توسعه الگوریتم جستجوی نسبیت خاص برای طراحی بهینه سازه های خرپایی
مهندسی عمران فردوسی
مقاله 3 ، دوره 38، شماره 2 - شماره پیاپی 50 ، خرداد 1404، صفحه 49-70 اصل مقاله (1.59 M )
نوع مقاله: مقاله پژوهشی
شناسه دیجیتال (DOI): 10.22067/jfcei.2025.88012.1297
نویسندگان
فرناز سلاجقه 1 ؛ وحید گودرزی مهر* 2
1 بخش مهندسی عمران، دانشگاه شهید باهنر کرمان، کرمان، ایران
2 ، دانشکدة مهندسی عمران و معماری، دانشگاه شهید چمران اهواز، اهواز، ایران
چکیده
طراحی بهینه مسائل مهندسی سازه به طور مشخص سازه های خرپایی به دلیل وجود قید های طراحی از جمله تنش و جابجایی کار بسیار چالش بر انگیزی می باشد. این قیدها در بیشتر موارد به صورت غیرخطی و دینامیکی تعریف می شوند که باعث به دام افتادن الگوریتم های بهینه سازی در بهینه محلی می شوند. در مقابل الگوریتم های فراابتکاری با استفاده از تکنیک ها و اپراتورهای خاص برنامه نویسی پاسخ های قابل قبولی برای این نوع از مسائل تولید می کنند. الگوریتم استاندارد جستجوی نسبیت خاص به دلیل عدم هماهنگی میان دو پارامتر مهم بهره برداری و اکتشاف در حل این دسته از مسائل ناموفق است و به بهینه محلی همگرا می گردد. در این تحقیق برای بهبود عملکرد این الگوریتم دو تکنیک جدید معرفی و پیاده سازی می گردد. الگوریتم گرادیان نزولی به عنوان مکمل الگوریتم جستجوی جستجوی نسبیت خاص استفاده گردیده است. گام حرکت الگوریتم با استفاده از ضرایب خاص کنترل می گردد. برای اثبات اثربخشی و موثر بودن روش پیشنهادی نسبت به سایر روشهای پیشرفته نتایج آنها با یکدیگر مقایسه می گردد. نتایج نشان میدهد که الگوریتم پیشنهادی نسبت به سایر روشهای قبلی نرخ همگرایی بالایی دارد و توازن مناسبی بین پارامترهای بهره برداری و اکتشاف ایجاد کرده است.
کلیدواژهها
طراحی بهینه ؛ الگوریتم جستجوی نسبیت خاص ؛ الگوریتم های فراابتکاری ؛ محاسبات نرم ؛ SRS
مراجع
[1] V. Goodarzimehr, S. Shojaee, S. Talatahari, and S. Hamzehei-Javaran, "Generalized displacement control analysis and optimal design of geometrically nonlinear space structures," International Journal of Computational Methods , vol. 20, no. 7, p. 2143018, 2023. https://doi.org/10.1142/S0219876221430180 .
[2] P. Martinez, P. Marti, and O. Querin, "Growth method for size, topology, and geometry optimization of truss structures," Structural and Multidisciplinary Optimization , vol. 33, no. 1, pp. 13–26, 2007. https://doi.org/10.1007/s00158-006-0043-9 .
[3] A. Kaveh, P. Rahmani, and A. D. Eslamlou, "An efficient hybrid approach based on Harris Hawks optimization and imperialist competitive algorithm for structural optimization," Engineering with Computers , vol. 38, pp. 1555–1583, 2022. https://doi.org/10.1007/s00366-020-01258-7 .
[4] V. Goodarzimehr, S. Talatahari, S. Shojaee, and A. H. Gandomi, "Computer-aided dynamic structural optimization using an advanced swarm algorithm," Engineering Structures , vol. 300, p. 117174, 2024. https://doi.org/10.1016/j.engstruct.2023.117174 .
[5] V. Goodarzimehr, U. Topal, A. K. Das, and T. Vo-Duy, "SABO algorithm for optimum design of truss structures with multiple frequency constraints," Mechanics Based Design of Structures and Machines , vol. 52, no. 10, pp. 7745–7777, 2024. https://doi.org/10.1080/15397734.2024.2308652 .
[6] A. Dehghani, V. Goodarzimehr, S. Shojaee, and S. Hamzehei Javaran, "Modified adolescent identity search algorithm for optimization of steel skeletal frame structures," Scientia Iranica , 2023. https://doi.org/10.24200/sci.2023.60555.6868 .
[7] A. Dehghani, S. Hamzehei Javaran, S. Shojaee, and V. Goodarzimehr, "Optimal analysis and design of large-scale problems using a Modified Adolescent Identity Search Algorithm," Soft Computing , vol. 28, pp. 9405–9432, 2024. https://doi.org/10.1007/s00500-024-09689-w .
[8] T. Dong, S. Chen, H. Huang, C. Han, Z. Dai, and Z. Yang, "Large-scale truss topology and sizing optimization by an improved genetic algorithm with multipoint approximation," Applied Sciences , vol. 12, no. 1, p. 407, 2022. https://doi.org/10.3390/app12010407 .
[9] A. Javidi, E. Salajegheh, and J. Salajegheh, "Optimization of weight and collapse energy of space structures using the multi-objective modified crow search algorithm," Engineering with Computers, vol. 38, pp. 2879–2896, 2022. https://doi.org/10.1007/s00366-020-01276-5 .
[10] V. Goodarzimehr and F. Salajegheh, "Optimal design of tall steel moment frames using special relativity search algorithm," International Journal of Optimization in Civil Engineering , vol. 14, no. 1, pp. 61–81, 2024. https://doi.org/10.22068/ijoce.2024.14.1.575
[11] V. Goodarzimehr, U. Topal, T. Vo-Duy, and S. Shojaee, "Improved chaos game optimization algorithm for optimal frequency prediction of variable stiffness curvilinear composite plate," Journal of Reinforced Plastics and Composites , vol. 42, no. 19–20, pp. 1054–1066, 2023. https://doi.org/10.1177/07316844221145642 .
[12] A. Amiri, P. Torkzadeh, and E. Salajegheh, "A new improved Newton metaheuristic algorithm for solving mathematical and structural optimization problems," Evolutionary Intelligence , vol. 17, pp. 2749–2789, 2024. https://doi.org/10.1007/s12065-024-00911-0 .
[13] M. Dastan, V. Goodarzimehr, S. Shojaee, et al., "Optimal design of planar steel frames using the hybrid teaching–learning and charged system search algorithm," Iran Journal of Science and Technology, Transactions of Civil Engineering , vol. 47, no. 4, pp. 3357–3373, 2023. https://doi.org/10.1007/s40996-023-01124-8
[14] V. Goodarzimehr, S. Shojaee, S. Hamzehei-Javaran, and S. Talatahari, "Special relativity search: A novel metaheuristic method based on special relativity physics," Knowledge-Based Systems , vol. 257, p. 109484, 2022. https://doi.org/10.1016/j.knosys.2022.109484 .
[15] V. Goodarzimehr, S. Talatahari, S. Shojaee, and S. Hamzehei-Javaran, "Special relativity search for applied mechanics and engineering," Computer Methods in Applied Mechanics and Engineering , vol. 403, p. 115734, 2023. https://doi.org/10.1016/j.cma.2022.115734 .
[16] O.K. Erol and I. Eksin, "A new optimization method: Big bang–big crunch," Advances in Engineering Software , vol. 37, no. 2, pp. 106–111, 2006. https://doi.org/10.1016/j.advengsoft.2005.04.005 .
[17] F.A. Hashim, E.H. Houssein, M.S. Mabrouk, et al., "Henry gas solubility optimization: A novel physics-based algorithm," Future Generation Computer Systems , vol. 101, pp. 646–667, 2019.
[18] A. Kaveh and A. Dadras Eslamlou, "Water strider algorithm: A new metaheuristic and applications," Structures , vol. 25, pp. 520–541, 2020. https://doi.org/10.1016/j.istruc.2020.03.033 .
[19] L. Abualigah, D. Yousri, M. Abd Elaziz, A.A. Ewees, M.A.A. Al-qaness, and A.H. Gandomi, "Aquila optimizer: A novel meta-heuristic optimization algorithm," Computers & Industrial Engineering , vol. 157, p. 107250, 2021. https://doi.org/10.1016/j.cie.2021.107250 .
[20] A. Faramarzi, M. Heidarinejad, B. Stephens, and S. Mirjalili, "Equilibrium optimizer: A novel optimization algorithm," Knowledge-Based Systems , vol. 191, p. 105190, 2019. https://doi.org/10.1016/j.knosys.2019.105190 .
[21] S.J. Wu and P.T. Chow, "Steady-state genetic algorithms for discrete optimization of trusses," Computers & Structures , vol. 56, pp. 979–991, 1995. https://doi.org/10.1016/0045-7949(94)00551-D .
[22] L.J. Li, Z.B. Huang, and F. Liu, "A heuristic particle swarm optimization method for truss structures with discrete variables," Computers & Structures, vol. 87, pp. 435–443, 2009. https://doi.org/10.1016/j.compstruc.2009.01.004 .
[23] K.S. Lee, Z.W. Geem, S.H. Lee, and K.W. Bae, "The harmony search heuristic algorithm for discrete structural optimization," Engineering Optimization , vol. 37, no. 7, pp. 663–684, 2005. https://doi.org/10.1080/03052150500211895 .
[24] A. Kaveh and S. Talatahari, "A particle swarm ant colony optimization for truss structures with discrete variables," Journal of Constructional Steel Research , vol. 65, pp. 1558–1568, 2009. https://doi.org/10.1016/j.jcsr.2009.04.021 .
[25] P.V.S.Z. Capriles, L.G. Fonseca, H.J.C. Barbosa, and A.C.C. Lemonge, "Rank-based ant colony algorithms for truss weight minimization with discrete variables," Communications in Numerical Methods in Engineering , vol. 23, pp. 553–575, 2007. https://doi.org/10.1002/cnm.912 .
[26] A. Sadollah, A. Bahreininejad, H. Eskandar, and M. Hamdi, "Mine blast algorithm for optimization of truss structures with discrete variables," Computers & Structures , vol. 102–103, pp. 49–63, 2012. https://doi.org/10.1016/j.compstruc.2012.03.013 .
[27] A. Kaveh and M.I. Ghazaan, "A comparative study of CBO and ECBO for optimal design of skeletal structures," Computers & Structures , vol. 153, pp. 137–147, 2015. https://doi.org/10.1016/j.compstruc.2015.02.028 .
[28] M.H. Talebpour, A. Kaveh, and V.R. Kalatjari, "Optimization of skeletal structures using a hybridized ant colony-harmony search-genetic algorithm," Iran Journal of Science and Technology, Transactions of Civil Engineering , vol. 38, pp. 1–20, 2014.
[29] R.E. Perez and K. Behdinan, "Particle swarm approach for structural design optimization," Computers & Structures , vol. 85, pp. 1579–1588, 2007. https://doi.org/10.1016/j.compstruc.2006.10.013 .
[30] C.V. Camp, "Design of space trusses using big bang-big crunch optimization," Journal of Structural Engineering , vol. 133, pp. 999–1008, 2007. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:7(999) .
[31] S.O. Degertekin, "Improved harmony search algorithms for sizing optimization of truss structures," Computers & Structures , vol. 92–93, pp. 229–241, 2012. https://doi.org/10.1016/j.compstruc.2011.10.022 .
[32] T.H. Kim and J.I. Byun, "Truss sizing optimization with a diversity-enhanced cyclic neighborhood network topology particle swarm optimizer," Mathematics , vol. 8, no. 7, p. 1087, 2020. https://doi.org/10.3390/math8071087 .
[33] S.O. Degertekin, L. Lamberti, and M.S. Hayalioglu, "Heat transfer search algorithm for sizing optimization of truss structures," Latin American Journal of Solids and Structures , vol. 14, no. 3, pp. 373–397, 2017. https://doi.org/10.1590/1679-78253297 .
[34] M. Jafari, E. Salajegheh, and J. Salajegheh, "An efficient hybrid of elephant herding optimization and cultural algorithm for optimal design of trusses," Engineering Computations , vol. 35, pp. 781–801, 2019. https://doi.org/10.1007/s00366-018-0631-5 .
[35] A.A. Groenwold and N. Stander, "Optimal discrete sizing of truss structures subject to buckling constraints," Structural Optimization , vol. 14, pp. 71–80, 1997. https://doi.org/10.1007/BF01812508 .
[36] A.A. Groenwold, N. Stander, and J.A. Snyman, "A regional genetic algorithm for the discrete optimal design of truss structures," International Journal for Numerical Methods in Engineering , vol. 44, pp. 749–766, 1999. https://doi.org/10.1002/(SICI)1097-0207(19990228)44:6 .
[37] P.V.S.Z. Capriles, L.G. Fonseca, H.J.C. Barbosa, and A.C.C. Lemonge, "Rank-based ant colony algorithms for truss weight minimization with discrete variables," Communications in Numerical Methods in Engineering , vol. 23, pp. 553–575, 2007. https://doi.org/10.1002/cnm.912 .
[38] V. Ho-Huu, T. Nguyen-Thoi, T. Vo-Duy, T. Nguyen-Trang, “An adaptive elitist differential evolution for optimization of truss structures with discrete design variables,” Computers and Structures , vol. 165, pp. 59–75, 2016. https://doi.org/10.1016/j.compstruc.2015.11.014 .
[39] D.T. Le, D.K. Bui, T.D. Ngo, Q.H. Nguyen, H. Nguyen-Xuan, “A novel hybrid method combining electromagnetism-like mechanism and firefly algorithms for constrained design optimization of discrete truss structures,” Computers and Structures , vol. 212, pp. 20–42, 2019. https://doi.org/10.1016/j.compstruc.2018.10.017 .
[40] D.T. Do, J. Lee, “A modified symbiotic organisms search (mSOS) algorithm for optimization of pin-jointed structures,” Applied Soft Computing , vol. 61, pp. 683–699, 2017. https://doi.org/10.1016/j.asoc.2017.08.002 .
[41] A. Esmaeili Aghdam and R. Imani Kalesar Hoshy, “Determination of optimal position of cables in guyed masts by using meta-heuristic algorithms,” Ferdowsi Journal of Civil Engineering , vol. 37, no. 3, pp. 93–107, 2024. https://doi.org/10.22067/jfcei.2024.75849.1131 .
[42] A. Banaei, J. Alamatiyan, and R. Zia Toohidi, “Investigation of the effect of weighting coefficients in the objective function on the performance of genetic algorithm in active structural control,” Ferdowsi Journal of Civil Engineering , vol. 36, no. 4, pp. 1–20, 2023. https://doi.org/10.22067/jfcei.2023.77364.1159 .
[43] A. Banaei and J. Alamatiyan, “Multi-objective Function Minimization Using an Improved Genetic Algorithm for Active Vibration Control of Structures,” Ferdowsi Journal of Civil Engineering , vol. 31, no. 4, pp. 21-40, 2018. https://doi.org/10.22067/civil.v31i4.61547 .
[44] F. Omidinasab, V. Goodarzimehr, H. Babaali, and A. Dalvand, “Investigating barriers and problems affecting the standardization of industrial construction materials of Lorestan Province (with an emphasis on concrete and concrete’s aggregates),” Ferdowsi Journal of Civil Engineering , vol. 33, no. 4, pp. 67–80, 2020. https://doi.org/10.22067/jfcei.2021.68601.1017 .
[45] M. Akbarzadeh and B. Ahmadi Nadooshan, “Improvement of Pareto Front in Multi-objective Topology Optimization with Non-uniform Polygonal Elements,” Ferdowsi Journal of Civil Engineering , vol. 31, no. 2, pp. 89-102, 2018. https://doi.org/10.22067/civil.v31i2.57563 .
[46] M. Jahangiri and B. Ahmadi Nadooshan, “Damage Identification in Structures Using Multi-objective Evolutionary Optimization Algorithms MOPSO and MOEA/D,” Ferdowsi Journal of Civil Engineering , vol. 30, no. 1, pp. 63-78, 2017. https://doi.org/10.22067/civil.v1i30.53204 .
[47] V. Goodarzimehr, U. Topal, and M. Bohlooly Fotovat, “Optimal frequency of stiffened piezolaminated composite plates implementing a hybrid special relativity search and hill climbing optimization algorithm,” Journal of Applied and Computational Mechanics , vol. 10, 2024. https://doi.org/10.22055/jacm.2024.47914.4837
[48] V. Goodarzimehr, U. Topal, M. Bohlooly Fotovat, “A novel approach for buckling optimization of stiffened piezolaminated composite plates.” Journal of Composite Materials , vol. 58, no. 28, pp. 2975-2991, 2024. https://doi.org/10.1177/00219983241288569 .
[49] V. Goodarzimehr, M. Fazli, N. Fanaie, Amir H. Gandomi, “Enhanced Special Relativity Search Algorithm-Based Lorentz Force for Structural Optimization.” International Journal of Computational Methods, p. 2450064, 2024. https://doi.org/10.1142/S0219876224500646 .
[50] M. J Ketabdari and S. Mohtaram, “Optimization of Braced Frames under Spectral Dynamic Load Using Migratory Genetic Algorithm,” Ferdowsi Journal of Civil Engineering , vol. 22, no. 1, pp. 1-16, 2010. https://doi.org/10.22067/civil.v22i1.8370 .
[51] M. Daee, S. Tamjidzadeh, and S H. Mir Mohammadi, “Formation of Sparse Null Bases for Optimal Force Method Analysis Using Charged System Search Algorithm,” Ferdowsi Journal of Civil Engineering , vol. 27, no. 2, pp. 75-84, 2015. https://doi.org/10.22067/civil.v27i2.33680
آمار
تعداد مشاهده مقاله: 1,797
تعداد دریافت فایل اصل مقاله: 62