مطالعه تاثیر پارامترهای عملکردی احتراق هیدروژن بر تولید انتروپی و تغییرات آنتالپی
علوم کاربردی و محاسباتی در مکانیک
مقاله 7 ، دوره 37، شماره 3 - شماره پیاپی 41 ، شهریور 1404، صفحه 117-136 اصل مقاله (3.02 M )
نوع مقاله: مقاله پژوهشی
شناسه دیجیتال (DOI): 10.22067/jacsm.2025.90295.1288
نویسنده
علی اسدی*
گروه مهندسی مکانیک، دانشکده مهندسی، دانشگاه بزرگمهر قائنات، قائن
چکیده
تولید انتروپی و تغییرات آنتالپی ازپارامترهای مهم دراحتراق هیدروژن به شمارمیرود. هدف اصلی دراین پژوهش مطالعهی تاثیر پارامترهای عملکردی احتراق هیدروژن برتولید انتروپی و تغییرات آنتالپی است.شبیهسازی عددی با استفاده از مدل جریان مخالف نرم افزاراحتراق کمکین انجام گردید.جریان آرام درنظرگرفته شد. جملهی نفوذ به روش تفاضل مرکزی وجمله جابجایی به روش بالا دست منفصل شد.معادلات منفصل شده بااستفاده از حلگردو نقطهای و انتگرالگیری زمانی حل گردید.سپس اثر پارامترهای فشار و دمای محیط و همچنین دما و سرعت ورودی سوخت و اکسید کننده بر تولید انتروپی و تغییرات آنتالپی بررسی گردید.نتایج نشان داد که افزایش فشار، دمای ورودی سوخت و دمای ورودی اکسید کننده منجر به افزایش ماکزیمم دما و آنتالپی گردید.اما افزایش سرعت ورودی اکسید کننده، ماکزیمم دما و آنتالپی را کاهش داد.همچنین افزایش دمای ورودی سوخت و افزایش فشار به ترتیب سطح انتروپی سوخت را افزایش و کاهش داد.افزایش دمای ورودی سوخت و سرعت ورودی اکسید کننده سطح انتروپی در ناحیهی شعله را کاهش و افزایش دمای ورودی اکسید کننده و سرعت ورودی سوخت آن را کاهش داد.
کلیدواژهها
تولید انتروپی ؛ تغییرات آنتالپی ؛ شعله نفوذی ؛ مطالعهی پارامتری ؛ احتراق هیدروژن
مراجع
[1] A. Asadi and M. Yadegari, “The study of the effect of fuel dilution in methane/air counterflow diffusion flames on the emission of environmental pollutants,” Journal of Mechanical Engineering , vol. 33, no. 6, pp. 25–34, 2024. [In Persian] https://doi.org/10.30506/mmep.2024.2025565.2166
[2] J. Khadem and A. Asadi, “Numerical study on counterflow diffusion flames of natural gas with CO₂ dilution,” Fuel and Combustion , vol. 4, no. 2, pp. 17–28, 2012. [In Persian]
[3] A. Asadi, "The Study of the Effect of Lewis Number on the Laminar Diffusion Flames," Journal of Mechanical Engineering, vol. 33, no. 5, pp. 3-13, 2024. [In Persian] https://doi.org/10.30506/mmep.2024.2033635.2180
[4] A. Asadi and J. Khadem, "The Numerical Study of Extinction Limits and Structure of H2 /O2 Counterflow Diffusion Flame with Ar and He Dilution," Journal of Applied and Computational Sciences in Mechanics, vol. 24, no. 2, 2013, [In Persian]
[5] L. Acampora and F. S. Marra, "Effects of Soret diffusion on the exergy losses in hydrogen laminar premixed flames," International Journal of Hydrogen Energy, vol. 48, no. 73, pp. 28539-28548, 2023. https://doi.org/10.1016/j.ijhydene.2023.03.168
[6] D. Jiang, W. Yang, and J. Teng, "Entropy generation analysis of fuel lean premixed CO/H2 /air flames," International Journal of Hydrogen Energy, vol. 40, no. 15, pp. 5210-5220, 2015. https://doi.org/10.1016/j.ijhydene.2015.02.082
[7] J. Zhang, A. Zhong, Z. Huang, and D. Han, "Second-law thermodynamic analysis in premixed flames of ammonia and hydrogen binary fuels," Journal of Engineering for Gas Turbines and Power, vol. 141, no. 7, p. 071007, 2019. https://doi.org/10.1115/1.4042412
[8] L. Acampora and F. S. Marra, "Second law thermodynamic analysis of syngas premixed flames," International Journal of Hydrogen Energy, vol. 45, no. 21, pp. 12185-12202, 2020. https://doi.org/10.1016/j.ijhydene.2020.02.142
[9] F. Pan, J. Zhang, D. Han, and T. Lu, "Numerical study on exergy losses of iso-octane constant-volume combustion with water addition," Fuel, vol. 248, pp. 127-135, 2019. https://doi.org/10.1016/j.fuel.2019.03.068
[10] J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular theory of gases and liquids . Wiley New York, 1964.
[11] H. Wu, W. Huang, H. Zhao, W. Sun, Z. Huang, and Y. Zhang, "Laminar Flame Structure-Dependent Exergy Destruction Behavior at Auto-Ignition Time Scale: A Case Study of Dimethyl Ether (DME)," Journal of Thermal Science, pp. 1-15, 2024. https://doi.org/10.1007/s11630-024-1924-1
[12] J. Zhang, D. Han, and Z. Huang, "Second-law thermodynamic analysis for premixed hydrogen flames with diluents of argon/nitrogen/carbon dioxide," International Journal of Hydrogen Energy, vol. 44, no. 10, pp. 5020-5029, 2019. https://doi.org/10.1016/j.ijhydene.2019.01.041
[13] Y. Liu, J. Zhang, D. Ju, Z. Huang, and D. Han, "Analysis of exergy losses in laminar premixed flames of methane/hydrogen blends," International Journal of Hydrogen Energy, vol. 44, no. 43, pp. 24043-24053, 2019. https://doi.org/10.1016/j.ijhydene.2019.07.123
[14] K. Nishida, T. Takagi, and S. Kinoshita, "Analysis of entropy generation and exergy loss during combustion," Proceedings of the Combustion Institute, vol. 29, no. 1, pp. 869-874, 2002. https://doi.org/10.1016/S1540-7489(02)80111-0
[15] S. Xue, Y. Tang, W. Han, and L. Yang, "Effects of strain and pressure on entropy generation in laminar flames," Combustion and Flame, vol. 269, p. 113688, 2024. https://doi.org/10.1016/j.combustflame.2024.113688
[16] B. Zhao, "Entropy transfer efficiency-effectiveness method for heat exchangers, part 1: Local entropy generation number and operation performance limits," Energy, vol. 304, p. 132133, 2024. https://doi.org/10.1016/j.energy.2024.132133
[17] H. Rong and D. Zhao, "Thermodynamic and entropy generation analyses of Telsa-valve structured meso-scale combustors fuelled with hydrogen for thermophotovoltaic applications," Energy, p. 132788, 2024. https://doi.org/10.1016/j.energy.2024.132788
[18] P. Badhuk and R. Ravikrishna, "Flame inhibition by aqueous solution of Alkali salts in methane and LPG laminar diffusion flames," Fire Safety Journal, vol. 130, p. 103586, 2022. https://doi.org/10.1016/j.firesaf.2022.103586
[19] H. Zhao, D. Zhao, and S. Becker, "Entropy production and enhanced thermal performance studies on counter-flow double-channel hydrogen/ammonia-fuelled micro-combustors with different shaped internal threads," International Journal of Hydrogen Energy, vol. 47, no. 85, pp. 36306-36322, 2022. https://doi.org/10.1016/j.ijhydene.2022.08.168
[20] A. Sadiki, S. Agrebi, and F. Ries, "Entropy Generation Analysis in Turbulent Reacting Flows and Near Wall: A Review," Entropy, vol. 24, no. 8, p. 1099, 2022. https://doi.org/10.3390/e24081099
[21] L. Dressler, H. Nicolai, S. Agrebi, F. Ries, and A. Sadiki, "Computation of entropy production in stratified flames based on chemistry tabulation and an eulerian transported probability density function approach," Entropy, vol. 24, no. 5, p. 615, 2022. https://doi.org/10.3390/e24050615
[22] H. Yan, G. Tang, C. Wang, L. Li, Y. Zhou, Z. Zhang, and C. Lou, "Thermodynamics irreversibilities analysis of oxy-fuel diffusion flames: The effect of oxygen concentration," Entropy, vol. 24, no. 2, p. 205, 2022. https://doi.org/10.3390/e24020205
[23] M. Mohammadi and M. S. Abedinejad, "Analysis of NO Formation and Entropy Generation in a Reactive Flow," Aerospace, vol. 9, no. 11, p. 666, 2022. https://doi.org/10.3390/aerospace9110666
[24] C.-R. Yu and C.-Y. Wu, "An empirical formula to predict the overall irreversibility of counter-flow premixed flames of methane and its mixtures," Journal of Thermal Analysis and Calorimetry, vol. 147, no. 24, pp. 14587-14599, 2022. https://doi.org/10.1007/s10973-022-11573-4
[25] R. N. Kumar, S. M. Kumaran, and V. Raghavan, "Numerical analysis of structure, stability and entropy generation in biogas coflow diffusion flames," Archive of Mechanical Engineering, pp. 99-128-99-128, 2022. https://doi.org/10.24425/ame.2021.139648
[26] R. Stephen, "Turns. An introduction to combustion: concepts and applications," Mechanical Engineering Series. McGraw Hill, p. 51, 2000.
[27] A. E. Lutz, R. J. Kee, J. F. Grcar, and F. M. Rupley, "OPPDIF: A Fortran program for computing opposed-flow diffusion flames," Sandia National Lab.(SNL-CA), Livermore, CA (United States), 1997. https://doi.org/10.2172/568983
آمار
تعداد مشاهده مقاله: 486
تعداد دریافت فایل اصل مقاله: 325