[1] Abbagari, S., Houwe, A., Saliou, Y., Douvagaï, D., Chu, Y.M., Inc, M., Rezazadeh, H. and Doka, S.Y. Analytical survey of the predator– prey model with fractional derivative order, AIP Advances, 11 (3) (2021) 035127.
[2] Akbulut, A.R.Z.U., Mirzazadeh, M., Hashemi, M.S., Hosseini, K., Salahshour, S. and Park, C. Triki–biswas model: Its symmetry reduction, Nucci’s reduction and conservation laws, Int. J. Mod. Phys. B. 37 (07) (2023) 2350063.
[3] Arnold, L., Jones, C.K., Mischaikow, K., Raugel, G. and Jones, C.K.,Geometric singular perturbation theory, Dynamical Systems: Lec-tures Given at the 2nd Session of the Centro Internazionale Matematico Estivo (CIME) held in Montecatini Terme, Italy, June 13–22, 1994 (1995): 44–118.
[4] Cheng, X., Hou, J. and Wang, L. Lie symmetry analysis, invariant sub-space method and q-homotopy analysis method for solving fractional system of single-walled carbon nanotube, Comput. Appl. Math. 40 (2021) 1–17.
[5] Chentouf, B. and Guesmia, A. Well-posedness and stability results for the Korteweg–de vries–Burgers and Kuramoto–Sivashinsky equations with infinite memory: A history approach, Nonlinear Analysis: Real World Applications 65 (2022) 103508.
[6] Chu, Y., Khater, M.M. and Hamed, Y. Diverse novel analytical and semi-analytical wave solutions of the generalized (2+ 1)-dimensional shallow water waves model, AIP Advances ,11 (1) (2021) 015223.
[7] Chu, Y., Shallal, M.A., Mirhosseini-Alizamini, S.M., Rezazadeh, H., Javeed, S. and Baleanu, D. Application of modified extended tanh tech-nique for solving complex ginzburg-landau equation considering Kerr law nonlinearity, Comput. Mater. Contin. 66 (2) (2021) 1369–1377.
[8] Chu, Y.-M., Inc, M., Hashemi, M.S., and Eshaghi, S. Analytical treatment of regularized prabhakar fractional differential equations by invariant sub-spaces, Comput. Appl. Math. 41 (6) (2022) 271.
[9] Cinar, M., Secer, A., Ozisik, M. and Bayram, M. Optical soliton solutions of (1+ 1)-and (2+ 1)-dimensional generalized Sasa–Satsuma equations using new kudryashov method, Int. J. Geom. Methods Mod. Phys. 20 (02) (2023) 2350034.
[10] Du, Z. and Li, J. Geometric singular perturbation analysis to Camassa-Holm Kuramoto-Sivashinsky equation, J. Differ. Equ.306 (2022) 418–438.
[11] Euler, N., Shul’ga, M.W. and Steeb, W.-H. Approximate symmetries and approximate solutions for a multidimensional Landau-Ginzburg equation, J. Phys. A Math. Gen. 25 (18) (1992) L1095.
[12] Fan, X.and Tian, L. The existence of solitary waves of singularly per-turbed MKdv–KS equation, Chaos Solit. Fract. 26 (4) (2005) 1111–1118.
[13] Grebenev, V. and Oberlack, M. Approximate lie symmetries of the Navier-stokes equations, J. Nonlinear Math. Phys. 14 (2) (2007) 157–163.
[14] Hashemi, M.S. and Mirzazadeh, M. Optical solitons of the perturbed nonlinear Schrödinger equation using lie symmetry method, Optik 281 (2023) 170816.
[15] Kara, A., Mahomed, F. and Unal, G. Approximate symmetries and con-servation laws with applications, Int. J. Theor. Phys. 38 (9) (1999) 2389–2399.
[16] Malik, S., Hashemi, M.S., Kumar, S., Rezazadeh, H., Mahmoud, W. and Osman, M. Application of new Kudryashov method to various nonlinear partial differential equations, Opt. Quantum Electron. 55 (1) (2023) 8.
[17] Mohammadpouri, A., Hasannejad, S. and Haji Badali, A. The study of maximal surfaces by Lie symmetry, Comput. Method. Differ. Equ. (2024) 1–8.
[18] Mohammadpouri, A., Hashemi, M.S. and Samaei, S. Noether symmetries and isometries of the area-minimizing Lagrangian on vacuum classes of pp-waves, Eur. Phys. J. Plus, 138 (2) (2023) 1–7.
[19] Mohammadpouri, A., Hashemi, M.S., Samaei, S. and Salar Anvar, S. Symmetries of the minimal Lagrangian hypersurfaces on cylindrically symmetric static space-times, Comput. Method. Differ. Equ. 13(1) (2025) 249–257.
[20] Ozisik, M., Secer, A., Bayram, M., Sulaiman, T.A. and Yusuf, A. Ac-quiring the solitons of inhomogeneous Murnaghan’s rod using extended Kudryashov method with Bernoulli–Riccati approach, Int. J. Modern Phys. B 36 (30) (2022) 2250221.
[21] Prakash, P., Priyendhu, K. and Lakshmanan, M. Invariant subspace method for (m+ 1)-dimensional non-linear time-fractional partial differential equations, Commun. Nonlinear Sci. Numer. Simul. 111 (2022) 106436.
[22] Sahoo, S., Saha Ray, S., Abdou, M.A.M., Inc, M. and Chu, Y.M. New soliton solutions of fractional Jaulent-Miodek system with symmetry analysis, Symmetry 12 (6) (2020) 1001.
[23] Triki, H., Mirzazadeh, M., Ahmed, H.M., Samir, I. and Hashemi, M.S., Higher-order Sasa–Satsuma equation: Nucci’s reduction and soliton solutions, Eur. Phys. J. Plus, 138 (5) (2023) 1–10.
[24] Xia, F.L., Jarad, F., Hashemi, M.S. and Riaz, M.B. A reduction technique to solve the generalized nonlinear dispersive mk (m, n) equation with new local derivative, Results Phys. 38 (2022) 105512.
[25] Yen, T.C., Lang, R.A. and Izmaylov, A.F. Exact and approximate symmetry projectors for the electronic structure problem on a quantum computer, J. Chem. Phys. 151 (16) (2019) 164111 .