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Abstract

In this article, the triangular and symmetric splitting iterative method is
suggested for solving linear homogeneous systems of equations πQ = 0,
where Q is the stochastic rate matrix and π is the steady state vector. The
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homogeneous system is converted to the nonhomogeneous regularized fuzzy
linear system Ax = b with the small perturbation parameter 0 < r ≤ 1.
The regularized fuzzy linear system is converted into an embedded linear
system. The iterative scheme is established; convergence criteria and its
sensitivity analysis are analyzed using the numerical examples and conver-
gence theorems. From the numerical results, it is evident to conclude that
the proposed method is effective and efficient compared to the theoretical
results.

AMS subject classifications (2020): Primary 65F10; Secondary 08A72.

Keywords: Stochastic rate matrix; Triangular and symmetric splitting
Method; Fuzzy liner system; Error analysis.

1 Introduction

Fuzzy linear systems (FLS) and Fully Fuzzy linear systems (FFLS) have great
applications in various areas of engineering, science, and social sciences, such
as physics, statistics, operational research, control problems, neural networks,
communication systems, sensors, and economics. The mathematical model-
ing of a physical problem is formulated into the system of fuzzy linear ho-
mogeneous or nonhomogeneous equations. There are many methods in the
literature to solve the nonhomogeneous FLSs. The homogeneous FLS has
either a trivial solution or an infinite number of solutions. For a unique non-
trivial solution, the homogeneous system πQ = 0, where π is the steady state
vector and Q is the stochastic rate matrix, is converted into the regularized
nonhomogeneous fuzzy linear system Ax = b with the small perturbation
0 < r ≤ 1. The regularized FLS is converted into an embedded linear system
ΘX = Υ, where Θ and Υ are fuzzy matrices and X is an unknown fuzzy
vector. Many straight forward methods are existing in the literature to find
the unique non-zero solution of pertinent to linear systems when the coef-
ficient matrix is a crisp matrix. However, in actual cases, the parameters
may be uncertain or vague. So, to overcome the uncertainty and vagueness,
the coefficient matrix of the system Ax = b is assumed as a fuzzy stochastic
matrix instead of the crisp matrix.

Iran. J. Numer. Anal. Optim., Vol. ??, No. ??, ??, pp ??



3 Convergence analysis of triangular and symmetric splitting ...

Many researchers proposed direct and iterative methods to solve FLSs.
The first iterative model with an embedding technique for computing a class
of n×n FLS was triggered by Friedman, Ming, and Kandel [11]. For solving
a system of fuzzy linear equations, a few numerical methods were developed
and discussed for the existence of solution, provided that the diagonal ele-
ments are positive and satisfy the diagonal dominance property by Dehghan,
Hashemi and Ezzati [6, 9]. The steepest descent method and LU decompo-
sition method were developed in [1, 2]. Allahviranloo [3, 4] used the Jacobi,
Gauss–Seidel, SOR, iterative methods for finding the approximate solution
of the FLS. A fuzzy system of linear equations with crisp coefficients was
proposed by Chakraverty and Behera [5]. The inherited LU factorization
method was proposed by Fariborzi Araghi and Fallahzadeh [10] for solving a
fuzzy systems of linear equations. Koam et al. [13] used the LU decomposi-
tion scheme for solving m-polar fuzzy system of linear equations. Block SOR
method for FLSs was proposed by Miao, Zheng, and Wang [14], and the QR-
decomposition method was developed by S.H. Nasseri, Matinfar, and Sohrabi
[15]; Wang and Wu [17] introduced the Uzawa-SOR method. Symmetric suc-
cessive over relaxation method, block iterative method, and splitting iterative
methods were established by Wang, Zheng and Yin [18, 19, 21]. Wang and
Chen [20] suggested a modified Jacobi iterative method for large-size lin-
ear systems, and a new method based on Jacobi iteration was proposed to
solve the FLSs by Zhen et al. [12]. If the coefficient matrix is crisp, then
it will restrict the modeling of the real-time problems. In the system of lin-
ear equations, both the coefficient matrix and right-hand side matrices are
fuzzy matrices. then it is defined as an FFLS. FFLS gives wide scope in real-
time applications by removing the crispness in the left-hand side coefficient
matrix. The iterative solution of general FFLS is proposed in [7]. Edalat-
panah [8] proposed a modified iterative method for finding the solution of
FFLS. Classical triangular and symmetric (TS) splitting methods are simple
to implement and suitable to find the steady state probability vector and
performance measures in many real time systems [16]. In this paper, a new
improved method based on TS iteration is provided for solving FFLSs. The
rest of the paper is organized as follows: Section 2 gives some basic definitions
and results of FLS. In section 3, the new method is established with conver-
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gence theorems. Perturbation analysis is discussed in section 4. Numerical
examples are presented in section 5, and the conclusions are in section 6.

2 Basic definitions of FLSs and convergence analysis of
TS method

In this section, we have defined the FLS and some basic definitions such as
fuzzy numbers, fuzzy solutions, arithmetic operations on fuzzy numbers, and
embedded model of FFLS, which are useful in the numerical solution of FLS.
Fuzzy number: An arbitrary form of fuzzy number is an ordered pair of
functions (v(r), v(r)), 0 < r ≤ 1, satisfying

• v(r) is a bounded monotonic increasing left continuous function over
[0, 1],

• v(r) is a bounded monotonic decreasing left continuous function over
[0, 1],

• v(r) ≤ v(r), 0 < r ≤ 1.

Arithmetic operations on fuzzy numbers: If u = (u(r), u(r)) and v =

(v(r), v(r)) are arbitrary fuzzy numbers, then the arithmetic operations of
arbitrary fuzzy numbers for 0 < r ≤ 1 and real number k, are defined as
follows:

• u = v if and only if u(r) = v(r) and u(r) = v(r),

• u+ v = (u(r) + v(r), u(r) + v(r)), and

• ku =

 (ku(r), ku(r)), k > 0,

(ku(r), ku(r)), k < 0.

Fuzzy linear system: The n× n FLS is defined as

a11x1 + a12x2 + · · ·+ a1nxn = b1,

a21x1 + a22x2 + · · ·+ a2nxn = b2,

...
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5 Convergence analysis of triangular and symmetric splitting ...

an1x1 + an2x2 + ·+ annxn = bn.

The matrix form of the above linear system is

Ax = b, (1)

where

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann

 .

is a crisp matrix, b = [b1, b2, . . . , bn]
T is a fuzzy vector, and x = [x1, x2, . . . , xn]

T

is unknown.
Solution of an FLS: A fuzzy vector x = (x1, x2, . . . , xn)

T given by
xi = (xi(r), xi(r)), 1 ≤ i ≤ n, 0 < r ≤ 1, is called a solution of the FLS
(1) if 

n∑
j=1

aijxj =
n∑

j=1

aijxj = bi,

n∑
j=1

aijxj =
n∑

j=1

aijxj = bi.

(2)

Embedded Model of FLS: The embedding model of extended FLS (1)
into the 2n× 2n crisp linear system is defined as

θ1,1x1 + · · ·+ θ1,nxn + θ1,n+1(−x1) + · · ·+ θ1,2n(−xn) = b1,

θ2,1x1 + · · ·+ θ2,nxn + θ2,n+1(−x1) + · · ·+ θ2,2n(−xn) = b2,

...

θn,1x1 + · · ·+ θn,nxn + θn,n+1(−x1) + · · ·+ θn,2n(−xn) = bn,

θn+1,1x1 + · · ·+ θn+1,nxn + θn+1,n+1(−x1) + · · ·+ θn+1,2n(−xn) = −b1,

...

θ2n,1x1 + · · ·+ θ2n,nxn + θ2n,n+1(−x1) + · · ·+ θ2n,2n(−xn) = −bn.
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The matrix form of above 2n× 2n linear system is

ΘX = Υ, (3)

where Θ = (θkl), θkl are determined as follows:

1. For aij > 0, θij = aij , θn+i,n+j = aij .

2. For aij < 0, θi,n+j = aij , θn+i,j = aij , 1 ≤ i, j ≤ 2n.

3. θkl = 0 if it is not presented in above system, and

X =



x1

...

xn

x1

...

xn


and Υ =



b1
...

bn

b1
...

bn


.

Furthermore, the matrix Θ has the structure
[
Θ1 Θ2

Θ2 Θ1

]
, Θ = Θ1 + Θ2, and

(2) can be written as

Θ1X +Θ2X = Υ,

Θ2X +Θ1X = Υ,
(4)

where

X =


x1

x2

...

xn

, X =


x1

x2

...

xn

,

Υ =


b1

b2
...

bn

, and Υ =


b1

b2
...

bn

 .

In the next section, a new iterative scheme based on TS iteration is presented
for regularized linear system with nonsingular coefficient matrix [16].
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7 Convergence analysis of triangular and symmetric splitting ...

3 Fuzzy TS splitting iterative method for regularized
linear system

In this section, we find the steady state probability vector π of a homogeneous
equation πQ = 0. The solution of the homogeneous system is either a trivial
solution or an infinite number of solutions. For a unique, nonzero solution,
the above homogeneous system is converted to the regularized FLS and is
equivalent embedded crisp system Θx = b, using the small perturbation 0 <

r ≤ 1. Now, the TS splitting method for the transition matrix is adopted in a
fuzzy environment. Let the coefficient matrix Θ of the embedded regularized
linear system can be split in the form:
Θ = (L+D − UT ) + (U + UT ) = T + S,
where T = L+D − UT and S = (U + UT ) are TS matrices.

The regularized system, (3) can be expressed as (T + S)X = b. Consider

D =

[
D1 0

0 D1

]
, L =

[
L1 0

−S2 L1

]
, U =

[
U1 −S2

0 U1

]
,

where D1 = diag(sii), L1, and U1 are diagonal, lower, and upper trian-
gular matrices, respectively. Now,

T = L+D − UT =

[
D1 0

0 D1

]
+

[
L1 0

−S2 L1

]
−

[
U1 0

−S2 U1

]

=

[
L1 +D1 − U1 0

0 L1 +D1 − U1

]
,

and

S = U + UT =

[
2U1 −S2

−S2 2U1

]
.

The TS splitting iterative scheme is as follows [16]:

(αI + T )X(k+1/2) = (αI − S)X(k) + b,

(αI + S)X(k+1) = (αI − T )X(k+1/2) + b.

The above iterative scheme could be written as

X(k+1) = M(α)X(k) +N(α)b, for k = 0, 1, 2, . . . ,
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where

X(k+1) =

[
X(k+1)

X(k+1)

]
M(α) = (αIn + S)−1(αIn − T )(αIn + T )−1(αIn − S)

and

N(α) = 2α(αIn + S)−1(αIn + T )−1.

We have

αIn + S =

[
αIn + 2U1 −S2

−S2 αIn + 2U1

]
,

αIn − S =

[
αIn − 2U1 S2

S2 αIn − 2U1

]
,

αIn + T =

[
αIn + T1 0

0 αIn + T1

]
,

αIn − T =

[
αIn − T1 0

0 αIn − T1

]
.

Thus,

M(α) =
αIn − T1

(αIn + T1)[(αIn + 2U1)2 − S2
2 ]

[
(αIn)

2 − 4U2
1 + S2

2 2αInS2

2αInS2 (αIn)
2 − 4U2

1 + S2
2

]

and N(α) =
2α

(αIn + 2U1)2 − S2
2

 αIn + 2U1

αIn + T1

S2

αIn + T1
S2

αIn + T1

αIn + 2U1

αIn + T1

 .

Theorem 1. If ΘX = b is the regularized FLS, then the convex solution
X = {rXj + (1− r)Xj/0 < r ≤ 1} is the solution.

Proof. Let Xj and Xj be the solutions corresponding to right-hand side vec-
tor bj and bj of

n∑
j=1

aijXj = bj ,

which implies,
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9 Convergence analysis of triangular and symmetric splitting ...

n∑
j=1

aijXj = bj ,

n∑
j=1

aijXj = bj .

We prove that Xj = rXj + (1− r)Xj is the solution.
Now,

n∑
j=1

aijXj =

n∑
j=1

aij [rXj + (1− r)Xj ]

= r

n∑
j=1

aijXj + (1− r)

n∑
j=1

aijXj

= rbj + (1− r)bj

= bj .

Therefore, Xj = rXj + (1− r)Xj is the solution of the given system.

Theorem 2. If ΘX = b, then the convex solution X = {rX +(1− r)X/0 <

r ≤ 1} is the solution vector of the system Θ{X +X} = {b+ b}.

Proof. The regularized linear system ΘX = b can be written as

n∑
j=1

aijXj = bi for i = 1, 2, . . . n.

Let

Xj = rXj + (1− r)Xj

and

bj =
[
bi, bi

]
for i = 1, 2, . . . , n.

Now
n∑

j=1

aijXj =

n∑
j=1

aij

[
rXj + (1− r)Xj

]
=

[
bi, bi

]
,
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aij>0

raijXj +
∑
aij<0

(1− r)aijXj = bi,

and∑
aij>0

(1− r)aijXj +
∑
aij<0

raijXj = bi.

Consider

Θ
[
X +X

]
=

∑
aij>0

aij

[
rXj + (1− r)Xj

]
+

∑
aij<0

aij

[
(1− r)Xj + rXj

]

=

 ∑
aij>0

raijXj +
∑
aij<0

(1− r)aijXj


+

 ∑
aij>0

(1− r)aijXj +
∑
aij<0

raijXj


=

[
bi + bi

]
,

Θ
[
X +X

]
=

[
b+ b

]
.

This proves that X is the solution.

Theorem 3. If ΘX = b, then the convex solution X = {rX − (1 − r)X},
0 < r ≤ 1 is the solution vector of the system Θ{X −X} = {b− b}

Proof. The system ΘX = b can be written as
n∑

j=1

aijXj = bi for i = 1, 2, . . . , n.

Now, we may write the real fuzzy unknown and the right-hand real fuzzy
number vectors as

Xj = rXj − (1− r)Xj ,

and

bj =
[
bi, bi

]
for i = 1, 2, . . . , n,

which implies
n∑

j=1

[aijrXj + (1− r)Xj ] =
[
bi, bi

]
,
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11 Convergence analysis of triangular and symmetric splitting ...

⇒
∑
aij>0

raijXj +
∑
aij<0

(1− r)aijXj = bi

and∑
aij>0

(1− r)aijXj +
∑
aij<0

raijXj = bi.

Consider

Θ
[
X −X

]
=

∑
aij>0

aij

[
rXj + (1− r)Xj

]
−

∑
aij<0

aij

[
(1− r)Xj + rXj

]

=

 ∑
aij>0

raijXj +
∑
aij<0

(1− r)aijXj


−

 ∑
aij>0

(1− r)aijXj +
∑
aij<0

raijXj


=

[
bi − bi

]
,

Θ
[
X −X

]
=

[
b− b

]
.

Theorem 4. If ΘX = b, then the mid point solution X =
Xj +Xj

2
, is the

solution vector of the system ΘX = b.

Proof. The system ΘX = b can be written as
n∑

j=1

aijXj = bk for k = 1, 2, . . . , n.

The real fuzzy unknown and the right-hand real fuzzy number vectors can
be written as

Xj =
Xj +Xj

2
and bj =

[
bj , bj

]
for j = 1, 2, . . . , n,

n∑
j=1

aij
Xj +Xj

2
=

[
bj , bj

]
,

which implies1
2

 ∑
aij>0

aijXj +
∑
aij<0

aijXj

 = bj ,

and
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1

2

 ∑
aij>0

aijXj +
∑
aij<0

aijXj

 = bj .

Consider

Θ

[
X +X

]
2

=

n∑
j=1

aij

[
xj + xj

]
2

n∑
j=1

aij

[
Xj +Xj

]
2

=
∑
aij>0

aij

[
xj + xj

]
2

+
∑
aij<0

aij

[
xj + xj

]
2

=

[ ∑
aij>0

aijxj +
∑

aij<0
aijxj

]
2

+

[ ∑
aij>0

aijxj +
∑

aij<0
aijxj

]
2

=

[
bj + bj

]
2

,

Θ

[
X +X

]
2

=

[
b+ b

]
2

.

Hence, X =
xj + xj

2
is solution of the regularized linear system.

4 Perturbation analysis of FLS

As discussed in the previous section, the homogeneous system πQ = 0, where
the coefficient matrix Q is circulant stochastic rate matrix, is converted into
the regularized FLS Ax = b using small perturbation 0 < r ≤ 1. In this
section, perturbation to the FLS is added, in which both the coefficient ma-
trix and right-hand side matrices are perturbed and the sensitivity analysis
of Ax = b is discussed by using the FFTS method. The well-posed and
ill-posed solution of the system ΘX = Υ depends on the membership value
0 < r ≤ 1. If the coefficient matrix Θ or the right-hand side fuzzy vector Υ
or both are slightly disturbed with the membership value r, then the solu-
tion will be changed as well. The relative error and absolute by the FFTS
method are evaluated between the exact solution and numerical solution with
the perturbed FLS. The following theorems are proved in preparation for in-
vestigating the sensitivity analysis of the regularized fuzzy system.
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13 Convergence analysis of triangular and symmetric splitting ...

Theorem 5. If A ∈ Rn×n is a circulant stochastic matrix of the regularized
linear system Ax = b and Θ is the embedded matrix of the embedded system
ΘX = Υ, then Θ is positive definite.

Proof. For proving the matrix Θ is positive definite, it is sufficient to prove
that Θ+ΘT

2 is positive definite.

We have

Θ =



c1 + r 0 . . . 0 0 c2 . . . cn

0 c1 + r . . . 0 cn 0 . . . cn−1

...
...

...
...

...
. . .

...
...

0 0 . . . c1 + r c2 c3 0 . . . 0

0 c2 0 . . . cn c1 + r 0 . . . 0

cn 0 0 . . . cn−1 0 c1 + r . . . 0
...

...
...

...
...

. . .
...

...

c2 c3 . . . 0 0 0 . . . c1 + r


,

Θ+ΘT

2
=



c1 + r 0 . . . 0 0 c2+cn
2 . . . c2+cn

2

0 c1 + r . . . 0 c2+cn
2 0 . . . c3+cn−1

2
...

...
...

...
...

. . .
...

...

0 0 . . . c1 + r c2+cn
2

c3+cn−1

2 0 . . . 0

0 c2+cn
2 0 . . . c2+cn

2 c1 + r 0 . . . 0
c2+cn

2 0 0 . . . c3+cn−1

2 0 c1 + r . . . 0
...

...
...

...
...

. . .
...

...
c2+cn

2
c3+cn−1

2 . . . 0 0 0 . . . c1 + r


= (c1 + r)In2 −R,

where
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R =



0 0 . . . 0 0 c2+cn
2 . . . c2+cn

2

0 0 . . . 0 c2+cn
2 0 . . . c3+cn−1

2
...

...
...

...
...

. . .
...

...

0 0 . . . 0 c2+cn
2

c3+cn−1

2 0 . . . 0

0 c2+cn
2 0 . . . c2+cn

2 0 0 . . . 0
c2+cn

2 0 0 . . . c3+cn−1

2 0 0 . . . 0
...

...
...

...
...

. . .
...

...
c2+cn

2
c3+cn−1

2 . . . 0 0 0 . . . 0


≥ 0.

From the theorem in [16], we have

⇒ρ(R) = c2 + c3 + · · ·+ cn = c1,

⇒c1 + ϵ > ρ(R).

Therefore, Θ+ΘT

2 is positive definite.

Theorem 6. [16] For any nonsymmetric stochastic circulant rate matrix
Q ∈ Rn×n, there exists a constant ϵ > 0 such that A = QT + ϵIn is positive
definite if and only if all its eigenvalues are nonnegative real numbers.

Theorem 7. [16] Let A ∈ Rn×n be the regularized matrix, and splitting
into TS matrices. Then the spectral radius of the iterative matrix M(α) is
less than one.

Theorem 8. Let Θ ∈ R2n×2n be a fuzzy matrix of regularized linear system
and let M(α) be the iteration matrix of the FFTS iteration method. Then
the spectral radius of M(α) is less than 1.

Proof. The proof of the theorem is on the similar lines of Theorems 6 and
7.

5 Numerical results

In this section, we examine the effectiveness of the FFTS iteration method
with the numerical solution of stochastic matrices under a fuzzy environment
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and compare the error analysis of fuzzy iterative solution with the TS and
TSS iteration methods. For the numerical illustration, we consider the homo-
geneous system πQ = 0, where Q is the 3× 3 doubly stochastic rate matrix
given below:

Q =


0.6 −0.35 −0.25

−0.25 0.6 −0.35

−0.35 −0.25 0.6

.
We convert the above homogeneous system πQ = 0, into a regularized linear
system Ax = b with the small perturbation parameter 0 < r ≤ 1. The
regularized linear system is converted to a 6 × 6 embedded linear system
ΘX = Υ, where

Θ =



0.6 + r 0 0 0 −0.35 −0.25

0 0.6 + r 0 −0.25 0 −0.35

0 0 0.6 + r −0.35 −0.25 0

0 −0.35 −0.25 0.6 + r 0 0

−0.25 0 −0.35 0 0.6 + r 0

−0.35 −0.25 0 0 0 0.6 + r


.

Let the initial distribution vector bw x(0) = [0 0 0 0 0 1]T and let right-hand
side vector be Υ = [0 0 1−r 0 0 r−1], where 0 < r ≤ 1 is the membership
function. Only one case Θ = (L+D − UT ) + (U + UT ) = T1 + S1 of FFTS
splitting method is considered, and other methods would follow the same. A
fuzzy iterative solution to the system (1) is computed, and a classical solution
of TS and TSS iterative methods is evaluated. It is illustrated the result for
the case of contraction factor α = 0.6+ r, which is numerically equivalent to
the diagonal elements of the matrix Θ, for different values of r. The steady
state distribution vector x of the preconditioned linear system is obtained,
and the results are presented in Figures 1–7. The numerical solutions of the
FFTS method are presented in Figure 1. From this figure, it is concluded that
the numerical solutions FFTS method coincides with the theoretical results.
The average and linear convex solutions of lower bound and upper bound
solutions are depicted in Figures 2–4. From these two figures, it is concluded
that the center and convex solution curves lie within the monotonically in-
creasing and monotonically decreasing curve. The error analysis of the FFTS
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method and classical iterative solution is presented in Figure 5. From this
figure, it concluded that the FFTS iterative solution converges rapidly when
compared with classical TS, TSS methods. The convergence and sensitivity
analysis of the FFTS method are presented in Figures 6–7. From Figure 6,
it is evidently concluded that the condition number of the FFTS method is
very low compared with classical TS and TSS methods. From this figure, one
can conclude that the iterative solution obtained using the FFTS method is
well conditioned and the regularized matrix is nonsingular for larger mem-
bership values. It is depicted in Figure 7 that the spectral radius of the FFTS
method and spectral radius are clearly less than one. From this figure, it is
concluded that the FFTS method converges to a unique nonzero solution,
and it is evident by the theoretical solution.

Figure 1: Solution x for the contraction factor α = 0.6 over the membership value r.

6 Conclusions

In this paper, a new iterative method was suggested based on the TS iteration
to the solution of a class of fuzzy linear systems of equations with a coeffi-
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Figure 2: Solution x and average solution for the contraction factor α = 0.6 over the
membership value r.

Figure 3: Solution x and LP solution for the contraction factor α = 0.6 over the mem-
bership value r.
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Figure 4: Solution x, average solution, LP solution for the contraction factor α = 0.6

over the membership value r.

Figure 5: Absolute error and Relative error of the TSS, TS, and FTS iterative solution
for the contraction factor α = 0.6
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Figure 6: Condition number of TSS, TS, and FTS methods for the contraction factor
α = 0.6 over the membership values r.

Figure 7: Spectral radius of TSS, FTSS, TS, FTS methods for the contraction factor
α = 0.6 over the membership values r.
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cient matrix as a fuzzy stochastic matrix and fuzzy right-hand side matrix.
The iterative scheme was established, and the convergence theorems were
presented. FTS iterative solutions with classical TS and TSS methods were
compared. Numerical examples showed that the method is effective and effi-
cient when compared with the classical iterative methods. The convergence
and sensitivity analysis were discussed. The numerical value of spectral ra-
dius concluded that the solution of FTS method converges to unique nonzero
solution. The numerical value of condition number gave the sensitivity anal-
ysis of regularized linear system and concluded that the iterative solution of
regularized FLS is well conditioned.
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