- Ahluwalia, O., Singh, P.C., & Bhatia, R. (2021). Resources, environment and sustainability a review on drought stress in plants : Implications, mitigation and the role of plant growth promoting rhizobacteria. Resources, Environment and Sustainability, 5(July), 100032. https://doi.org/10.1016/j.resenv.2021.100032
- Akhtar, S.S., Amby, D.B., Hegelund, J.N., Fimognari, L., Großkinsky, D.K., Westergaard, J.C., Müller, R., Moelbak, L., Liu, F., & Roitsch, T. (2020). Bacillus licheniformis FMCH001 increases water use efficiency via growth stimulation in both normal and drought conditions. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.00297
- Amiri, R., Nikbakht, A., & Etemadi, N. (2015). Alleviation of drought stress on rose geranium [Pelargonium graveolens (L.) Herit.] in terms of antioxidant activity and secondary metabolites by mycorrhizal inoculation. Scientia Horticulturae, 197, 373–380. https://doi.org/10.1016/j.scienta.2015.09.062
- Askari, A., Ardakani, M.R., Paknejad, F., & Hosseini, Y. (2019). Effects of mycorrhizal symbiosis and seed priming on yield and water use efficiency of sesame under drought stress condition. Scientia Horticulturae, 257, 108749. https://doi.org/10.1016/j.scienta.2019.108749
- Azaizeh, H.A., Marschner, H., Römheld, V., & Wittenmayer, L. (1995). Effects of a vesicular-arbuscular mycorrhizal fungus and other soil microorganisms on growth, mineral nutrient acquisition and root exudation of soil-grown maize plants. Mycorrhiza, 5(5), 321–327. https://doi.org/10.1007/BF00207404
- Azami-Atajan, F., Hammami, H., & Yaghoobzadeh, M. (2020). The application of plant growth promoting microorganisms and phosphate fertilizers on yield, yield components and water use efficiency of wheat at levels of irrigation water. Journal of Crop Production, 12(4), 1–24. (In Persian with English abstract).
- Barazetti, A.R., Simionato, A.S., Navarro, M.O.P., Santos, I.M.O. dos, Modolon, F., Andreata, M.F. de L., Liuti, G., Cely, M.V.T., Chryssafidis, A.L., Dealis, M.L., & Andrade, G. (2019). Formulations of arbuscular mycorrhizal fungi inoculum applied to soybean and corn plants under controlled and field conditions. Applied Soil Ecology, 142, 25–33. https://doi.org/10.1016/j.apsoil.2019.05.015
- Basiru, S., Mwanza, H.P., & Hijri, M. (2020). Analysis of Arbuscular mycorrhizal fungal inoculant benchmarks. Microorganisms, 9(1), 81. https://doi.org/10.3390/microorganisms9010081
- Beltrano, J., & Ronco, M.G. (2008). Improved tolerance of wheat plants (Triticum aestivum) to drought stress and rewatering by the arbuscular mycorrhizal fungus Glomus claroideum: Effect on growth and cell membrane stability. Brazilian Journal of Plant Physiology, 20(1), 29–37. https://doi.org/10.1590/S1677-04202008000100004
- Bilal, S., Khan, A.L., Shahzad, R., Asaf, S., Kang, S.-M., & Lee, I.-J. (2017). Endophytic Paecilomyces formosus LHL10 augments Glycine max adaptation to Ni-contamination through affecting Endogenous phytohormones and oxidative stress. Frontiers in Plant Science, 8, 870. https://doi.org/10.3389/fpls.2017.00870
- Birhane, E., Sterck, F.J., Fetene, M., Bongers, F., & Kuyper, T.W. (2012). Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Oecologia, 169(4), 895–904. https://doi.org/10.1007/s00442-012-2258-3
- Bramley, H., Turner, N.C., & Siddique, K.H.M. (2013). Water use efficiency. In C. Kole (Ed.), Genomics and Breeding for Climate-Resilient Crops (pp. 225–268). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-37048-9_6
- Brunetti, C., Saleem, A.R., Della Rocca, G., Emiliani, G., De Carlo, A., Balestrini, R., Khalid, A., Mahmood, T., & Centritto, M. (2021). Effects of plant growth-promoting rhizobacteria strains producing ACC deaminase on photosynthesis, isoprene emission, ethylene formation and growth of Mucuna pruriens (L.) DC. in response to water deficit. Journal of Biotechnology, 331, 53–62. https://doi.org/10.1016/j.jbiotec.2021.03.008
- Calvet, C., Camprubi, A., Pérez-Hernández, A., & Lovato, P.E. (2013). Plant growth stimulation and root colonization potential of in vivo versus in vitro arbuscular mycorrhizal inocula. HortScience Horts, 48(7), 897–901. https://doi.org/10.21273/HORTSCI.48.7.897
- Cardoso, I., & Kuyper, T. (2006). Mycorrhizas and tropical soil fertility. Agriculture, Ecosystems & Environment, 116(1–2), 72–84. https://doi.org/10.1016/j.agee.2006.03.011
- Carmen, C.A., Patricia, P., Rubén, B., & Victoria, S.M. (2016). Plant–Rhizobacteria interaction and drought stress tolerance in plants. In M. A. Hossain, S. H. Wani, S. Bhattacharjee, D. J. Burritt, & L.-S. P. Tran (Eds.), Drought Stress Tolerance in Plants, Vol 1 (pp. 287–308). Springer International Publishing. https://doi.org/10.1007/978-3-319-28899-4_12
- Cheng, Z., Park, E., & Glick, B.R. (2007). 1-Aminocyclopropane-1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Canadian Journal of Microbiology, 53(7), 912–918. https://doi.org/10.1139/W07-050
- Crossay, T., Majorel, C., Redecker, D., Gensous, S., Medevielle, V., Durrieu, G., Cavaloc, Y., & Amir, H. (2019). Is a mixture of arbuscular mycorrhizal fungi better for plant growth than single-species inoculants? Mycorrhiza, 29(4), 325–339. https://doi.org/10.1007/s00572-019-00898-y
- Garmendia, I., & Mangas, V. J. (2014). Comparative study of substrate-based and commercial formulations of arbuscular mycorrhizal fungi in Romaine lettuce subjected to salt stress. Journal of Plant Nutrition, 37(11), 1717–1731. https://doi.org/10.1080/01904167.2014.889149
- Glick, B.R., Liu, C., Ghosh, S., & Dumbroff, E.B. (1997). Early development of canola seedlings in the presence of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. Soil Biology and Biochemistry, 29(8), 1233–1239. https://doi.org/10.1016/S0038-0717(97)00026-6
- Glick, B.R., Penrose, D. M., & Li, J. (1998). A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. Journal of Theoretical Biology, 190(1), 63–68. https://doi.org/10.1006/jtbi.1997.0532
- Hasanpour, J., & Zand, B. (2014). Effect of wheat (Triticum aestivum) seed inoculation with bio-fertilizers on reduction of drought stress damage. Iranian Journal of Seed Sciences and Research, 1(2), 1–12. (In Persian with English abstract).
- Hashem, A., Abd_Allah, E.F., Alqarawi, A.A., Al Huqail, A.A., Egamberdieva, D., & Wirth, S. (2016). Alleviation of cadmium stress in Solanum lycopersicum by arbuscular mycorrhizal fungi via induction of acquired systemic tolerance. Saudi Journal of Biological Sciences, 23(2), 272–281. https://doi.org/10.1016/j.sjbs.2015.11.002
- Hosseini, S.S., Rejali, F., & Keshavarz, P. (2024). Effect of some biofertilizers on the physiological characteristics of wheat flag leaves and rhizosphere enzyme activities at different irrigation levels. Journal of Sol Biology, 12(1), 65–88. (In Persian with English abstract).
- Hyde, K.D., Xu, J., Rapior, S., Jeewon, R., Lumyong, S., Niego, A.G.T., Abeywickrama, P.D., Aluthmuhandiram, J.V.S., Brahamanage, R.S., Brooks, S., Chaiyasen, A., Chethana, K.W.T., Chomnunti, P., Chepkirui, C., Chuankid, B., de Silva, N.I., Doilom, M., Faulds, C., Gentekaki, E., & Stadler, M. (2019). The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Diversity, 97(1), 1–136. https://doi.org/10.1007/s13225-019-00430-9
- Jalili, F., Khavazi, K., Pazira, E., Nejati, A., Rahmani, H. A., Sadaghiani, H.R., & Miransari, M. (2009). Isolation and characterization of ACC deaminase-producing fluorescent Pseudomonads, to alleviate salinity stress on canola (Brassica napus) growth. Journal of Plant Physiology, 166(6), 667–674. https://doi.org/10.1016/j.jplph. 2008.08.004
- Jiriaie, M., Fateh, E., & Aynehband, A. (2014). Evaluation the morph physiological changes in wheat cultivars from the use of Mycorrhiza and Azospirillum. Iranian Journal of Field Crops Research, 12(4), 841–851. (In Persian with English abstract).
- Johansson, J.F., Paul, L.R., & Finlay, R.D. (2004). Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiology Ecology, 48(1), 1–13. https://doi.org/10.1016/j.femsec.2003.11.012
- Khan, Y., Shah, S., & Hui, T. (2022). The roles of arbuscular mycorrhizal fungi in influencing plant nutrients, photosynthesis, and Metabolites of Cereal Crops—A Review. Agronomy, 12(9), 2191. https://doi.org/10.3390/agronomy12092191
- Kormanik, P. P., & McGraw, A.-C. (1982). Quantification of vesicular-arbuscular mycorrhizae in plant roots. In N. C. Schenck (Ed.), Methods and principles of mycorrhizal research (pp. 37–47). American Phytopathological Society. https://api.semanticscholar.org/CorpusID:91636228
- Kumar, A., Patel, J. S., Meena, V. S., & Srivastava, R. (2019). Recent advances of PGPR based approaches for stress tolerance in plants for sustainable agriculture. Biocatalysis and Agricultural Biotechnology, 20, 101271. https://doi.org/10.1016/j.bcab.2019.101271
- Li, H., Guo, Q., Jing, Y., Liu, Z., Zheng, Z., Sun, Y., Xue, Q., & Lai, H. (2020). Application of streptomyces pactum Act12 enhances drought resistance in wheat. Journal of Plant Growth Regulation, 39(1), 122–132. https://doi.org/10.1007/s00344-019-09968-z
- Li, J., Meng, B., Chai, H., Yang, X., Song, W., Li, S., Lu, A., Zhang, T., & Sun, W. (2019). Arbuscular mycorrhizal fungi alleviate drought stress in C3 (Leymus chinensis) and C4 (Hemarthria altissima) grasses via altering antioxidant enzyme activities and photosynthesis. Frontiers in Plant Science, 10, 450785. https://doi.org/ 10.3389/fpls.2019.00499
- Lim, J.-H., & Kim, S.-D. (2013). Induction of drought stress resistance by multi-functional PGPR Bacillus licheniformis K11 in pepper. The Plant Pathology Journal, 29(2), 201–208. https://doi.org/10.5423/PPJ.SI.02.2013.0021
- Majidi, A., & Rejali, F. (2023). Mycorrhizal symbiosis and glycine betaine effect foliar application on some agronomic traits of rainfed wheat in calcareous soils. Iranian Journal of Soil and Water Research, 54(2), 281–297. (In Persian with English abstract).
- Malusà, E., Pinzari, F., & Canfora, L. (2016). Efficacy of biofertilizers: Challenges to improve crop production. in Microbial Inoculants in Sustainable Agricultural Productivity (pp. 17–40). Springer India. https://doi.org/10.1007/978-81-322-2644-4_2
- Mathur, S., Tomar, R.S., & Jajoo, A. (2019). Arbuscular Mycorrhizal fungi (AMF) protects photosynthetic apparatus of wheat under drought stress. Photosynthesis Research, 139(1–3), 227–238. https://doi.org/10.1007/s11120-018-0538-4
- Mayak, S., Tirosh, T., & Glick, B.R. (2004). Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Science, 166(2), 525–530. https://doi.org/10.1016/j.plantsci.2003.10.025
- Moradgholi, A., Mobasser, H., Ganjali, H., Fanaie, H., & Mehraban, A. (2022). WUE, protein and grain yield of wheat under the interaction of biological and chemical fertilizers and different moisture regimes. Cereal Research Communications, 50(1), 147–155. https://doi.org/10.1007/s42976-021-00145-1
- Nadeem, S. M., Ahmad, M., Zahir, Z. A., Javaid, A., & Ashraf, M. (2014). The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnology Advances, 32(2), 429–448. https://doi.org/10.1016/j.biotechadv.2013.12.005
- Nadeem, S.M., Naveed, M., Ayyub, M., Khan, M.Y., Ahmad, M., & Zahir, Z.A. (2016). Potential, limitations and future prospects of Pseudomonas for sustainable agriculture and environment: A Review. Soil & Environment, 35(2).
- Naseri, R., Barary, M., Zarea, M. J., Khavazi, K., & Tahmasebi, Z. (2017). Effect of plant growth promoting bacteria and Mycorrhizal fungi on growth and yield of wheat under dryland conditions. Journal of Sol Biology, 5(1), 49–66. (In Persian with English abstract).
- Naseri rad, H., Naseri, R., Mirzaei, A., & Zarei, B. (2021). Effects of phosphorous fertilizer and mycorrhizal fungi on yield and yield components of durum wheat (Triticum turgidum durum) under rainfed condition. Applied Field Crops Research, 34(3), 43–68. (In Persian with English abstract). https://doi.org/10.21608/ajas.2021.93649.1043
- Oliveira, R.S., Rocha, I., Ma, Y., Vosátka, M., & Freitas, H. (2016). Seed coating with arbuscular mycorrhizal fungi as an ecotechnologicalapproach for sustainable agricultural production of common wheat (Triticum aestivum). Journal of Toxicology and Environmental Health. Part A, 79(7), 329–337. https://doi.org/10.1080/15287394.2016.1153448
- Olumi somarin, S., Ajali, J., Faramarzi, A., Abdi, M., & Nazari, N. (2023). Study of the effect of irrigation, mycorrhiza, and azospirillum on the quantitative and qualitative yield of barley varieties. Iranian Journal of Soil and Water Research, 54(2), 407–427. (In Persian with English abstract).
- Omidvari, S., Salamati, N., & Abdi, S. (2020). Study the effects of irrigation regime and biofertilizers on yield and yield component of wheat. Journal of Crops Improvement, 22(2), 193–204. (In Persian with English abstract).
- Ortas, I., & Ustuner, O. (2014). The effects of single species, dual species and indigenous mycorrhiza inoculation on citrus growth and nutrient uptake. European Journal of Soil Biology, 63, 64–69. https://doi.org/10.1016/ j.ejsobi.2014.05.007
- Parihar, M., Rakshit, A., Rana, K., Prasad Meena, R., & Chandra Joshi, D. (2020). A consortium of arbuscular mycorrizal fungi improves nutrient uptake, biochemical response, nodulation and growth of the pea (Pisum sativum) under salt stress. Rhizosphere, 15, 100235. https://doi.org/10.1016/j.rhisph.2020.100235
- Pellegrino, E., Nuti, M., & Ercoli, L. (2022). Multiple arbuscular mycorrhizal fungal consortia enhance yield and fatty acids of Medicago sativa: A two-year field study on agronomic traits and tracing of fungal persistence. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.814401
- Phillips, J., & Hayman, D. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55(1), 158–161. https://doi.org/10.1016/S0007-1536(70)80110-3
- Pons, C., & Müller, C. (2022). Impacts of Drought Stress and Mycorrhizal Inoculation on the Performance of Two Spring Wheat Cultivars. Plants, 11(17), 2187. https://doi.org/10.3390/plants11172187
- Rahimi, Z., Hosseinpanahi, F., & Siosemardeh, A. (2019). Evaluation of yield, radiation and water use efficiency of drought resistant and susceptible wheat cultivars under different irrigation levels. Plant Production and Genetics, 2(1), 19–34. (In Persian with English abstract). https://jwr.uok.ac.ir/article_61144.html
- Rehman, M.M.U., Zhu, Y., Abrar, M., Khan, W., Wang, W., Iqbal, A., Khan, A., Chen, Y., Rafiq, M., Tufail, M. A., Ye, J.-S., & Xiong, Y.-C. (2024). Moisture- and period-dependent interactive effects of plant growth-promoting rhizobacteria and AM fungus on water use and yield formation in dryland wheat. Plant and Soil, 502(1), 149–165. https://doi.org/10.21203/rs.3.rs-1516690/v1
- Rocha, I., Duarte, I., Ma, Y., Souza-Alonso, P., Látr, A., Vosátka, M., Freitas, H., & Oliveira, R.S. (2019). Seed Coating with arbuscular mycorrhizal fungi for improved field production of Chickpea. Agronomy, 9(8), 471. https://doi.org/10.3390/agronomy9080471
- Rocha, I., Ma, Y., Souza-Alonso, P., Vosátka, M., Freitas, H., & Oliveira, R.S. (2019). Seed coating: A tool for delivering beneficial microbes to agricultural crops. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.01357
- Rubin, R.L., van Groenigen, K.J., & Hungate, B.A. (2017). Plant growth promoting rhizobacteria are more effective under drought: a meta-analysis. Plant and Soil, 416(1–2), 309–323. https://doi.org/10.1007/s11104-017-3199-8
- Ruíz-Sánchez, M., Armada, E., Muñoz, Y., García de Salamone, I.E., Aroca, R., Ruíz-Lozano, J.M., & Azcón, R. (2011). Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well-watered and drought conditions. Journal of Plant Physiology, 168(10), 1031–1037. https://doi.org/10.1016/j.jplph.2010.12.019
- Sahu, P. K., & Brahmaprakash, G. P. (2016). Formulations of biofertilizers – Approaches and advances. In R. Singh, D., Singh, H., Prabha (Ed.), Microbial Inoculants in Sustainable Agricultural Productivity (pp. 179–198). Springer India. https://doi.org/10.1007/978-81-322-2644-4_12
- Saif, S., Abid, Z., Ashiq, M.F., Altaf, M., & Ashraf, R.S. (2021). Biofertilizer formulations. In Biofertilizers (pp. 211–256). Wiley. https://doi.org/10.1002/9781119724995.ch7
- Siddiqui, Z. A., & Kataoka, R. (2011). Mycorrhizal inoculants: Progress in inoculant production technology. In Microbes and Microbial Technology (pp. 489–506). Springer New York. https://doi.org/10.1007/978-1-4419-7931-5_18
- Smyth, E.M., McCarthy, J., Nevin, R., Khan, M. R., Dow, J.M., O’Gara, F., & Doohan, F.M. (2011). In vitro analyses are not reliable predictors of the plant growth promotion capability of bacteria; a Pseudomonas fluorescens strain that promotes the growth and yield of wheat. Journal of Applied Microbiology, 111(3), 683–692. https://doi.org/10.1111/j.1365-2672.2011.05079.x
- Tabassum, B., Khan, A., Tariq, M., Ramzan, M., Iqbal Khan, M.S., Shahid, N., & Aaliya, K. (2017). Bottlenecks in commercialisation and future prospects of PGPR. Applied Soil Ecology, 121(October), 102–117. https://doi.org/10.1016/j.apsoil.2017.09.030
- Tang, H., Hassan, M.U., Feng, L., Nawaz, M., Shah, A.N., Qari, S.H., Liu, Y., & Miao, J. (2022). The critical role of arbuscular mycorrhizal fungi to improve drought tolerance and nitrogen use efficiency in crops. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.919166
- Treseder, K. K. (2013). The extent of mycorrhizal colonization of roots and its influence on plant growth and phosphorus content. Plant and Soil, 371(1), 1–13. https://doi.org/10.1007/s11104-013-1681-5
- Unkovich, M., Baldock, J., & Forbes, M. (2010). Variability in harvest index of grain crops and potential significance for carbon accounting. In D. L. Sparks (Ed.), Advances in Agronomy (Vol. 105, pp. 173–219). Academic Press. https://doi.org/10.1016/S0065-2113(10)05005-4
- Yagini, F., seyed sharifi, R., Khomari, S., & Gasemi, M. (2020). Effect of supplementary irrigation and seed inoculation with bio fertilizers on yield and some physiological traits of rainfed wheat. Jispp, 9(39), 147–163. (In Persian with English abstract). http://jispp.iut.ac.ir/article-1-1321-en.html
- Yavuz, D., Baştaş, K. K., Seymen, M., Yavuz, N., Kurtar, E. S., Süheri, S., Türkmen, Ö., Gür, A., & Kıymacı, G. (2023). Role of ACC deaminase-producing rhizobacteria in alleviation of water stress in watermelon. Scientia Horticulturae, 321, 112288. https://doi.org/10.1016/j.scienta.2023.112288
- Zabihi, H. R., Savaghebi, G. R., Khavazi, K., Ganjali, A., & Miransari, M. (2011). Pseudomonas bacteria and phosphorous fertilization, affecting wheat (Triticum aestivum ) yield and P uptake under greenhouse and field conditions. Acta Physiologiae Plantarum, 33(1), 145–152. https://doi.org/10.1007/s11738-010-0531-9
- Zahir, Z.A., Munir, A., Asghar, H.N., Shaharoona, B., & Arshad, M. (2008). Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas (Pisum sativum) under drought conditions. JOournal Microbiology Biotechnology, 18(5), 958–963. https://doi.org/10.1016/s1002-0160(08)60055-7
- Zarei, T., Moradi, A., Kazemeini, S.A., Akhgar, A., & Rahi, A.A. (2020). The role of ACC deaminase producing bacteria in improving sweet corn (Zea mays var saccharata) productivity under limited availability of irrigation water. Scientific Reports, 10(1), 20361. https://doi.org/10.1038/s41598-020-77305-6
- Zhang, X., Wang, L., Ma, F., Yang, J., & Su, M. (2017). Effects of arbuscular mycorrhizal fungi inoculation on carbon and nitrogen distribution and grain yield and nutritional quality in rice (Oryza sativa ). Journal of the Science of Food and Agriculture, 97(9), 2919–2925. https://doi.org/https://doi.org/10.1002/jsfa.8129
|