Investigating and comparing the performance of air-air and air-hydrogen membrane humidifier in the fuel cell application
علوم کاربردی و محاسباتی در مکانیک
Article 5 , Volume 37, Issue 3 - Serial Number 41 , October 2025, Pages 79-94 PDF (1.46 M )
Document Type: Original Article
DOI: 10.22067/jacsm.2025.90687.1297
Authors
Moeteza Moosavi Zahed ; Ebrahim Afshari*
Department of Mechanical Engineering, Faculty of Engineering, University of Isfahan
Abstract
One of the methods of water management in PEM fuel cells is the humidification of gases, which has a great impact on the performance of the fuel cell. In this study, modeling of a membrane humidifier with moist air and for two gases, hydrogen and air on the dry side, and the effect of the flow rate on the dry and wet side on the moisture percentage of the dry side output, temperature dew point, water transfer rate and water recycling ratio were investigated. The results show that in a constant flow on the wet side, with an increase in the flow on the dry side, the dew point temperature difference in hydrogen and air decreases and the transfer rate and water recycling ratio increase. In a constant flow rate on the dry side, with an increase in the flow rate on the wet side, the dew point temperature difference in hydrogen and air increases and the transfer rate and water recycling ratio decrease.
Keywords
Membrane humidifier ; Fuel cell ; Heat transfer ; relative humidity ; Water transmission ratio
References
[1] J. Kim, S. Kim, H. Chun, J. Sim, S.-Y. Woo, S. Kang, and K. Min, “Comprehensive analysis of polysulfone membrane humidifier in hydrogen fuel cell vehicles: Experimental and theoretical approaches,” Journal of Membrane Science , vol. 713, p. 123234, 2025. https://doi.org/10.1016/j.memsci.2024.123234
[2] L. Schoenfeld, M. Kreitmeir, F. Wolfenstetter, M. Neumann, H. Klein, and S. Rehfeldt, “Modeling mass and heat transfer in membrane humidifiers for polymer electrolyte membrane fuel cells,” International Journal of Heat and Mass Transfer , vol. 223, p. 125260, 2024. https://doi.org/10.1016/j.ijheatmasstransfer.2024.125260
[3] K. Ramya, J. Sreenivas, and K. S. Dhathathreyan, “Study of a porous membrane humidification method in polymer electrolyte fuel cells,” International Journal of Hydrogen Energy , vol. 36, no. 22, pp. 14866–14872, 2011. https://doi.org/10.1016/j.ijhydene.2010.12.088
[4] S. W. Perng, H. W. Wu, T. C. Jue, and K. C. Cheng, “Numerical predictions of a PEM fuel cell performance enhancement by a rectangular cylinder installed transversely in the flow channel,” Applied Energy , vol. 86, no. 9, pp. 1541–1554, 2009. https://doi.org/10.1016/j.apenergy.2008.11.011
[5] D. L. Wood, J. S. Yi, and T. V. Nguyen, “Effect of direct liquid water injection and interdigitated flow field on the performance of proton exchange membrane fuel cells,” Electrochimica Acta , vol. 43, no. 24, pp. 3795–3809, 1998. https://doi.org/10.1016/S0013-4686(98)00139-X
[6] G. Vasu, A. K. Tangirala, B. Viswanathan, and K. S. Dhathathreyan, “Continuous bubble humidification and control of relative humidity of H₂ for a PEMFC system,” International Journal of Hydrogen Energy , vol. 33, no. 17, pp. 4640–4648, 2008. https://doi.org/10.1016/j.ijhydene.2008.05.051
[7] A. Casalegno, S. De Antonellis, L. Colombo, and F. Rinaldi, “Design of an innovative enthalpy wheel based humidification system for polymer electrolyte fuel cell,” International Journal of Hydrogen Energy , vol. 36, no. 8, pp. 5000–5009, 2011. https://doi.org/10.1016/j.ijhydene.2011.01.012
[8] D. Ilk, V. Frick, C. Hänel, T. Schiestel, M. Schoemaker, H. Kraus, and H. E. Hoster, “The impact of air contaminants on humidifier membrane performance,” Journal of Industrial and Engineering Chemistry , vol. 126, pp. 192–203, 2023. https://doi.org/10.1016/j.jiec.2023.06.009
[9] V. K. Phan, X. L. Nguyen, Y. Choi, D. T. Le Tri, H. L. Nguyen, and S. Yu, “Water transport analysis of hollow fiber membrane humidifier module using response surface method,” Thermal Science and Engineering Progress , vol. 49, p. 102453, 2024. https://doi.org/10.1016/j.tsep.2024.102453
[10] S. Yu, S. Im, S.-S. Kim, J. Hwang, Y.-D. Lee, S. Kang, and K.-Y. Ahn, “A parametric study of the performance of a planar membrane humidifier with a heat and mass exchanger model for design optimization,” International Journal of Heat and Mass Transfer , vol. 54, no. 7–8, pp. 1344–1351, 2011. https://doi.org/10.1016/j.ijheatmasstransfer.2010.11.054
[11] B. J. Kim and M. S. Kim, “Studies on the cathode humidification by exhaust gas recirculation for PEM fuel cell,” International Journal of Hydrogen Energy , vol. 37, no. 5, pp. 4290–4299, 2012. https://doi.org/10.1016/j.ijhydene.2011.11.103
[12] F. Wolfenstetter, M. Kreitmeir, L. Schoenfeld, H. Klein, M. Becker, and S. Rehfeldt, “Experimental study on water transport in membrane humidifiers for polymer electrolyte membrane fuel cells,” International Journal of Hydrogen Energy , vol. 47, no. 55, pp. 23381–23392, 2022. https://doi.org/10.1016/j.ijhydene.2022.05.114
[13] H. J. Cho, S. Y. Cheon, and J. W. Jeong, “Experimental analysis on energy recovery ventilator with latent heat exchanger using hollow fiber membrane,” Energy Conversion and Management , vol. 278, p. 116706, 2023. https://doi.org/10.1016/j.enconman.2023.116706
[14] V. Kord Firouzjaei, S. M. Rahgoshay, and M. Khorshidian, “Planar membrane humidifier for fuel cell application: Numerical and experimental case study,” International Journal of Heat and Mass Transfer , vol. 147, p. 118872, 2020. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118872
[15] S. Z. Hashemi-Valikboni, S. S. M. Ajarostaghi, M. A. Delavar, and K. Sedighi, “Numerical prediction of humidification process in planar porous membrane humidifier of a PEM fuel cell system to evaluate the effects of operating and geometrical parameters,” Journal of Thermal Analysis and Calorimetry , vol. 141, no. 5, pp. 1687–1701, 2020. https://doi.org/10.1007/s10973-020-10058-6
[16] H. N. Vu, X. L. Nguyen, J. Han, and S. Yu, “A study on vapor transport characteristics in hollow-fiber membrane humidifier with empirical mass transfer coefficient,” International Journal of Heat and Mass Transfer , vol. 177, p. 121549, 2021. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121549
[17] H. N. Vu, X. L. Nguyen, and S. Yu, “A lumped-mass model of membrane humidifier for PEMFC,” Energies , vol. 15, no. 6, p. 2113, 2022. https://doi.org/10.3390/en15062113
[18] X. L. Nguyen, H. N. Vu, and S. Yu, “Parametric understanding of vapor transport of hollow fiber membranes for design of a membrane humidifier,” Renewable Energy , vol. 177, pp. 1293–1307, 2021. https://doi.org/10.1016/j.renene.2021.06.003
[19] J. Li, S. Shao, Z. Wang, G. Xie, Q. Wang, Z. Xu, L. Han, and X. Gou, “A review of air-to-air membrane energy recovery technology for building ventilation,” Energy and Buildings , vol. 265, p. 112097, 2022. https://doi.org/10.1016/j.enbuild.2022.112097
[20] W. Yan, X. Cui, X. Meng, C. Yang, Y. Liu, H. An, and L. Jin, “Effects of membrane characteristics on the evaporative cooling performance for hollow fiber membrane modules,” Energy , vol. 270, p. 126873, 2023. https://doi.org/10.1016/j.energy.2023.126873
[21] P. Shamsizadeh, E. Afshari, and M. Mosharaf-Dehkordi, “Design of membrane humidifier using obstacles in the flow channels for ventilator,” Applied Thermal Engineering , vol. 196, p. 117265, 2021. https://doi.org/10.1016/j.applthermaleng.2021.117265
[22] E. Afshari and N. B. Houreh, “An analytic model of membrane humidifier for proton exchange membrane fuel cell,” Energy Equipment and Systems , vol. 2, pp. 83–94, 2014.
[23] M. Baroutie Ardestanie, H. Hassanzadeh, and Y. Ahmadi Brogani, “Thermodynamics modeling of heat and vapor transfer in the shell-and-tube membrane humidifier: A gas-to-gas type,” Journal of Solid and Fluid Mechanics , vol. 5, pp. 223–236, 2015. https://doi.org/10.22044/jsfm.2015.591
[24] S. M. Mousavi Zahed, M. Zahed, and E. Afshari, “Investigating the impact of polymer membrane characteristics on the performance of the membrane humidifier,” Journal of Applied and Computational Sciences in Mechanics , vol. 35, pp. 17–32, 2023. https://doi.org/10.22067/jacsm.2023.81524.1174
[25] J. D. Anderson, Governing equations of fluid dynamics , in Computational Fluid Dynamics, J. F. Wendt, Ed. Berlin, Heidelberg: Springer, 1992, pp. 15–51. https://doi.org/10.1007/978-3-662-11350-9_2
[26] P. Shamsizadeh and E. Afshari, “Numerical modeling of a membrane humidifier for mechanical ventilation,” International Communications in Heat and Mass Transfer , vol. 132, p. 105931, 2022. https://doi.org/10.1016/j.icheatmasstransfer.2022.105931
[27] N. B. Houreh, H. Shokouhmand, and E. Afshari, “Effect of inserting obstacles in flow field on a membrane humidifier performance for PEMFC application: A CFD model,” International Journal of Hydrogen Energy , vol. 44, no. 57, pp. 30420–30439, 2019. https://doi.org/10.1016/j.ijhydene.2019.09.189
[28] V. K. Phan, X. L. Nguyen, Y. Choi, J. Woo, and S. Yu, “Experimental study on the mass transfer permeability of hollow fiber membranes for a humidifier in a proton exchange membrane fuel cell,” International Communications in Heat and Mass Transfer , vol. 157, p. 107725, 2024. https://doi.org/10.1016/j.icheatmasstransfer.2024.107725
[29] C. Lu, Y. Li, Z. Liu, H. Zhou, H. Zheng, and B. Chen, “Influence mechanisms of flow channel geometry on water transfer and pressure loss in planar membrane humidifiers for PEM fuel cells,” International Journal of Hydrogen Energy , vol. 47, no. 91, pp. 38757–38773, 2022. https://doi.org/10.1016/j.ijhydene.2022.09.049
[30] M. Ghaedamini, N. Baharlou-Houreh, E. Afshari, H. Shokouhmand, and N. Jahantigh, “Experimental investigation on the heat and water transfer enhancement in a membrane-based air-to-air humidifier at insulation condition,” International Journal of Hydrogen Energy , vol. 47, no. 38, pp. 17010–17021, 2022. https://doi.org/10.1016/j.ijhydene.2022.03.168
[31] N. B. Houreh, E. Afshari, H. Shokouhmand, and S. Asghari, “Numerical study and experimental validation on heat and water transfer through polymer membrane by applying a novel enhancement technique,” Journal of Energy Storage , vol. 29, p. 101387, 2020. https://doi.org/10.1016/j.est.2020.101387
[32] D. Chen and H. Peng, “A thermodynamic model of membrane humidifiers for PEM fuel cell humidification control,” Journal of Dynamic Systems, Measurement, and Control , vol. 127, no. 3, pp. 424–432, 2005. https://doi.org/10.1115/1.1978910
Statistics
Article View: 25,133
PDF Download: 502