- Abbasi, R.P., Rafiq, K., Fatima, S., Javed, M.T., Azeem, M., & Akram, M.S. (2023). In vitro silicon supplementation enhanced acclimatisation and growth of sugarcane (Saccharum officinarum) via improved antioxidant and nutrient acquisition patterns in saline soil. Functional Plant Biology, 51(1), NULL. https://doi.org/10.1071/FP22275
- Abdelaal, K.A., EL-Maghraby, L.M., Elansary, H., Hafez, Y.M., Ibrahim, E.I., El-Banna, M., El-Esawi, M., & Elkelish, A. (2019). Treatment of sweet pepper with stress tolerance-inducing compounds alleviates salinity stress oxidative damage by mediating the physio-biochemical activities and antioxidant systems. Agronomy, 10(1), 26. https://doi.org/10.3390/agronomy10010026
- Al-Rubaiee, F.A.A. (2024). Mitigation of salinity stress effects in tomatoa (Lycopersicon esculentum) by using calcium chloride. Nabatia, 12(1), 26-42. https://doi.org/10.21070/nabatia.v12i1.1636
- Ali, M., Afzal, S., Parveen, A., Kamran, M., Javed, M.R., Abbasi, G.H., Malik, Z., Riaz, M., Ahmad, S., Chattha, M.S., Ali, M., Ali, Q., Uddin, M.Z., Rizwan, M., & Ali, S. (2021). Silicon mediated improvement in the growth and ion homeostasis by decreasing Na(+) uptake in maize (Zea mays) cultivars exposed to salinity stress. Plant Physiology Biochemical, 158, 208-218. https://doi.org/10.1016/j.plaphy.2020.10.040
- Aras, S., Keles, H., & Eşitken, A. (2020). Silicon nutrition counteracts salt-induced damage associated with changes in biochemical responses in apple. Bragantia, 79, 1-7. https://doi.org/10.1590/1678-4499.20190153
- Ashraf, M., Rahmatullah, Afzal, M., Ahmed, R., Mujeeb, F., Sarwar, A., & Ali, L. (2009). Alleviation of detrimental effects of NaCl by silicon nutrition in salt-sensitive and salt-tolerant genotypes of sugarcane (Saccharum officinarum). Plant and Soil, 326(1-2), 381-391. https://doi.org/10.1007/s11104-009-0019-9
- Ashraf, M., Shahzad, S.M., Imtiaz, M., Rizwan, M.S., & Iqbal, M.M. (2017). Ameliorative effects of potassium nutrition on yield and fiber quality characteristics of cotton (Gossypium hirsutum ) under NaCl stress. Soil Environment, 36(1), 51-58. https:doi.org/10.25252/SE/17/31054
- Bocharnikova, E.A., Nikpay, A., Majumdar, S., Ziaee, M., & Matichenkov, V.V. (2023). Bioactive silicon: Approach to enhance sugarcane yield under stress environment. In Agro-industrial Perspectives on Sugarcane Production under Environmental Stress (pp. 85-105). Springer. https://doi.org/10.1007/978-981-19-3955-6_5
- Brindha, C., Vasantha, S., & Arunkumar, R. (2019). The response of sugarcane genotypes subjected to salinity stress at different growth phases. Journal of Plant Stress Physiology, 5, 28-33. https://doi.org/10.25081/jpsp.2019.v5.5643
- Chao, D.Y., Dilkes, B., Luo, H., Douglas, A., Yakubova, E., Lahner, B., & Salt, D.E. (2013). Polyploids exhibit higher potassium uptake and salinity tolerance in Arabidopsis. Science, 341(6146), 658-659. https:// doi.org/10.1126/science.1240561
- Che, Y., Fan, D., Wang, Z., Xu, N., Zhang, H., Sun, G., & Chow, W.S. (2022). Potassium mitigates salt-stress impacts on photosynthesis by alleviation of the proton diffusion potential in thylakoids. Environmental and Experimental Botany, 194, https://doi.org/10.1016/j.envexpbot.2021.104708
- Chen, J.C., & Chou, C.C. (1993). Cane sugar handbook: a manual for cane sugar manufacturers and their chemists. John Wiley & https://doi.org/10.1177/003072706400400412
- Dhansu, P., Kumar, R., Kumar, A., Vengavasi, K., Raja, A.K., Vasantha, S., Meena, M.R., Kulshreshtha, N., & Pandey, S.K. (2022). Differential physiological traits, ion homeostasis and cane yield of sub-tropical sugarcane varieties in response to long-term salinity stress. Sustainability, 14(20), 13246. https://doi.org/10.3390/su142013246
- Dhiman, P., Rajora, N., Bhardwaj, S., Sudhakaran, S.S., Kumar, A., Raturi, G., Chakraborty, K., Gupta, O. P., Devanna, B.N., Tripathi, D.K., & Deshmukh, R. (2021). Fascinating role of silicon to combat salinity stress in plants: An updated overview. Plant Physiol Biochem, 162, 110-123. https://doi.org/10.1016/j.plaphy.2021.02.023
- Ebeed, H.T., Ahmed, H.S., & Hassan, N.M. (2024). Silicon transporters in plants: Unravelling the molecular Nexus with sodium and potassium transporters under salinity stress. Plant Gene, 100453. FAO. (2024). faostat, https://doi.org/10.1016/j.plgene.2024.100453
- Flam-Shepherd, R., Huynh, W.Q., Coskun, D., Hamam, A.M., Britto, D.T., & Kronzucker, H.J. (2018). Membrane fluxes, bypass flows, and sodium stress in rice: the influence of silicon. Journal of Experimental Botany, 69(7), 1679-1692. https://doi.org/10.1093/jxb/erx460
- Gehring, C. (2013). Cyclic Nucleotide Signaling in Plants.
- Gomathi, R., & Thandapani, T. (2005). Salt stress in relation to nutrient accumulation and quality of sugarcane genotypes. Sugar Technology, 7, 39-47. https://doi.org/10.1007/bf02942416
- Gong, H.J., Randall, D.P., & Flowers, T.J. (2006). Silicon deposition in the root reduces sodium uptake in rice (Oryza sativa) seedlings by reducing bypass flow. Plant Cell Environment, 29(10), 1970-1979. https://doi.org/ 10.1111/j.1365-3040.2006.01572.x
- Guntzer, F., Keller, C., & Meunier, J.-D. (2011). Benefits of plant silicon for crops: a review. Agronomy for Sustainable Development, 32(1), 201-213. https://org/10.1007/s13593-011-0039-8
- Hashemi, A., Abdolzadeh, A., & Sadeghipour, H.R. (2010). Beneficial effects of silicon nutrition in alleviating salinity stress in hydroponically grown canola, Brassica napus , plants. Soil Science & Plant Nutrition, 56(2), 244-253. https://doi.org/10.1111/j.1747-0765.2009.00443.x
- Heile, A.O., Aslam, Z., Hussain, A., Aslam, M., Saleem, M.H., Abualreesh, M.H., Alatawi, A., & Ali, S. (2021). Alleviation of cadmium phytotoxicity using silicon fertilization in wheat by altering antioxidant metabolism and osmotic adjustment. Sustainability, 13(20), 11317. https://doi.org/10.3390/su132011317
- Hernandez-Apaolaza, L. (2014). Can silicon partially alleviate micronutrient deficiency in plants? A review. Planta, 240(3), 447-458. https://doi.org/10.1007/s00425-014-2119-x
- Hoque, T.S., Sohag, A.A.M., Burritt, D.J., & Hossain, M.A. (2020). Salicylic acid-mediated salt stress tolerance in plants. Plant Phenolics in Sustainable Agriculture, 1, 1-38. https://doi.org/10.1007/978-981-15-4890-1_1
- Hussain, A., Khan, Z.I., Rashid, M.H., Ashraf, M., & Akhtar, M.S. (2003). Soil salinity effects on sugarcane productivity, biochemical characteristics, and invertase activity. Pakistan Journal of Life and Social Sciences, 1(2), 114-121.
- KG, A.B. (2009). International commission for uniform methods of sugar Analysis (ICUMSA).
- Khan, W.U.D., Aziz, T., Hussain, I., Ramzani, P.M.A., & Reichenauer, T.G. (2017). Silicon: a beneficial nutrient for maize crop to enhance photochemical efficiency of photosystem II under salt stress. Archives of Agronomy and Soil Science, 63(5), 599-611. https://doi.org/10.1080/03650340.2016.1233322
- Lingle, S.E., & Wiegand, C.L. (1997). Soil salinity and sugarcane juice quality. Field Crops Research, 54(2-3), 259-268. https://doi.org/10.1016/S0378-4290(97)00058-0
- Munns, R., James, R.A., & Lauchli, A. (2006). Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, 57(5), 1025-1043. https://doi.org/10.1093/jxb/erj100
- Norozi, M., ValizadehKaji, B., Karimi, R., & Nikoogoftar Sedghi, M. (2019). Effects of foliar application of potassium and zinc on pistachio (Pistacia vera) fruit yield. International Journal of Horticultural Science and Technology, 6(1), 113-123.
- Parmesan, C., Morecroft, M.D., & Trisurat, Y. (2022). Climate change 2022: Impacts, adaptation and vulnerability https://www.ipcc.ch/report/ar6/wg2/
- Patade, V.Y., Suprasanna, P., & Bapat, V.A. (2008). Effects of salt stress in relation to osmotic adjustment on sugarcane (Saccharum officinarum) callus cultures. Plant Growth Regulation, 55(3), 169-173. https://doi.org/10.1007/s10725-008-9270-y
- Rao, V.P., Sengar, R., Singh, S., & Sharma, V. (2015). Molecular and metabolic perspectives of sugarcane under salinity stress pressure. Progressive Agriculture, 15(1), 77-84.
- Ritchie, S.W., Nguyen, H.T., & Holaday, A.S. (1990). Leaf water content and gas‐exchange parameters of two wheat genotypes differing in drought resistance. Crop Science, 30(1), 105-111. https://doi.org/10.2135/ cropsci1990.0011183X003000010025x
- Savant, N.K., Korndörfer, G.H., Datnoff, L.E., & Snyder, G.H. (1999). Silicon nutrition and sugarcane production: a review. Journal of Plant Nutrition, 22(12), 1853-1903. https://doi.org/10.1080/01904169909365761
- Shah, T., Latif, S., Saeed, F., Ali, I., Ullah, S., Alsahli, A.A., Jan, S., & Ahmad, P. (2021). Seed priming with titanium dioxide nanoparticles enhances seed vigor, leaf water status, and antioxidant enzyme activities in maize (Zea mays ) under salinity stress. Journal of King Saud University-Science, 33(1), 101207. https://doi.org/10.1016/j.jksus.2020.10.004
- Shahid, M.A., Balal, R.M., Pervez, M.A., Abbas, T., AQUEEL, M.A., Javaid, M.M., & Garcia-Sanchez, F. (2015). Foliar spray of phyto-extracts supplemented with silicon: an efficacious strategy to alleviate the salinity-induced deleterious effects in pea (Pisum sativum). Turkish Journal of Botany, 39(3), 408-419. https://doi.org/10.3906/bot-1406-84
- Sharma, A., Singh, R.K., Singh, P., Vaishnav, A., Guo, D.-J., Verma, K.K., Li, D.-P., Song, X.-P., Malviya, M.K., & Khan, N. (2021). Insights into the bacterial and nitric oxide-induced salt tolerance in sugarcane and their growth-promoting abilities. Microorganisms, 9(11), 2203. https://doi.org/10.3390/microorganisms9112203
- Tuna, A.L., Kaya, C., Higgs, D., Murillo-Amador, B., Aydemir, S., & Girgin, A.R. (2008). Silicon improves salinity tolerance in wheat plants. Environmental and Experimental Botany, 62(1), 10,16. https://doi.org/ 10.1016/j.envexpbot.2007.06.006
- Yan, G., Fan, X., Zheng, W., Gao, Z., Yin, C., Li, T., & Liang, Y. (2021). Silicon alleviates salt stress-induced potassium deficiency by promoting potassium uptake and translocation in rice (Oryza sativa). Journal Plant Physiology, 258-259, 153379. https://doi.org/10.1016/j.jplph.2021.153379
- Zhang, W., Yu, X., Li, M., Lang, D., Zhang, X., & Xie, Z. (2018). Silicon promotes growth and root yield of Glycyrrhiza uralensis under salt and drought stresses through enhancing osmotic adjustment and regulating antioxidant metabolism. Crop Protection, 107, 1-11. https://doi.org/10.1016/j.cropro.2018.01.005
- Zhao, D., Zhu, K., Momotaz, A., & Gao, X. (2020). Sugarcane plant growth and physiological responses to soil salinity during tillering and stalk elongation. Agriculture, 10(12), 608. https://doi.org/10.3390/agriculture10120608
- Zhao, Y., Aspinall, , & Paleg, L. (1992). Protection of membrane integrity in Medicago sativa L. by glycinebetaine against the effects of freezing. Journal of Plant Physiology, 140(5), 541-543. https://doi.org/10.1016/S0176-1617(11)80785-6
- Zhu, J.K. (2003). Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology, 6(5), 441-445. https://doi.org/10.1016/s1369-5266(03)00085-2
|