can be reused 

within activities. This class allows for modular design, 

enabling developers to reuse UI components across 

different screens. 

15. Widget: Represents individual UI elements, like buttons 

or images. This class is essential for managing user 

interface controls and how they interact within the app. 

16. Adapter: Manages the connection between data and 

views (UI elements). It is defined to allow flexible 

handling of data in lists or other view components. 

17. ViewHolder: Holds references to UI components, 

improving performance when binding data to views. This 

class is crucial in reducing resource usage when handling 

large datasets. 

18. Data: Represents data entities used in the app. This class 

allows for the structured handling of data, linking it to the 

app’s user interface and logic. 

19. ObjectClass: Represents custom objects within the app’s 

logic. It supports the creation of complex data structures 

for handling app-specific functionality. 

20. DataClass: A structured class for managing datasets. 

This class helps with organizing and processing data in a 

structured and reusable way. 

21. Parameter: Defines parameters passed between 

activities or fragments. It ensures flexibility by allowing 

inputs to be defined and processed dynamically. 

22. CardView, ButtonImage, TextView, ImageView: 

Specialized widgets for displaying specific types of 

content, such as images, text, and buttons. These classes 

help manage specific UI components efficiently. 

23. Item: Represents individual items that might appear in 

lists or collections within the app. This class ensures that 

each item’s data is properly organized and managed. 

In summary, each class in the metamodel is defined to 

encapsulate a specific aspect of the app’s structure, resources, 

or behavior. This separation of concerns ensures that the app’s 

design is modular, maintainable, and scalable. 

B.  Graphical Editor 

A graphical editor is embedded in the proposed framework, 

allowing developers to visually model the components of their 

audio-based application. This editor enables the user to easily 

 

 
 

Fig. 2.  The proposed metamodel 

 



 

 

add elements like playback control buttons, audio files, and 

other user interface components to the model. Using this 

graphical tool facilitates the modeling process and allows 

developers to design applications more quickly. Figure 3 shows 

the graphical icon for each concept of the metamodel. 

 
Fig. 3.  Mapping between metamodel elements and toolbox 

The Section column organizes the components into logical 

groupings: 

 Application: Deals with the overall structure and 

configuration of the app. It includes components like 

App, Configuration, and String, representing the high-

level structure and setup of the app. 

 Page and Activity: Focuses on user interaction and 

screen organization. It covers components like 

Activity, SplashActivity, Fragment, and Layout, all 

related to defining the app’s pages and screen 

transitions. 

 Widget: Involves the interface elements that users can 

interact with directly. It represents the UI controls (e.g., 

CardView, Button, ImageView) that users interact 

with. 

 Theme: Manages the look and feel of the app. It 

includes components related to the app’s appearance, 

like Theme and Color. 

 Resource: Contains various resources like files and 

data that the app needs to function. It represents 

elements such as Resource and File, which manage 

assets like images, audio, and other external files. 

 Data: Handles the internal data structures and 

information processing of the app. It covers DataClass, 

ObjectClass, and Parameter, which are related to 

handling and processing the app’s data structure. 
 

C.  Transformation Engine 

The transformation engine is one of the key components of 

the framework. This engine is responsible for converting high-

level models into executable Android code. The transformation 

engine uses rules and algorithms based on the defined 

metamodel to generate appropriate code. This code is generated 

in languages such as Kotlin or Java and includes all the 

necessary components for a complete Android application. 

The provided code snippets in Figure 4, are two Acceleo 

templates that generate Kotlin code for configuration and 

language classes. The first template creates a configuration 

class with properties like version code, version name, package 

name, and SDK versions. The second template generates an 

enum class for language codes, including English and Persian 

languages. These templates are used in a code generation 

process to automate the creation of these classes based on 

specific input data. 

 

 
Fig. 4.  The file to convert the model to the configuration code and the type 

of user language of the application 

D.  Code Customization in Android Studio 

The code generated by the transformation engine is 

transformed to Android Studio, where developers can manually 

customize and improve the code. This stage includes final 

optimizations, adding specific features, and making additional 

adjustments. Android Studio is used as a powerful tool for this 

purpose, enabling developers to make necessary changes to 

prepare their applications for release. 

IV.  EVALUATION 

The purpose of the evaluation process was to thoroughly test 

the efficacy and adaptability of the suggested framework across 

multiple scenarios. Using four different case studies that 

provide insights into the approach's practical usability and 

scalability, this study demonstrates the framework ability to 

address the obstacles involved in developing audio-based 

applications. These applications were selected to demonstrate 

how the framework can handle a range of requirements, such as 

managing instructional content, playing sound, and displaying 

images. Additionally, a significant portion of the application 

code was automatically generated from the model. The 

scenarios demonstrate how the framework supports a broad 

range of complexity and functionality while abstracting away 



Journal of Computer and Knowledge Engineering, Vol. , No.. 2019. 7 

 

 

the specifics of application programming.  

In the following, first, the framework is evaluated based on 

four case studies in Section IV.A. Then, the development effort 

is estimated for each MDE and traditional approach in Section 

IV.B. Finally, in Section IV.C, the framework is compared with 

two other MDE frameworks, which are used to develop 

Android applications. 

A.  Case Study Evaluation 

In this research, four Android applications are developed as 

case studies. These applications include features such as sound 

playback, image display, and management of educational 

information. These applications are modeled using the 

proposed framework, and the corresponding code is semi-

automatically generated. The case studies are described as 

follows. 

1) EnglishInSound Application: This application is 

designed for teaching English words with sound playback. 

Users can hear the pronunciation of words by touching images 

or words. The proposed framework enabled developers to 

create models for sound management and the user interface in 

a simple and efficient manner. Figure 5 presents the first and 

second pages of the app. 

 
Fig. 5. Implementation of the English education app 

2) FlagsOfCountries Application: This application is 

designed for teaching the flags of countries worldwide. Users 

can see the flag of each country, and by touching it, the name 

of the country is played aloud. This application uses the 

TextToSpeech library for sound playback. Figure 6 shows first 

and second pages of the app. 

 
Fig. 6. Implementation of the flag education program of the continents of the 

world 

3) AsiaFlags Application: The AsiaFlags application is 

similar to the previous application but displays only the flags of 

Asian countries. This application also utilized the proposed 

framework, allowing developers to quickly implement similar 

features in a simple model. Some parts of implementation code 

are differed from the previous app. Figure 7 shows one page of 

the app.  

 
Fig. 7. Implementation of the AsiaFlags app 

 

4) AsiaFlagsFragment Application: This application has 

the same functionality as the AsiaFlags program but uses the 

Fragment technology to load information (see Figure 8). The 

proposed framework, by supporting newer Android patterns 

(such as Fragments), allowed developers to easily use these 

features in the generated models and code. 

 
Fig. 8. Implementation of the AsiaFlagsFragment app 

Table II compares the features of four different Android 

applications that use audio as a key component. The 

applications are categorized based on their program 

complexity, user interface design, data structure, purpose, and 

various capabilities.  

The table shows the varying levels of complexity, from Low 

to High, and indicates how each program handles data 

structures, either using a JSON file or a class file, depending on 

the application's requirements. Additionally, it highlights key 

functional aspects, such as the information separation, display 

architecture patterns (Adapter or Fragment), and the audio 

playback configuration type, which ranges between 

TextToSpeech and MediaPlayer. For example, some 

applications focus on disaggregated training with features like 



 

 

displaying an item, while others are geared towards 

unsegregated training with broader functionalities, like 

displaying a list of items and providing a welcome page. This 

comparison gives insight into how different applications are 

designed and configured to meet their unique training purposes. 

 
TABLE II 

COMPARISON OF FOUR CASE STUDIES 

E
n
g

li
sh

In
S

o
u
n

d
 

F
la

g
sO

fC
o
u
n

tr
ie

s 

A
si

aF
la

g
sF

ra
g

m
en

t 

A
si

aF
la

g
s 

Criterion 

    Low 

Program Complexity     Medium 

    High 

    
Display a list of 

items User Interface 

    Display an item 

    JSON File 
Data Structure 

    Class File 

    
Disaggregated 

training 
Purpose of the program 

    
Unsegregated 

training 

    Yes 
Information separation 

    No 

    Welcome page 
Capabilities 

    Show case details 

    Adapter Display architecture 
pattern     Fragment 

    TextToSpeech Audio playback 

configuration type     MediaPlayer 

 

The tree representation of the EnglishInSound application 

model is presented in Figure 9. The model consists of a main 

activity (MainActivity) that contains various layers and widgets 

such as buttonsLayout and buttons like nextButton, btnPlay, 

and prevButton. This application also includes a fragment 

(EnglishFragment) and a splash activity (SplashActivity). The 

model comprises resources such as sound files (soundItem) and 

data classes (EnglishData) with various parameters to manage 

the application’s information. Additionally, a theme (Theme) 

and text strings (String) are used for different app settings. 

Figure 10 illustrates the graphical view of this model, which is 

designed by the graphical editor of the framework. 

Table III presents the distribution of metamodel class 

instances across four applications developed using the proposed 

framework. Each row represents a specific metamodel class, 

and the values in the columns indicate the number of instances 

of that class in each application. Subcategories such as 

DataClass and ObjectClass under Data, and CardView, 

TextView, and other widgets under Widget, provide additional 

details about the structure of each application. 

The analysis highlights the framework's adaptability in 

supporting diverse application requirements. The consistent 

presence of core classes, such as App, Configuration, and 

Activity, demonstrates the framework’s ability to model 

essential components across different contexts. Meanwhile, the 

variability in the use of classes like Fragment, Adapter, and 

widgets reflects the framework's flexibility to accommodate 

unique application features, such as dynamic navigation or 

custom user interfaces. This adaptability enables developers to 

easily tailor the framework to meet specific needs, thereby 

enhancing its applicability in real-world scenarios. 

 
Fig. 9. Tree representation of the EnglishInSound app model 

 

 
Fig. 10. Graphical view of the EnglishInSound app model 

 

 



Journal of Computer and Knowledge Engineering, Vol. , No.. 2019. 9 

 

 

 
TABLE III 

DISTRIBUTION OF METAMODEL CLASS INSTANCES ACROSS 

APPLICATIONS 
 

 

 

 

Metamodel Class 

A
siaF

lag
sF

rag
m

en
t 

A
siaF

lag
s 

F
lag

sO
fC

o
u
n

tries 

E
n
g

lish
In

S
o
u
n

d
 

App 1 1 1 1 

Configuration 1 1 1 1 

Resource 1 1 0 1 

Activity 1 1 2 1 

SplashActivity 0 0 0 1 

Fragment 1 0 0 1 

Adapter 0 1 2 0 

ViewHolder 0 1 2 0 

Layout 2 2 4 3 

String 1 1 1 1 

Theme 1 1 1 1 

Color 2 1 1 1 

Item 3 1 1 3 

File 2 1 0 2 

Parameter 6 4 4 6 

Data 
 

- DataClass 1 1 2 1 

- ObjectClass 1 1 2 1 

Widget 
 

- CardView 1 1 2 1 

- ButtonImage 2 0 0 3 

- TextView 1 1 3 1 

- ImageView 1 1 2 2 

- Button 1 0 0 0 

 

After creating a model for each case study, the code 

generator of the framework is applied. By means of the code 

generator in the framework, 67% of the EnglishInSound app 

code is generated automatically from the given model. Here's a 

breakdown of the areas that can be automated: 

 Activity and Fragment Setup: The basic structure of the 

SplashActivity and MainActivity classes, 

including the setup of the Fragment and the 

corresponding JsonHelper class, is generated 

automatically from the model. 

 UI Components and Events: The layout and interaction of 

the UI components, such as the buttons, image views, and 

text views, is generated from the model’s definition of the 

user interface. The click event handling for the play/pause 

button, as well as the previous and next buttons, is 

generated from the specification of the user interactions. 

 Media Player Management: The code related to loading, 

playing, and controlling the audio files, as well as the 

integration with the UI components, is generated from the 

specification of the audio playback functionality in the 

model.  

 Data Model and JSON Parsing: The EnglishData data 

class and the JsonHelper class, which handle the 

parsing of the JSON data, is generated directly from the 

data model. 

 Fragment Replacement: The logic for replacing the 

EnglishFragment within the MainActivity is 

generated from the specification of the navigation and 

content management. 

The remaining of the code would require manual 

implementation, such as any custom business logic or domain-

specific functionality that is not directly captured in the 

metamodel. 

Figure 11, the stacked bar chart, illustrates a comparison of 

the number of lines of code (LOC) generated automatically 

versus those written manually for four different applications. 

For example, AsiaFlags has 263 total lines of code, with 247 

lines (94%) automatically generated and 16 lines must 

manually be written. FlagsofCountries shows 364 total lines, 

323 of which (89%) were generated automatically. 

EnglishInSound had 278 total lines, 186 (67%) automatically 

generated, and AsiaFlagsFragment had 269 total lines, with 209 

(78%) automatically generated. The data reveals that AsiaFlags 

had the highest percentage of automatically generated code, 

while EnglishInSound had the lowest. 

 
Fig. 11. Stacked bar chart comparing automatically generated and manually 

written lines of code (LOC) for the four case studies 

B.  Evaluation of Development Effort and Time 

In subsection IV.A, Table III demonstrates the framework's 

adaptability through the distribution of metamodel class 

instances. Building on this, the evaluation in this section 

highlights how this flexibility reduces development effort and 

supports the creation of diverse application features, including 

dynamic navigation, custom user interfaces, and efficient data 

handling. 

To evaluate the development effort required by the proposed 

model-driven framework and compare it to the traditional 

manual coding approach, we conducted an experiment with 

three participants of varying expertise levels: 

 Participant 1: An expert in modeling with limited 

Android development experience. 

 Participant 2: An expert in Android development with 

no prior exposure to model-driven engineering. 

 Participant 3: A beginner with no significant expertise 

in either modeling or Android development. 

The experiment consisted of the following stages as shown 

in Table IV: 



 

 

1. Learning Framework Concepts: Participants 

familiarized themselves with the framework, including 

the metamodel structure, graphical editor, and 

transformation process. The required time varied based 

on prior knowledge, ranging from 1 hour for the 

modeling expert to 3 hours for the beginner. The learning 

phase is only required once and was excluded from the 

time calculations for individual case studies. 

2. Familiarization with the Graphical Editor: All 

participants learned to use the graphical modeling tool, 

which has a simple and intuitive interface. The time 

required ranged from 30 minutes for Participant 1 to 1 

hour for Participant 3. 

3. Model Creation: For simple case studies, model creation 

required 20 minutes for Participant 1, 30 minutes for 

Participant 2, and 45 minutes for Participant 3. For 

complex models, the effort increased to 1 hour for 

Participant 1, 1.5 hours for Participant 2, and 2 hours for 

Participant 3. 

4. Manual Code Customization: While the framework 

generates a significant portion of the code, certain custom 

logic must be added manually. The time required for this 

step is presented in Table VI. 

5. APK Generation: The final step of generating and 

deploying the APK file on an Android device took 10 to 

15 minutes for all participants. 
 

TABLE IV 

MODEL-DRIVEN DEVELOPMENT EFFORT 
Phase Modeling Expert Android 

Expert 

Beginner 

Learning Framework 

Concepts 

1 hour 2 hours 3 hours 

Familiarization with 

Editor 

30 min. 45 min. 1 hour 

Model Creation 

(Simple) 

20 min. 30 min. 45 min. 

Model Creation 

(Complex) 

1 hour 1.5 hours 2 hours 

APK Generation 10 min. 10 min. 15 min. 

 

For the traditional approach, we assumed that an Android 

development expert manually codes the entire application. 

The average effort per line of code (LOC) was estimated at 2 

minutes, excluding time for learning Android programming. 

APK generation time was considered equivalent to the model-

driven approach. The result shows in Table V. This 

calculation is done for manual code of MDE approach which 

is presented in Table VI. 
 

TABLE V 

Traditional Development Effort 
Application LOC Manual Effort 

(Minutes) 

APK 

Gen. 

Manual Effort 

(Hours) 

AsiaFlags 263 526 10 ~9 

FlagsOfCountries 364 728 10 ~12 ⅓ 

EnglishInSound 278 556 10 ~9.5 

AsiaFlagsFragment 269 538 10 ~9⅒ 

 
 

 

 
TABLE VI 

Manual Code Customization Effort in the Model-Driven Approach 
Application LOC Manual Effort 

(Minutes) 

Manual Effort 

(Hours) 

AsiaFlags 16 32 ~0.5 

FlagsOfCountries 41 82 ~1⅕ 

EnglishInSound 92 184 ~3 

AsiaFlagsFragment 60 120 ~2 

 

Learning the framework’s concepts is a one-time cost and 

was excluded from individual case study times. Once familiar, 

all participants could complete tasks efficiently. 

By automating key aspects of the development process, the 

proposed framework significantly reduces the effort and time 

required to develop Android applications. While traditional 

coding requires 9 to 12 ⅓ hours per application, the model-

driven approach completes the same task in 1.5 to 3 hours, even 

for beginners. This highlights the framework’s efficiency and 

its ability to simplify application development for developers 

with varying levels of expertise. 

The comparison of development effort between the model-

driven and traditional approaches highlights the efficiency of 

the proposed methodology. The results demonstrate that by 

automating repetitive coding tasks and providing intuitive 

modeling tools, the framework reduces development time while 

maintaining a high standard of application quality. 

C.  Comparison with Other Frameworks   

To compare the proposed framework with two other 

frameworks (ALBA [9] and HealMA [11]), three main criteria 

are considered: maintainability [16], understandability [17], 

and extensibility [18]. These criteria are to evaluate the quality 

of different frameworks in application development. 

Maintainability refers to the ability to make changes and 

maintain the system without major alterations to its structure. 

Formula (1) shows maintainability as a function of the number 

of classes (NC), attributes (NA), references (NR), the maximum 

hierarchical level (DITmax), and the maximum fan-out 

(Fanoutmax). Lower values shows better maintainability 

[16].  

 

  
𝑁𝐶 + 𝑁𝐴 + 𝑁𝑅 + 𝐷𝐼𝑇𝑀𝑎𝑥 + 𝐹𝑎𝑛𝑜𝑢𝑡𝑀𝑎𝑥

5
      (1) 

 

Understandability refers to the developers’ ability to 

understand the structure of the model and code. Formula (2) 

shows that Understandability is computed based on the number 

of predecessors (PREDc) and number of classes (NC). Higher 

values demonstrate better understandability [17].  

  
∑ 𝑃𝑅𝐸𝐷 + 1𝑁𝐶

𝐾=1

𝑁𝐶
                           (2) 

Extensibility refers to the ability to add new features to the 

system without requiring extensive changes to the existing 

structure. Formula (3) for extensibility is based on the number 

of inherited features (INHF) and total number of features 

(NTF). Higher values indicate better extensibility [18].  

 



Journal of Computer and Knowledge Engineering, Vol. , No.. 2019. 11 

 

 

  
𝐼𝑁𝐻𝐹

𝑁𝑇𝐹
                                      (3) 

As shown in Table VII, the proposed framework has 

achieved high maintainability due to the use of high-level 

models and automatic code generation. It received a better score 

compared to the other two frameworks, indicating its strong 

maintainability capabilities. Through visual representations and 

graphical tools, the proposed approach has provided better 

understandability. It offers higher understandability compared 

to the ALBA [9] and HealMA [11] frameworks. Additionally, 

the proposed framework excels in extensibility due to its higher 

flexibility in adding new features. 
 

TABLE VII 

COMPARISON OF THREE FRAMEWORKS 

 
Framework Maintainability Understandability Extensibility 

Our approach 26.2 0.29 0.36 

ALBA [9] 26.6 0.17 0.12 

HealMA[11] 35.6 0.22 0.24 

The results of the investigation demonstrate that the 

proposed framework offers a scalable and maintainable 

solution for upcoming developments in mobile software 

development, in addition to addressing the technical difficulties 

of creating audio-based applications. This study adds to the 

larger field of model-driven engineering by concentrating on 

domain-specific requirements and providing insights that can 

guide both academic research and practical uses. 

V.  CONCLUSION AND FUTURE WORK 

This section concludes the findings of the study in Section 

V.A and outlines potential directions for future work in 

Section V.B. 

A.  Conclusion 

Through this study, we highlight how model-driven 

engineering can be used to facilitate development for audio-

based application domains. We describe the comprehensive, 

audio-based application design capabilities of our suggested 

framework, which eventually bridges the gap between practical 

implementation and high-level modeling. 

The increasing demand for audio programs like audiobooks 

and language-learning applications has put this new pressure on 

developers to produce their products faster and more efficiently. 

The domain-specific modeling languages have shown a lot of 

promise in tackling these issues. The MDE framework 

is beneficial to software engineering researchers and 

practitioners because it can significantly reduce development 

time and effort without sacrificing application quality. Its 

embrace could boost progress in fields that want speedy, high-

quality applications. 

The study proposes an MDE-based holistic framework that 

encompasses three critical layers: (1) a domain-specific 

metamodel; (2) a graphical editor; (3) a model-to-code 

transformation tool. The metamodel encapsulates the core 

elements of audio-based applications, providing a high-level 

abstraction that simplifies the design process. The graphical 

editor allows developers to create and modify the models 

visually, without requiring extensive knowledge about 

programming, and the transformation tool automatically 

generates an Android executable code. All of these components 

work together to accelerate the development process and allow 

developers to create highly specialized apps with maximum 

efficiency. 

The performance of the proposed framework validates its 

potential to tackle important issues in the development of audio-

based applications. Establishing metrics such as 

maintainability, understandability, and extensibility highlights 

its potential for simplifying development processes and 

adapting to a variety of application requirements. The next steps 

would be to improve the flexibility and scalability of the 

framework so that it can be increasingly applicable to the more 

complex real-world use cases. 

Although case studies have been done that reflect typical 

audio-based applications, the scalability of this framework to 

more advanced, real-world use cases still requires further 

research. This current evaluation encapsulates the frameworks 

that allow it to automate key aspects of the development 

process, reducing manual effort and accelerating the creation of 

various applications. These results indicate that the framework 

holds promise for real-world applicability, especially in 

domains requiring rapid development and high customization. 

In the future, we plan to test the framework on complex real-

world applications to see how well it scales and performs in 

harder conditions. 

The demonstrated effectiveness of this paradigm in reducing 

development workload and increasing software quality 

suggests that similar concepts could be applied to a variety of 

fields where adaptability and short time-to-market are critical. 

With increasingly specialized applications in demand, such an 

approach provides a solid foundation for addressing new 

software engineering challenges. 

B.  Future Work 

Although the proposed framework yields promising results, 

there is still opportunity for development to enhance its 

applicability and performance: 

1. Support for Dynamic Structures: Future versions of the 

framework could add support for adaptation at runtime and 

dynamic behaviors. This can lead to more effective handling of 

resources that can be loaded on the fly as well as components 

that are generated at runtime, allowing for increased 

responsiveness and flexibility within applications. 

2. Scalability to Complex Applications: The current 

framework has been tested with relatively simple case studies. 

Future work would involve applying the framework to real-

world, complex applications to assess its scalability and identify 

areas for further, and undoubtedly necessary, improvement. 

This would provide a much more robust validation of its 

capabilities across a wide range of scenarios. 

3. Cross-Platform Portability: Currently, the framework is 

intended for Android development. To make it even more 



 

 

useful, extending the training to support additional platforms, 

such as iOS or cross-platform frameworks (e.g., Flutter), would 

increase its versatility and applicability across diverse 

development environments. 

4. Advanced Evaluation and Comparison: More in-depth 

practical experiments and comparisons with traditional 

development methods can help provide additional validation of 

the effectiveness and efficiency of the framework. Comparative 

quantitative analyses on development costs, time savings, 

application performance, etc., would yield more profound 

insights and showcase its advantages. 

5. Extending Metamodel and Tools: Further automating 

domain-specific elements in the metamodel through the 

graphical editor and transformation tool could potentially 

simplify the development further. If the utility and adaptability 

of the framework were increased by supporting a wider range 

of programming languages and application types. 

In addressing these directions, the framework presented in 

this paper will be able to evolve, allowing developers to respond 

to the increasing requirements laid by the development of larger 

and faster-changing applications in a more effective and 

efficient manner. 

REFERENCES 

[1] R. F. Paige, N. Matragkas, and L. M. Rose, "Evolving models in 

model-driven engineering: State-of-the-art and future challenges," 
Journal of Systems and Software, vol. 111, pp. 272-280, 2016. 

[2] R. France and B. Rumpe, "Model-driven development of complex 

software: A research roadmap," in Future of Software Engineering 
(FOSE'07), 2007: IEEE, pp. 37-54.  

[3] M. Abbasi et al., "In-Depth Analysis of Mobile Apps Statistics: A 

Study and Development of a Mobile App," in 2023 18th Iberian 
Conference on Information Systems and Technologies (CISTI), 

2023: IEEE, pp. 1-7.  

[4] L. M. Poupis, D. Rubin, and L. Lteif, "Turn up the volume if you’re 
feeling lonely: The effect of mobile application sound on consumer 

outcomes," Journal of Business Research, vol. 126, pp. 263-278, 

2021. 
[5] A. M. Rapatsalahy, H. Razafimahatratra, T. Mahatody, M. Ilie, S. 

Ilie, and R. N. Razafindrakoto, "Automatic Generation of Object-

Oriented Code from the ReLEL Requirements Model," SYSTEM 
THEORY, CONTROL AND COMPUTING JOURNAL, vol. 1, no. 1, 

pp. 36-47, 2021. 

[6] S. Vaupel, G. Taentzer, J. P. Harries, R. Stroh, R. Gerlach, and M. 
Guckert, "Model-driven development of mobile applications 

allowing role-driven variants," in International Conference on 
Model Driven Engineering Languages and Systems, 2014: Springer, 

pp. 1-17.  

[7] M. Derakhshandi, S. Kolahdouz-Rahimi, J. Troya, and K. Lano, "A 
model-driven framework for developing android-based classic 

multiplayer 2D board games," Automated Software Engineering, 

vol. 28, no. 2, pp. 1-57, 2021. 
[8] J. Zanuzzio Blanco and D. Lucrédio, "A holistic approach for cross-

platform software development," arXiv e-prints, p. arXiv: 

2104.14614, 2021. 
[9] M. Gharaat, M. Sharbaf, B. Zamani, and A. Hamou-Lhadj, "ALBA: 

a model-driven framework for the automatic generation of android 

location-based apps," Automated Software Engineering, vol. 28, no. 
1, pp. 1-45, 2021. 

[10] L. B. Ammar, "An Automated Model-Based Approach for 

Developing Mobile User Interfaces," IEEE Access, vol. 9, pp. 
51573-51581, 2021. 

[11] M. Mehrabi, B. Zamani, and A. Hamou-Lhadj, "HealMA: a model-

driven framework for automatic generation of IoT-based Android 
health monitoring applications," Automated Software Engineering, 

vol. 29, no. 2, pp. 1-41, 2022. 

[12] M. Shamsujjoha, J. Grundy, L. Li, H. Khalajzadeh, and Q. Lu, 
"Developing Mobile Applications Via Model Driven Development: 

A Systematic Literature Review," Information and Software 

Technology, vol. 140, p. 106693, 2021. 
[13] J. A. Barriga, P. J. Clemente, E. Sosa-Sánchez, and Á. E. Prieto, 

"SimulateIoT: Domain Specific Language to Design, Code 

Generation and Execute IoT Simulation Environments," IEEE 
Access, vol. 9, pp. 92531-92552, 2021, doi: 

10.1109/ACCESS.2021.3092528. 

[14] M. Núñez, D. Bonhaure, M. González, and L. Cernuzzi, "A model-
driven approach for the development of native mobile applications 

focusing on the data layer," Journal of Systems and Software, vol. 

161, p. 110489, 2020. 
[15] L. Guo, The First Line of Code: Android Programming with Kotlin. 

Springer Nature, 2022. 

[16] M. Genero and M. Piattini, "Empirical validation of measures for 
class diagram structural complexity through controlled 

experiments," in 5th International ECOOP workshop on 

quantitative approaches in object-oriented software engineering, 
2001: Citeseer.  

[17] F. T. Sheldon and H. Chung, "Measuring the complexity of class 

diagrams in reverse engineering," Journal of Software Maintenance 
and Evolution: Research and Practice, vol. 18, no. 5, pp. 333-350, 

2006. 

[18] T. Arendt, F. Mantz, and G. Taentzer, "Uml model quality assurance 
techniques," Philipps-Univ. Marburg, Marburg, Germany, Tech. 

Rep, 2009. 
 


