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Abstract

The analysis of approximate symmetries in perturbed nonlinear par-
tial differential equations (PDEs) stands as a cornerstone for unraveling
complex physical behaviors and solution patterns. This paper delves into
the investigation of approximate symmetries inherent in the perturbed
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Korteweg-de Vries and Kuramoto-Sivashinsky (KdV-KS) equation, funda-
mental models in the realm of fluid dynamics and wave phenomena. Our
study commences by detailing the method to derive approximate vector
Lie symmetry generators that underpin the approximate symmetries of the
perturbed KdV-KS equation. These generators, while not exact, provide
invaluable insights into the equation’s dynamics and solution characteris-
tics under perturbations. A comprehensive approximate commutator table
is subsequently constructed, elucidating the relationships and interplay be-
tween these approximate symmetries and shedding light on their algebraic
structure. Leveraging the power of the adjoint representation, we examine
the stability of these approximate symmetries when subjected to pertur-
bations. This analysis enables us to discern the most resilient symmetries,
instrumental in identifying intrinsic features that persist even in the face
of disturbances. Furthermore, we harness the concept of approximate sym-
metry reductions, a pioneering technique that allows us to distill crucial
dynamics from the complexity of the perturbed equation. Through this
methodology, we uncover invariant solutions and reduced equations that
serve as effective surrogates for the original system, capturing its essential
behavior and facilitating analytical and numerical investigations. In sum-
mary, our exploration into the approximate symmetries of the perturbed
KdV-KS equation not only advances our comprehension of the equation’s
intricate dynamics but also offers a comprehensive framework for studying
the impact of perturbations on approximate symmetries, all while opening
new avenues for tackling nonlinear PDEs in diverse scientific disciplines.

AMS subject classifications (2020): Primary 53A10; Secondary 22E70, 26M60.

Keywords: Approximate Lie symmetries; Commutator table; Adjoint rep-
resentation; Reductions.

1 Introduction

The Korteweg-de Vries and Kuramoto-Sivashinsky (KdV-KS) equation is a
notable partial differential equation (PDE) that amalgamates the Korteweg-
de Vries equation, renowned for describing long, weakly nonlinear waves, with
the Kuramoto-Sivashinsky equation, which captures spatiotemporal chaos in
pattern-forming systems. This fusion yields a versatile equation capable of
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3 Approximate symmetries of the perturbed KdV-KS equation

modeling a diverse array of physical phenomena. The KdV-KS equation finds
application in various fields, including fluid dynamics, combustion, and non-
linear optics. In fluid dynamics, it can depict the evolution of complex wave
patterns on fluid interfaces, while in combustion processes, it may illuminate
the behavior of flame fronts and combustion instabilities. Additionally, the
equation’s presence in the realm of nonlinear optics can aid in understand-
ing pulse propagation in optical fibers. Its broad applicability underscores
the KdV-KS equation’s significance as a tool for investigating intricate dy-
namics in real-world systems and its role in advancing our comprehension of
nonlinear phenomena across multiple scientific disciplines [10, 5, 12].

Analytical methods for solving PDEs constitute a vital framework in un-
derstanding the behavior of various physical, mathematical, and engineering
systems. These methods encompass a range of techniques, such as Lie sym-
metry method [14, 2, 18, 19, 17, 16, 22], Kudryashov’s method [16, 20, 9],
Nucci’s reduction method [23, 24], invariant subspace method [8, 21, 4], and
Tanh method [7, 1, 6].

In cases where PDEs possess specific geometrical or algebraic properties,
separation of variables can yield exact solutions by decomposing the equation
into simpler ordinary differential equations. Similarity transformations assist
in reducing complex PDEs to canonical forms that admit analytical solutions.
Integral transforms, like the Fourier and Laplace transforms, provide a pow-
erful means to convert differential equations into algebraic equations that
can be more easily solved. Perturbation methods, including the method of
matched asymptotic expansions and multiple scales analysis, are particularly
useful when dealing with systems that exhibit small parameter deviations
from simpler cases, allowing the derivation of approximate solutions.

These analytical techniques not only offer insights into the underlying dy-
namics of diverse systems but also serve as benchmarks for numerical meth-
ods. However, their applicability is often constrained by the complexity of
the equations and the presence of nonlinear terms. In such cases, a combi-
nation of these methods, along with innovations in mathematical analysis,
plays a crucial role in uncovering solutions that enrich our understanding of
the intricate interplay between mathematics and the physical world.
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We shall research the perturbed KdV-KS equations’s vector fields, ap-
proximate symmetry, and symmetry reductions. A perturbed form of the
KdV-KS equations are

ut + uux + uxxx + ϵ(uxx + uxxxx) = 0, (1)

where 0 < ϵ � 1 is a small parameter, x ∈ R, and t ≥ 0.

The structure of this work is as follows. We find the approximate sym-
metry and optimal system of the perturbed KdV-KS equation in section 2.
Ordinary differential equation symmetry reductions are covered in section 3.
Finally, section 4 will provide the conclusions.

2 Analysis of the approximate Lie symmetries

Approximate Lie symmetries play a crucial role in various scientific and math-
ematical contexts, particularly in the study of dynamical systems and differ-
ential equations. Unlike exact symmetries, which lead to conserved quan-
tities and well-defined transformations, approximate Lie symmetries emerge
in situations where the underlying system’s behavior is influenced by small
perturbations or deviations from ideal conditions. These symmetries pro-
vide insights into the system’s response to fluctuations and disturbances,
contributing to our understanding of stability, chaos, and the emergence of
complex patterns. By analyzing the behavior of systems under approximate
Lie symmetries, researchers gain valuable insights into the underlying dy-
namics and are better equipped to model real-world phenomena with a more
comprehensive perspective.

Let 4(t, x, u, ϵ) = 40(t, x, u) + ϵ41(t, x, u) = ut + uux + uxxx + ϵ(uxx +

uxxxx). If an operator Y = Y0 + ϵY1 satisfies[
Y (4)4(t, x, u, ϵ)

]
△(t,x,u,ϵ)=0

= 0, (2)

then it is referred to as an approximation Lie symmetry generator. Here, Y (4)

is the forth-order prolongation of the forth-order approximate Lie symmetry
Y , and
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5 Approximate symmetries of the perturbed KdV-KS equation

Y0 = ξ10(t, x, u)
∂

∂t
+ ξ20(t, x, u)

∂

∂x
+ η0(t, x, u)

∂

∂u
,

Y1 = ξ11(t, x, u)
∂

∂t
+ ξ21(t, x, u)

∂

∂x
+ η1(t, x, u)

∂

∂u
.

The prolongation formula is a fundamental tool within the realm of Lie sym-
metry methods, a powerful mathematical approach used to analyze and solve
differential equations. In this context, the prolongation formula extends the
Lie derivative to higher-order derivatives and introduces a systematic way
of calculating symmetries of a given differential equation. By iteratively ap-
plying the prolongation formula, one can uncover hidden symmetries that
may not be immediately apparent. This process allows researchers to deter-
mine transformations that leave the equation invariant and identify conserved
quantities or transformations that simplify its solutions.

Equation (2) divides two parts into[
Y

(4)
0 40(t, x, u, ϵ)

]
△0(t,x,u,ϵ)=0

= 0, (3)[
Y

(4)
1 40(t, x, u, ϵ) + Y

(4)
0 41(t, x, u, ϵ)

]
△(t,x,u,ϵ)=0

= 0. (4)

By conditions (3) and (4), we arrive at the set of determining equations below:

ξ10 ,t = ξ10 ,x = ξ10 ,u = ξ20 ,x = ξ20 ,u = η0,u = 0, η0,xxx + η0,t + uη0,x = 0,

η0 − ξ20 ,t = 0, ξ11 ,x = ξ11 ,u = ξ21 ,u = 0, η1,uu = 0, η1,xxx + η1,t + uη1,x = 0,

2uξ21 ,x − ξ21 ,xxx − ξ21 ,t + 3η1,xxu + η1 = 0, ξ11 ,t − 3ξ21 ,x = 0, η1,xu − ξ21 ,xx = 0.

Solving this PDE system gives us

ξ10 = a0, ξ20 = b0t+ c0, η0 = b0,

ξ11 = −3

2
a1t+ b1, ξ21 = −1

2
a1x+ c1t+ d1, η1 = a1u+ c1.

Therefore

X =(a0 + ϵ(−3

2
a1t+ b1))∂t + (b0t+ c0 + ϵ(−1

2
a1x+ c1t+ d1))∂x

+ (b0 + ϵ(a1u+ c1))∂u

where a0, b0, c0, a1, b1, c1, and d1 are constants. Consequently, the following
seven independent approximate operators span infinitesimal symmetries of
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Table 1: Approximate commutator table for symmetries in (1)

[yi, yj ] y1 y2 y3 y4 y5 y6 y7

y1 0 0 y2 0 − 3
2y4 0 y6

y2 0 0 0 0 − 1
2y6 0 0

y3 −y2 0 0 −y6 y7 0 0
y4 0 0 y6 0 0 0 0
y5

3
2y4

1
2y6 −y7 0 0 0 0

y6 0 0 0 0 0 0 0
y7 −y6 0 0 0 0 0 0

equation (1)

y1 = ∂t, y2 = ∂x, y3 = t∂x + ∂u, y4 = ϵ∂t, y5 = ϵ(−3

2
t∂t −

1

2
x∂x + u∂u),

y6 = ϵ∂x, y7 = ϵ(t∂x + ∂u).

In the field of Lie symmetry methods, a commutator table serves as a fun-
damental tool for analyzing the algebraic structure of Lie symmetries associ-
ated with a system of differential equations. The commutator of two vector
fields, representing different symmetry transformations, is calculated and or-
ganized in a table format. This table provides valuable information about
the Lie algebra generated by these vector fields, revealing how they interact
and combine. By determining the commutators, researchers can discern the
algebraic relationships between symmetries, uncover hidden patterns, and
ultimately construct a Lie algebra that captures the system’s inherent sym-
metries. The commutator table thus acts as a guiding compass in the ex-
ploration of differential equations, aiding in the classification, solution, and
deeper comprehension of complex dynamical systems. Table 1 contains the
approximate commutator table for symmetries in equation (1). The adjoint
representation involves mapping each element of a Lie group to an associated
automorphism of its corresponding Lie algebra. This representation provides
insights into how transformations in the group relate to transformations in
the algebra, offering a way to study the Lie group through its associated
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7 Approximate symmetries of the perturbed KdV-KS equation

Table 2: Adjoint representation spanned by the the basis approximate symmetries of
the KdV-KS equation

Ad(exp(ayi))yj y1 y2 y3 y4 y5 y6 y7

y1 y1 y2 y3 − ay2 y4 y5 +
3
2ay4 y6 y7 − ay6

y2 y1 y2 y3 y4 y5 +
1
2ay6 y6 y7

y3 y1 + ay2 y2 y3 y4 + ay6 y5 − ay7 y6 y7

y4 y1 y2 y3 − ay6 y4 y5 y6 y7

y5 y1 − 3
2ay4 y2 − 1

2ay6 y3 − 1
2ay7 y4 y5 y6 y7

y6 y1 y2 y3 y4 y5 y6 y7

y7 y1 + ay6 y2 y3 y4 y5 y6 y7

Lie algebra. By analyzing the adjoint representation, researchers can explore
the relationships between different Lie group elements and understand the
symmetries and transformations that underlie a given system of differential
equations. This representation is a key tool for investigating the symmetries,
conservation laws, and invariants inherent in complex dynamical systems,
ultimately facilitating the application of Lie symmetry methods to a wide
range of scientific and mathematical problems. Each yi, i = 1, . . . , 7 of the
basis approximate infinitesimal symmetries spans an adjoint representation
Ad(exp(ayi))yj , a is a parameter, given by

Ad(exp(ayi))yj = yj − a [yi, yj ] +
a2

2
[yi, [yi, yj ]]− · · · .

Table 2 lists each adjoint representation of the Lie approximate symmetry
of the KdV-KS equation. Here, in the following, we find that the group
approximate transformation hi, which is generated by the yi for i = 1, 2, . . . , 7

for the KdV-KS equation (1)
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h1.(t, x, u) 7→ (t+ a, x, u),

h2.(t, x, u) 7→ (t, x+ a, u),

h3.(t, x, u) 7→ (t, x+ ta, u+ a),

h4.(t, x, u) 7→ (t+ aϵ, x, u),

h5.(t, x, u) 7→ ((1− 3
2aϵ)t, ((1−

1
2aϵ)x, ((1 + aϵ)u),

h6.(t, x, u) 7→ (t, x+ aϵ, u),

h7.(t, x, u) 7→ (t, x+ aϵt, u+ aϵ).

Consequently, the invariant solutions of a solution u = g(t, x) for the KdV-KS
equation is given by

h1.g(t, x) = g(t− a, x),

h2.g(t, x) = g(t, x− a),

h3.g(t, x) = g(t, x− ta) + a,

h4.g(t, x) = g(t− aϵ, x),

h5.g(t, x) = (1 + aϵ)g((1 + 3
2aϵ)t, (1 +

1
2aϵ)x),

h6.g(t, x) = g(t, x− ϵa),

h7.g(t, x) = ϵg(t, x− aϵt) + a.

It would be useful to determine the minimal collection of subgroups that will
produce all potential group invariant solutions since a solution can be utilized
to construct additional solutions using various groups. An optimal system,
which is a collection of such solutions, is created by analyzing the manner in
which group invariant solutions change one another via the adjoint operation.
Thus we will construct a one-dimensional optimal system of approximate Lie
subalgebra of perturbed KdV-KS equation by considering an arbitrary ele-

ment y =
7∑

i=1

siyi of KdV-KS equation lie algebra g. The map Gai
i : g → g

given by y → Ad(exp(aiyi))y is a linear, i = 1, . . . , 7. By using Table 2 the
matrix Mai

i of Gai
i with respect to the approximate basis is given by
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9 Approximate symmetries of the perturbed KdV-KS equation

Ma1
1 =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 −a1 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 3
2a1 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 −a1 1


, Ma2

2 =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 1
2a2 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


,

Ma3
3 =



1 a3 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 a3 0

0 0 0 0 1 0 −a3

0 0 0 0 0 1 0

0 0 0 0 0 0 1


, Ma4

4 =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 −a4 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


,

Ma5
5 =



1 0 0 − 3
2a5 0 0 0

0 1 0 0 0 − 1
2a5 0

0 0 1 0 0 0 − 1
2a5

0 0 0 a5 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


, Ma6

6 = I7, Ma7
7 =



1 0 0 0 0 a7 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


.

Then it is seen that

Ga7
7 ◦Ga6

6 ◦ · · · ◦Ga1
1 : y 7→s1y1 + (a3s1 + s2 − a1s3)y2 + s3y3

+ (
3

2
(a1s5 + a5s1) + s4)y4 + s5y5 + [a3(s4 +

3

2
a1s5)

− 1

2
a5(a3s1 + s2 − a1s3)− a4s3

+
1

2
a2s5 + s6 − a1s7 + a7s1]y6

+ (s7 − a3s5 −
1

2
a5s3)y7.

Now, by setting suitable ai, we can easily omit the coefficient of yj in several
cases, so y can be reduced and one-dimensional optimal system is provided
by
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y1 + δy3 + βy4, y1 + αy3 + γy5, y1 + αy3 + λy7, y2 + υy4 + λy7, y2 + γy5,

y3 + βy4 + γy5, y4 + λy7, y5, y6, y7,

where α, β, γ, λ, and δ, υ 6= 0 are real numbers.

3 Approximate symmetry reductions

In this section, we consider some reductions of equation (1) corresponding to
some approximate Lie symmetries [13, 11, 15, 25]. The reduction of PDEs
by approximate symmetries is a valuable technique used to simplify the com-
plexity of solving these equations while retaining essential features of their
behavior.

Reduction 3.1. Similarity variable respect to the symmetry y1, is
u(t, x) = s0(x) + ϵs1(x) + O(ϵ2), substituting into equation (1). Comparing
of the constant and ϵ coefficients, we get the following ordinary differential
equation (ODE) system: ( s0

2

2 )′ + s
(3)
0 = 0,

(s0s1)
′ + s1

(3) + s′′0 − ( s0
2

2 )′′ = 0,

where ′ shows the derivative respect to x.

Note that the symmetry y2 produces the trivial solutions.

Reduction 3.2. Similarity variable of y3 is u(t, x) = x
t + s0(t)+ ϵs1(t)+

O(ϵ2) , where s0(t) and s1(t) admit the following first order ODE system: ts′0 + s0 = 0,

ts′1 + s1 = 0,

where ′ shows the derivative respect to t. Therefore, we find that s0(t) = c0
t

and s1(t) =
c1
t . Thus we have

u(t, x) =
x

t
+

c0
t
+ ϵ

c1
t
+O(ϵ2).

Reduction 3.3. Similarity variable respect to the symmetry y4, is u(t, x) =
s0(x)+ ϵs1(t, x)+O(ϵ2). Substituting into (1), it satisfies the following PDE:

Iran. J. Numer. Anal. Optim., Vol. ??, No. ??, ??, pp ??



11 Approximate symmetries of the perturbed KdV-KS equation ( s0
2

2 )′ + s
(3)
0 = 0,

s1,t + (s0s1)
′ + s1

(3) + s′′0 − ( s0
2

2 )′′ = 0,

where ′ shows the derivative respect to x.
Reduction 3.4. For the approximate operator y5 the similarity variables

are η =
t

x3
, u(t, x) = s0(η)

x2 + ϵ s1(η)xα + O(ϵ2). Therefore, s0 satisfies the
following reduced equation:

27η3s
(3)
0 + 90η2s′′0 + 186ηs′0 + 3ηs′0s0 − s′0 + 2s20 + 24s0 = 0,

where s′0 =
ds0
dη

. Also, s1 and α may be determined by following equation:

(
s1
xα

),t + (
s0s1
xα+2

),x + (
s1
xα

),xxx + (
s0
x2

),xx + (
s0
x2

),xxxx = 0.

Reduction 3.5. Similarity variable of y6 is u(t, x) = c0 + ϵs1(t, x) + O(ϵ2),
where s1(t, x) admits the following PDE equation:

s1,t + c0s1,x + s1,xxx = 0.

Reduction 3.6. Similarity variable of y7 is u(t, x) = x
t +

c0
t +ϵs1(t, x)+O(ϵ2),

where s1(t, x) admits the following PDE equation:

s1 + ts1,t + (c0 + x)s1,x + ts1,xxx = 0.

Reduction 3.7. Similarity variables respect to the symmetry y1 + y6 are
u(t, x) = s(η), η = x − ϵt. We see that the parameter ϵ does not appear
directly, but it is instead implicitly contained within the relevant variables.
Substituting it into equation (1), we obtain the following reduced approxi-
mate ODE:

ss′ + s(3) + ϵ(−s′ + s′′ + s(4)) = 0,

where s′ =
ds

dη
. Integrating this ODE under the conditions s(∓∞) = 0,

s′(∓∞) = 0, s′′(∓∞) = 0, and s(3)(∓∞) = 0, and setting the integral
constant to zero result in

s2

2
+ s′′ + ϵ(−s+ s′ + s(3)) = 0.

This equation can be given as

Iran. J. Numer. Anal. Optim., Vol. ??, No. ??, ??, pp ??
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ds
dη = v,

dv
dη = w,

ϵdwdη = − s2

2 − w − ϵv + ϵs.

(5)

By putting ϵ = 0, in the above slow system, the critical manifold M0 is any
compact subset contained in the set of critical points {(s, v, w) | w = − s2

2 }
(see a complete information about critical manifold and Fenichel’s theorems
in [3]). Therefore, the slow flow on M0 is given by the following system:

ds
dη = v,

dv
dη = − s2

2 .
(6)

Figure 1 shows the orbit of (6) to the critical point (0, 0).

By Fenichel’s invariant manifold theorem, for sufficiently small ϵ, the slow
manifold Mϵ located within O(ϵ) of Mo, that is,

w = −s2

2
+ ϵg(s, v) +O(ϵ2).

Substituting this relation into the last equation of slow system (5) gives
g(s, v) = (s− 1)v + s.

4 Conclusion

In this research, the perturbed KdV-KS equation was studied using Lie ap-
proximation symmetry analysis. We were able to reduce this problem using
similarity Lie approximation algebra. Based on the optimal system approach,
all of the group-invariant solutions to equation (1) are taken into considera-
tion. Wide classes of nonlinear differential equations can be effectively solved
using the fundamental concept provided in this study.
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13 Approximate symmetries of the perturbed KdV-KS equation

Figure 1: The orbit of (6) to the critical point (0, 0)

References

[1] Abbagari, S., Houwe, A., Saliou, Y., Douvagaï, D., Chu, Y.M., Inc,
M., Rezazadeh, H. and Doka, S.Y. Analytical survey of the predator–
prey model with fractional derivative order, AIP Advances, 11 (3) (2021)
035127.

[2] Akbulut, A.R.Z.U., Mirzazadeh, M., Hashemi, M.S., Hosseini, K.,
Salahshour, S. and Park, C. Triki–biswas model: Its symmetry reduction,
Nucci’s reduction and conservation laws, Int. J. Mod. Phys. B. 37 (07)
(2023) 2350063.

[3] Arnold, L., Jones, C.K., Mischaikow, K., Raugel, G. and Jones,
C.K.,Geometric singular perturbation theory, Dynamical Systems: Lec-
tures Given at the 2nd Session of the Centro Internazionale Matematico
Estivo (CIME) held in Montecatini Terme, Italy, June 13–22, 1994 (1995):
44–118.

Iran. J. Numer. Anal. Optim., Vol. ??, No. ??, ??, pp ??



Mohammadpouri, Hashemi, Abbasi and Abbasi 14

[4] Cheng, X., Hou, J. and Wang, L. Lie symmetry analysis, invariant sub-
space method and q-homotopy analysis method for solving fractional sys-
tem of single-walled carbon nanotube, Comput. Appl. Math. 40 (2021)
1–17.

[5] Chentouf, B. and Guesmia, A. Well-posedness and stability results for
the Korteweg–de vries–Burgers and Kuramoto–Sivashinsky equations with
infinite memory: A history approach, Nonlinear Analysis: Real World
Applications 65 (2022) 103508.

[6] Chu, Y., Khater, M.M. and Hamed, Y. Diverse novel analytical and semi-
analytical wave solutions of the generalized (2+ 1)-dimensional shallow
water waves model, AIP Advances ,11 (1) (2021) 015223.

[7] Chu, Y., Shallal, M.A., Mirhosseini-Alizamini, S.M., Rezazadeh, H.,
Javeed, S. and Baleanu, D. Application of modified extended tanh tech-
nique for solving complex ginzburg-landau equation considering Kerr law
nonlinearity, Comput. Mater. Contin. 66 (2) (2021) 1369–1377.

[8] Chu, Y.-M., Inc, M., Hashemi, M.S., and Eshaghi, S. Analytical treatment
of regularized prabhakar fractional differential equations by invariant sub-
spaces, Comput. Appl. Math. 41 (6) (2022) 271.

[9] Cinar, M., Secer, A., Ozisik, M. and Bayram, M. Optical soliton solutions
of (1+ 1)-and (2+ 1)-dimensional generalized Sasa–Satsuma equations
using new kudryashov method, Int. J. Geom. Methods Mod. Phys. 20 (02)
(2023) 2350034.

[10] Du, Z. and Li, J. Geometric singular perturbation analysis to Camassa-
Holm Kuramoto-Sivashinsky equation, J. Differ. Equ.306 (2022) 418–438.

[11] Euler, N., Shul’ga, M.W. and Steeb, W.-H. Approximate symmetries and
approximate solutions for a multidimensional Landau-Ginzburg equation,
J. Phys. A Math. Gen. 25 (18) (1992) L1095.

[12] Fan, X.and Tian, L. The existence of solitary waves of singularly per-
turbed MKdv–KS equation, Chaos Solit. Fract. 26 (4) (2005) 1111–1118.

Iran. J. Numer. Anal. Optim., Vol. ??, No. ??, ??, pp ??



15 Approximate symmetries of the perturbed KdV-KS equation

[13] Grebenev, V. and Oberlack, M. Approximate lie symmetries of the
Navier-stokes equations, J. Nonlinear Math. Phys. 14 (2) (2007) 157–163.

[14] Hashemi, M.S. and Mirzazadeh, M. Optical solitons of the perturbed
nonlinear Schrödinger equation using lie symmetry method, Optik 281
(2023) 170816.

[15] Kara, A., Mahomed, F. and Unal, G. Approximate symmetries and con-
servation laws with applications, Int. J. Theor. Phys. 38 (9) (1999) 2389–
2399.

[16] Malik, S., Hashemi, M.S., Kumar, S., Rezazadeh, H., Mahmoud, W. and
Osman, M. Application of new Kudryashov method to various nonlinear
partial differential equations, Opt. Quantum Electron. 55 (1) (2023) 8.

[17] Mohammadpouri, A., Hasannejad, S. and Haji Badali, A. The study of
maximal surfaces by Lie symmetry, Comput. Method. Differ. Equ. (2024)
1–8.

[18] Mohammadpouri, A., Hashemi, M.S. and Samaei, S. Noether symmetries
and isometries of the area-minimizing Lagrangian on vacuum classes of
pp-waves, Eur. Phys. J. Plus, 138 (2) (2023) 1–7.

[19] Mohammadpouri, A., Hashemi, M.S., Samaei, S. and Salar Anvar, S.
Symmetries of the minimal Lagrangian hypersurfaces on cylindrically
symmetric static space-times, Comput. Method. Differ. Equ. 13(1) (2025)
249–257.

[20] Ozisik, M., Secer, A., Bayram, M., Sulaiman, T.A. and Yusuf, A. Ac-
quiring the solitons of inhomogeneous Murnaghan’s rod using extended
Kudryashov method with Bernoulli–Riccati approach, Int. J. Modern Phys.
B 36 (30) (2022) 2250221.

[21] Prakash, P., Priyendhu, K. and Lakshmanan, M. Invariant subspace
method for (m+ 1)-dimensional non-linear time-fractional partial dif-
ferential equations, Commun. Nonlinear Sci. Numer. Simul. 111 (2022)
106436.

Iran. J. Numer. Anal. Optim., Vol. ??, No. ??, ??, pp ??



Mohammadpouri, Hashemi, Abbasi and Abbasi 16

[22] Sahoo, S., Saha Ray, S., Abdou, M.A.M., Inc, M. and Chu, Y.M. New
soliton solutions of fractional Jaulent-Miodek system with symmetry anal-
ysis, Symmetry 12 (6) (2020) 1001.

[23] Triki, H., Mirzazadeh, M., Ahmed, H.M., Samir, I. and Hashemi, M.S.,
Higher-order Sasa–Satsuma equation: Nucci’s reduction and soliton so-
lutions, Eur. Phys. J. Plus, 138 (5) (2023) 1–10.

[24] Xia, F.L., Jarad, F., Hashemi, M.S. and Riaz, M.B. A reduction tech-
nique to solve the generalized nonlinear dispersive mk (m, n) equation
with new local derivative, Results Phys. 38 (2022) 105512.

[25] Yen, T.C., Lang, R.A. and Izmaylov, A.F. Exact and approximate sym-
metry projectors for the electronic structure problem on a quantum com-
puter, J. Chem. Phys. 151 (16) (2019) 164111 .

Iran. J. Numer. Anal. Optim., Vol. ??, No. ??, ??, pp ??


	Approximate symmetries of the perturbed KdV-KS equation
	A. Mohammadpouri, M.S. Hashemi, R. Abbasi and R. Abbasi

