- Ahammed, G. J., Li, X., Liu, A., & Chen, S. (2020). Brassinosteroids in plant tolerance to abiotic stress. Journal of Plant Growth Regulation, 39(4), 1451-1464. https://doi.org/10.1007/s00344-020-10098-0
- Ali, M. S., & Baek, K. H. (2020). Jasmonic acid signaling pathway in response to abiotic stresses in plants. International Journal of Molecular Sciences, 21(2), 621. https://doi.org/10.3390/ijms21020621
- Arif, Y., Sami, F., Siddiqui, H., Bajguz, A., & Hayat, S. (2020). Salicylic acid in relation to other phytohormones in plant: A study towards physiology and signal transduction under challenging environment. Environmental and Experimental Botany, 175, 104040. https://doi.org/10.1016/j.envexpbot.2020.104040
- Arnon, D. E. (1949). Copper enzymes in isolated chloroplasts polyphenol oxidase (Beta vulgaris). Plant Physiology, 24(1), 1-15. https://doi.org/10.1104/pp.24.1.1
- Attarzadeh, M., Balouchi, H., Rajaie, M., Movahhedi Dehnavi, M., & Salehi, A. (2019). Growth and nutrient content of Echinacea purpurea as affected by the combination of phosphorus with arbuscular mycorrhizal fungus and Pseudomonas fluorescens bacterium under different irrigation regimes. Journal of Environmental Management, 231, 182-188. https://doi.org/10.1016/j.jenvman.2018.10.040
- Bhandari, S., & Nailwal, T. K. (2020). Role of brassinosteroids in mitigating abiotic stresses in plants. Biologia, 75(12), 2203-2230. https://doi.org/10.2478/s11756-020-00587-8
- Bi, Y., Zhou, P., Li, S., Wei, Y., Xiong, X., Shi, Y., Liu, N., & Zhang, Y. (2019). Interspecific interactions contribute to higher forage yield and are affected by phosphorus application in a fully-mixed perennial legume and grass intercropping system. Field Crops Research, 244, 107636. https://doi.org/10.1016/j.fcr.2019.107636
- Chamkhi, I., Cheto, S., Geistlinger, J., Zeroual, Y., Kouisni, L., Bargaz, A., & Ghoulam, C. (2022). Legume-based intercropping systems promote beneficial rhizobacterial community and crop yield under stressing conditions. Industrial Crops and Products, 183, 114958. https://doi.org/10.1016/j.indcrop.2022.114958
- Desoky, E. S. M., Saad, A. M., El-Saadony, M. T., Merwad, A. R. M., & Rady, M. M. (2020). Plant growth-promoting rhizobacteria: Potential improvement in antioxidant defense system and suppression of oxidative stress for alleviating salinity stress in Triticum aestivum (L.) plants. Biocatalysis and Agricultural Biotechnology, 30, 101878. https://doi.org/10.1016/j.bcab.2020.101878
- Farhangi-Abriz, S., & Ghassemi-Golezani, K. (2018). How can salicylic acid and jasmonic acid mitigate salt toxicity in soybean plants? Ecotoxicology and Environmental Safety, 147, 1010-1016. https://doi.org/10.1016/j.ecoenv.2017.09.070
- Farhangi-Abriz, S., Alaee, T., & Tavasolee, A. (2019). Salicylic acid but not jasmonic acid improved canola root response to salinity stress. Rhizosphere, 9, 69-71. https://doi.org/10.1016/j.rhisph.2018.11.009
- García‐Caparrós, P., Hasanuzzaman, M., & Lao, M. T. (2019). Oxidative stress and antioxidant defense in plants under salinity. pp. 291-309 in M. Hasanuzzaman, K. R. Hakeem, K. Nahar, and A. Alharby (eds.) Reactive Oxygen, Nitrogen and Sulfur Species in Plants: Production, Metabolism, Signaling and Defense Mechanisms. Wiley-Blackwell, Hoboken, NJ. https://doi.org/10.1002/9781119468677.ch12
- Ghaffarian, M. R., Yadavi, A., Movahhedi Dehnavi, M., Dabbagh Mohammadi Nassab, A., & Salehi, M. (2020). Improvement of physiological indices and biological yield by intercropping of Kochia (Kochia scoparia), Sesbania (Sesbania aculeata) and Guar (Cyamopsis tetragonoloba) under the salinity stress of irrigation water. Physiology and Molecular Biology of Plants, 26(6), 1319-1330. https://doi.org/10.1007/s12298-020-00833-y
- Ghassemi-Golezani, K., & Abdoli, S. (2021). Improving ATPase and PPase activities, nutrient uptake and growth of salt stressed ajowan plants by salicylic acid and iron-oxide nanoparticles. Plant Cell Reports, 40(3), 559-573. https://doi.org/10.1007/s00299-020-02652-7
- Ghassemi-Golezani, K., & Farhadi, N. (2021). The efficacy of salicylic acid levels on photosynthetic activity, growth, and essential oil content and composition of pennyroyal plants under salt stress. Journal of Plant Growth Regulation, 41(8), 1-13. https://doi.org/10.1007/s00344-021-10515-y
- Ghassemi-Golezani, K., & Farhangi-Abriz, S. (2018). Foliar sprays of salicylic acid and jasmonic acid stimulate H+-ATPase activity of tonoplast, nutrient uptake and salt tolerance of soybean. Ecotoxicology and Environmental Safety, 166, 18-25. https://doi.org/10.1016/j.ecoenv.2018.09.059
- Ghorbel, M., Brini, F., Sharma, A., & Landi, M. (2021). Role of jasmonic acid in plants: The molecular point of view. Plant Cell Reports, 40(8), 1471-1494. https://doi.org/10.1007/s00299-021-02687-4
- Glaze-Corcoran, S., Hashemi, M., Sadeghpour, A., Jahanzad, E., Afshar, R. K., Liu, X., & Herbert, S. J. (2020). Understanding intercropping to improve agricultural resiliency and environmental sustainability. Advances in Agronomy, 162, 199-256. https://doi.org/10.1016/bs.agron.2020.02.004
- Guerchi, A., Mnafgui, W., Jabri, C., Merghni, M., Sifaoui, K., Mahjoub, A., Ludidi, N., & Badri, M. (2024). Improving productivity and soil fertility in Medicago sativa and Hordeum marinum through intercropping under saline conditions. BMC Plant Biology, 24(1), 158. https://doi.org/10.1186/s12870-024-04820-3
- Hafeez, M. B., Zahra, N., Zahra, K., Raza, A., Batool, A., Shaukat, K., & Khan, S. (2021). Brassinosteroids: Molecular and physiological responses in plant growth and abiotic stresses. Plant Stress, 2, 100029. https://doi.org/10.1016/j.stress.2021.100029
- Hassoon, A. S., & Abduljabbar, I. A. (2019). Review on the role of salicylic acid in plants. Pp. 61-64 in T. A. Alalwan (ed.) Sustainable Crop Production. IntechOpen, London. https://doi.org/10.5772/intechopen.89107
- Hayat, K., Bundschuh, J., Jan, F., Menhas, S., Hayat, S., Haq, F., Shah, M. A., Chaudhary, H. J., Ullah, A., & Zhang, D. (2020). Combating soil salinity with combining saline agriculture and phytomanagement with salt-accumulating plants. Critical Reviews in Environmental Science and Technology, 50(11), 1085-1115. https://doi.org/10.1080/10643389.2019.1646087
- Hewedy, O. A., Elsheery, N. I., Karkour, A. M., Elhamouly, N., Arafa, R. A., Mahmoud, G. A. E., Dawood, M. F. A., Hussein, W. E., Mansour, A., & Amin, D. H. (2023). Jasmonic acid regulates plant development and orchestrates stress response during tough times. Environmental and Experimental Botany, 208, 105260. https://doi.org/10.1016/j.envexpbot.2023.105260
- Kahraryan, B., & Fatemi, R. (2023). The effect of intercropping additive on yield and yield components of spring barley and vetch. Iranian Journal of Field Crop Science, 54(1), 35-46. (in Persian with English abstract). https://doi.org/10.22059/ijfcs.2023.349393.654945
- Kirova, E., & Kocheva, K. (2021). Physiological effects of salinity on nitrogen fixation in legumes–A review. Journal of Plant Nutrition, 44(18), 2653-2662. https://doi.org/10.1080/01904167.2021.1921204
- Kurdali, F., Janat, M., & Khalifa, K. (2003). Growth and nitrogen fixation and uptake in dhaincha/sorghum intercropping system under saline and non‐saline conditions. Communications in Soil Science and Plant Analysis, 34(17-18), 2471-2494. https://doi.org/10.1081/CSS-120024780
- Lang, C. A. (1958). Simple micro determination of Kjeldahl nitrogen in biological materials. Analytical Chemistry, 30(10), 1692-1694. https://doi.org/10.1021/ac60142a038
- Li, B., Liu, J., Shi, X., Han, X., Chen, X., Wei, Y., & Xiong, F. (2023). Effects of belowground interactions on crop yields and nutrient uptake in maize-faba bean relay intercropping systems. Archives of Agronomy and Soil Science, 69(3), 314-325. https://doi.org/10.1080/03650340.2021.1989416
- Lotfi, R., Abbasi, A., Pessarakli, M., Rastogi, A., Kalaji, H. M., & Alizadeh, K. (2024). A comparison of jasmonic acid and salicylic acid-induced salinity stress tolerance in safflower plants, particularly on sodium (Na) and potassium (K) nutrient contents. Journal of Plant Nutrition, 47(4), 515-528. https://doi.org/10.1080/01904167.2023.2280125
- Mishra, P., Mishra, J., & Arora, N. K. (2021). Plant growth promoting bacteria for combating salinity stress in plants–Recent developments and prospects: A review. Microbiological Research, 252, 126861. https://doi.org/10.1016/j.micres.2021.126861
- Mohavieh Asadi, N., Bijanzadeh, E., Behpouri, A., & Barati, V. (2020). Effect of relay intercropping of chickpea (Cicer arietinum) with barley (Hordeum vulgare L.) on biochemical traits and yield under late season drought stress. Iranian Journal of Pulses Research, 11(2), 164-182. (in Persian with English abstract). https://doi.org/10.22067/ijpr.v11i2.78361
- Mohi-Ud-Din, M., Talukder, D., & Rohman, M. (2021). Exogenous application of methyl jasmonate and salicylic acid mitigates drought-induced oxidative damages in French bean (Phaseolus vulgaris). Plants, 10(10), 2066. https://doi.org/10.3390/plants10102066
- Muchate, N. S., Nikalje, G. C., Rajurkar, N. S., Suprasanna, P., & Nikam, T. D. (2016). Plant salt stress: Adaptive responses, tolerance mechanism and bioengineering for salt tolerance. The Botanical Review, 82(4), 371-406. https://doi.org/10.1007/s12229-016-9173-y
- Nigam, B., Dubey, R. S., & Rathore, D. (2022). Protective role of exogenously supplied salicylic acid and PGPB (Stenotrophomonas) on spinach and soybean cultivars grown under salt stress. Scientia Horticulturae, 293, 110654. https://doi.org/10.1016/j.scienta.2021.110654
- Pai, R., & Sharma, P. K. (2024). Exogenous supplementation of salicylic acid ameliorates salt-induced membrane leakage, ion homeostasis and oxidative damage in sorghum seedlings. Biologia, 79(1), 23-43. https://doi.org/10.1007/s11756-023-01554-9
- Patterson, B., Macrae, E., & Ferguson, I. (1984). Estimation of hydrogen peroxide in plant extracts using titanium (IV). Analytical Biochemistry, 139(2), 487-492. https://doi.org/10.1016/0003-2697(84)90039-3
- Ramakrishna, B., & Rao, S. S. R. (2015). Foliar application of brassinosteroids alleviates adverse effects of zinc toxicity in radish (Raphanus sativus) plants. Protoplasma, 252(2), 665-677. https://doi.org/10.1007/s00709-014-0714-0
- Ruan, J., Zhou, Y., Zhou, M., Yan, J., Khurshid, M., Weng, W., Cheng, J., & Zhang, K. (2019). Jasmonic acid signaling pathway in plants. International Journal of Molecular Sciences, 20(10), 2479. https://doi.org/10.3390/ijms20102479
- Saleem, M., Fariduddin, Q., & Castroverde, C. D. M. (2021). Salicylic acid: A key regulator of redox signalling and plant immunity. Plant Physiology and Biochemistry, 168, 381-397. https://doi.org/10.1016/j.plaphy.2021.10.011
- Siddiqui, H., Hayat, S., & Bajguz, A. (2018). Regulation of photosynthesis by brassinosteroids in plants. Acta Physiologiae Plantarum, 40(3), 1-15. https://doi.org/10.1007/s11738-018-2639-2
- Singh, A. (2022). Soil salinity: A global threat to sustainable development. Soil Use and Management, 38(1), 39-67. https://doi.org/10.1111/sum.12772
- Su, K., Mu, L., Zhou, T., Kamran, M., & Yang, H. (2022). Intercropped alfalfa and spring wheat reduces soil alkali-salinity in the arid area of northwestern China. Plant and Soil, 481, 1-18. https://doi.org/10.1007/s11104-022-05846-y
- Wungrampha, S., Joshi, R., Singla-Pareek, S., & Pareek, A. (2018). Photosynthesis and salinity: Are these mutually exclusive? Photosynthetica, 56(1), 366-381. https://doi.org/10.1007/s11099-017-0763-7
- Yang, F., Liao, D., Wu, X., Gao, R., Fan, Y., Raza, M. A., Wang, X., Yong, T., Liu, W., & Liu, J. (2017). Effect of aboveground and belowground interactions on the intercrop yields in maize-soybean relay intercropping systems. Field Crops Research, 203, 16-23. https://doi.org/10.1016/j.fcr.2016.12.007
- Yang, Q., Ravnskov, S., Pullens, J. W. M., & Andersen, M. N. (2022). Interactions between biochar, arbuscular mycorrhizal fungi and photosynthetic processes in potato (Solanum tuberosum). Science of the Total Environment, 816, 151649. https://doi.org/10.1016/j.scitotenv.2021.151649
- Yin, W., Chai, Q., Zhao, C., Yu, A., Fan, Z., Hu, F., Fan, H., Guo, Y., & Coulter, J. A. (2020). Water utilization in intercropping: A review. Agricultural Water Management, 241, 106335. https://doi.org/10.1016/j.agwat.2020.106335
- Zhang, Y., & Li, X. (2019). Salicylic acid: Biosynthesis, perception, and contributions to plant immunity. Current Opinion in Plant Biology, 50, 29-36. https://doi.org/10.1016/j.pbi.2019.02.004
|