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Two-step inertial Tseng’s extragradient
methods for a class of bilevel split

variational inequalities

L.H.M. Van and T.V. Anh∗

Abstract

This work presents a two-step inertial Tseng’s extragradient method
with a self-adaptive step size for solving a bilevel split variational inequal-
ity problem (BSVIP) in Hilbert spaces. This algorithm only requires two
projections per iteration, enhancing its practicality. We establish a strong
convergence theorem for the method, showing that it effectively tackles the
BSVIP without necessitating prior knowledge of the Lipschitz or strongly
monotone constants associated with the mappings. Additionally, the im-
plementation of this method removes the need to compute or estimate the
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norm of the given operator, a task that can often be challenging in practi-
cal situations. We also explore specific cases to demonstrate the versatility
of the method. Finally, we present an application of the split minimum
norm problem in production and consumption systems and provide sev-
eral numerical experiments to validate the practical implementability of
the proposed algorithms.

AMS subject classifications (2020): Primary 49M37; Secondary 90C26, 90C33.

Keywords: Bilevel split variational inequality problem; Bilevel variational
inequality problem; Split feasibility problem; Tseng’s extragradient method.

1 Introduction

Let C and Q be nonempty closed convex subsets of the real Hilbert spaces
H1 and H2, respectively. Let A : H1 −→ H2 be a bounded linear operator.
Define the mappings F1 : H1 −→ H1 and F2 : H2 −→ H2 on H1 and
H2, respectively. The split variational inequality problem (SVIP), initially
proposed by Censor, Gibali, and Reich [15], can be expressed as follows:

Find x∗ ∈ C : ⟨F1(x
∗), x− x∗⟩ ≥ 0, for all x ∈ C (1)

such that

y∗ = Ax∗ ∈ Q : ⟨F2(y
∗), y − y∗⟩ ≥ 0, for all y ∈ Q. (2)

When F1 = 0 and F2 = 0, the SVIP reduces to a special case known as the
split feasibility problem (SFP), which is formulated as

Find x∗ ∈ C such that Ax∗ ∈ Q. (3)

This problem was first introduced by Censor and Elfving [13] as a model
for inverse problems in finite-dimensional Hilbert spaces. Recently, its ap-
plicability has been extended to fields such as intensity-modulated radiation
therapy [12, 16, 14] and other practical scenarios. For additional details on
the SFP, refer to [1, 3, 5, 14, 7, 8, 11, 10, 9, 23, 24, 34, 36, 43] and the sources
cited within those references.
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3 Two-step inertial Tseng’s extragradient methods for a class ...

In this paper, our primary objective is to solve a variational inequality
problem (VIP) defined over the solution set of the SVIP. Specifically, we aim
to address the following problem:

Find x∗ ∈ ΩSVIP such that ⟨F (x∗), x− x∗⟩ ≥ 0, for all x ∈ ΩSVIP, (4)

where F : H1 −→ H1 is η-strongly monotone and L-Lipschitz continuous
on H1, and ΩSVIP represents the solution set of the SVIP defined by equa-
tions (1) and (2). Problem (4) is referred to as the bilevel split variational
inequality problem (BSVIP) in [1]. Suppose that H1 = H, F : H −→ H is
strongly monotone and Lipschitz continuous on H, that F1 = G : H −→ H
is a mapping on H, that F2 = 0, and that Q = H2. Then the BSVIP (4)
simplifies to the following bilevel VIP:

Find x∗ ∈ Sol(C,G) such that ⟨F (x∗), y − x∗⟩ ≥ 0, for all y ∈ Sol(C,G), (5)

where Sol(C,G) represents the set of all solutions to the VIP given by

Find y∗ ∈ C such that ⟨G(y∗), z − y∗⟩ ≥ 0, for all z ∈ C. (6)

Bilevel VIPs (5)–(6) encompass various types of bilevel optimization problems
[20, 37, 6], minimum norm problems related to the solution set of variational
inequalities [42, 44], and other variational inequalities [28, 29, 21, 19, 22]. In
recent years, numerous approaches have been developed to solve the BVIP
(5)-(6) in both finite and infinite-dimensional spaces. For a comprehensive
overview, see [2, 4, 38] and the references therein.

One of the most famous methods for solving VIPs is the extragradient
method, first proposed by Korpelevich [30] for saddle problems. However,
the extragradient method may be costly, since it requires two projections
at each step. To improve this, Tseng [39] introduced an alternative extra-
gradient method that reduces the number of projections required. Instead
of performing two projections, Tseng’s method requires only one projection
onto C per iteration. Tseng’s extragradient method is described as follows:

x0 ∈ H,

yn = PC(x
n − λF1(x

n)),

xn+1 = yn − λ(F1(y
n)− F1(x

n)),

(7)
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where F1 is L1-Lipschitz continuous and λ ∈
(
0,

1

L1

)
.

Inspired the Tseng’s extragradient method for solving VIPs, Huy et al.
[25] introduced the modified Tseng’s extragradient method for solving the
BSVIP (4), where F : H1 −→ H1 is η-strongly monotone and L-Lipschitz
continuous on H1, F1 : H1 −→ H1 and F2 : H2 −→ H2 are pseudomonotone
and Lipschitz continuous mappings. Specifically, they proposed the following
algorithm

x0 ∈ H1,

un = A(xn),

vn = PQ(u
n − µnF2(u

n)),

wn = vn − µn(F2(v
n)− F2(u

n)),

µn+1 =


min

{
µ∥un − vn∥

∥F2(un)− F2(vn)∥
, µn

}
if F2(u

n) ̸= F2(v
n),

µn if F2(u
n) = F2(v

n),

yn = xn + δnA
∗(wn − un),

δn =


∥wn − un∥2

2∥A∗(wn − un)∥2
if A∗(wn − un) ̸= 0,

0 if A∗(wn − un) = 0.

zn = PC(y
n − λnF1(y

n)),

tn = zn − λn(F1(z
n)− F1(y

n)),

λn+1 =


min

{
λ∥yn − zn∥

∥F1(yn)− F1(zn)∥
, λn

}
if F1(y

n) ̸= F1(z
n),

λn if F1(y
n) = F1(z

n),

xn+1 = tn − εnF (tn),

(8)

where µ0 > 0, λ0 > 0, µ ∈ (0, 1), λ ∈ (0, 1), {εn} ⊂ (0, 1), lim
n→∞

εn = 0, and
∞∑

n=0

εn = ∞. The author demonstrated that the sequence {xn} produced by

the algorithm (8) converges strongly to the unique solution of the BSVIP (4),
provided that the solution set of the SVIP (1)–(2) is nonempty.

To enhance the convergence rate of algorithms, inertial acceleration is
commonly utilized. Originally introduced by Polyak [33] in 1964 for solving
smooth convex minimization problems, the inertial algorithm distinguishes
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5 Two-step inertial Tseng’s extragradient methods for a class ...

itself by leveraging the previous two iterates to generate the next one. Nu-
merous researchers have explored and implemented the inertial scheme to ac-
celerate algorithmic convergence (see [32, 40] and references therein). These
studies primarily employ a single inertial parameter to achieve acceleration.
However, recent works by some authors [26, 27] have investigated multi-
step inertial algorithms, demonstrating that incorporating multi-step inertial
terms, such as the two-step inertial term, further enhances algorithmic speed.

In this paper, drawing inspiration from the aforementioned studies, we
introduce a novel iterative scheme that combines the two-step inertial tech-
nique with a modified Tseng’s extragradient method, as employed by Huy
et al. [25], to solve the BSVIP in (4). We demonstrate that the sequence
produced by our method converges strongly to the unique solution of (4),
with the stepsize determined at each iteration. Consequently, our approach
does not necessitate prior knowledge of the Lipschitz or strong monotonic-
ity constants for the mappings involved. Additionally, the implementation
of this method eliminates the need to compute or estimate the norm of the
bounded linear operator.

The structure of the paper is organized as follows. Section 2 presents
essential definitions and lemmas that will be utilized in section 3, where we
outline the algorithm and demonstrate its strong convergence. We conclude
this section by exploring various applications of our results to the bilevel
VIPs, the simple bilevel optimization problem and VIPs with the SF con-
straints. Lastly, we apply the split minimum norm problem (SMNP) to
production and consumption systems and conduct numerical experiments to
evaluate the effectiveness of the proposed algorithms.

2 Preliminaries

In the following discussion, we denote the strong convergence of a sequence
{xn} to x in a real Hilbert space H as xn → x and the weak convergence
as xn ⇀ x. Recall that for a nonempty closed convex subset C of H, the
metric projection PC is a mapping from H to C. For each x ∈ H, PC(x) is
defined as the unique point in C that minimizes the distance to x, satisfying
the condition:
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∥x− PC(x)∥ = min{∥x− y∥ : y ∈ C}.

Let us also recall some well-known definitions which will be used in this paper.

Definition 1. ( [35]) Consider two Hilbert spaces, denoted as H1 and H2.
Let A : H1 −→ H2 be a bounded linear operator. The adjoint of this op-
erator, represented as A∗ : H2 −→ H1, is characterized by the following
relationship:

⟨A(x), y⟩ = ⟨x,A∗(y)⟩, for all x ∈ H1, for all y ∈ H2.

The adjoint operator of a bounded linear operator A between Hilbert
spaces H1 and H2 is both well-defined and unique. Moreover, the adjoint
operator A∗ is also a bounded linear operator, satisfying the property that
∥A∗∥ = ∥A∥.

Definition 2. ( [17, 29])
A mapping F : H −→ H is said to be
(i) η-strongly monotone on H if there exists η > 0 such that

⟨F (x)− F (y), x− y⟩ ≥ η∥x− y∥2, for all x, y ∈ H;

(ii) L-Lipschitz continuous on H if there exists L > 0 such that

∥F (x)− F (y)∥ ≤ L∥x− y∥, for all x, y ∈ H;

(iii) monotone on H if

⟨F (x)− F (y), x− y⟩ ≥ 0, for all x, y ∈ H;

(iv) pseudomonotone on C if

⟨F (y), x− y⟩ ≥ 0 ⇒ ⟨F (x), x− y⟩ ≥ 0, for all x, y ∈ C.

To demonstrate the convergence of the proposed algorithm, we will require
the following lemmas.

Lemma 1. ( [25]) Let C be a nonempty closed convex subset of a real
Hilbert space H. Let F : H −→ H be pseudomonotone on C and L-Lipschitz
continuous on H such that the solution set Sol(C,F ) of the V IP (C,F ) is
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7 Two-step inertial Tseng’s extragradient methods for a class ...

nonempty. Let let x ∈ H, and let µ ∈ (0, 1), λ > 0, and define

y = PC(x− λF (x)),

z = y − λ(F (y)− F (x)),

γ =


min

{
µ∥x− y∥

∥F (x)− F (y)∥
, λ

}
if F (x) ̸= F (y),

λ if F (x) = F (y).

Then for all x∗ ∈ Sol(C,F )

∥z − x∗∥2 ≤ ∥x− x∗∥2 −
(
1− µ2λ

2

γ2

)
∥x− y∥2.

Lemma 2. ( [25]) Let C be a nonempty closed convex subset of a real Hilbert
space H. Let F : H −→ H be a mapping such that lim sup

n→∞
⟨F (xn), z − yn⟩ ≤

⟨F (x), z−y⟩ for every sequences {xn}, {yn} in H converging weakly to x and
y, respectively. Assume that λn ≥ a > 0 for all n, {xn} is a sequence in H
satisfying xn ⇀ x and lim

n→∞
∥xn − yn∥ = 0, where yn = PC(x

n − λnF (xn))

for all n. Then x ∈ Sol(C,F ).

Lemma 3. ([31, Remark 4.4]) Let {an} be a sequence of nonnegative real
numbers. Suppose that for any integer m, there exists an integer p such that
p ≥ m and ap ≤ ap+1. Let n0 be an integer such that an0 ≤ an0+1 and
define, for all integer n ≥ n0, by

τ(n) = max{k ∈ N : n0 ≤ k ≤ n, ak ≤ ak+1}.

Then {τ(n)}n≥n0
is a nondecreasing sequence satisfying lim

n→∞
τ(n) = ∞ and

the following inequalities hold true:

aτ(n) ≤ aτ(n)+1, an ≤ aτ(n)+1, for all n ≥ n0.

Lemma 4. ( [41]) Let {an} be a sequence of nonnegative real numbers, let

{εn} be a sequence in (0, 1) such that
∞∑

n=0

εn = ∞, and let {bn} be a sequence

of real numbers with lim sup
n→∞

bn ≤ 0. Suppose that

an+1 ≤ (1− εn)an + εnbn, for all n ≥ 0.
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Then lim
n→∞

an = 0.

3 The algorithm and convergence analysis

In this section, we propose a strong convergence algorithm for solving BSVIP
by using two-step inertial Tseng’s extragradient methods with self-adaptive
step size. We impose the following assumptions concerning the mappings F ,
F1, and F2 related to the BSVIP.

Assumption 1. ( [1, 25]) Let the following hold:

A1) F : H1 −→ H1 is η-strongly monotone and L-Lipschitz continuous on
H1.

A2) F1 : H1 −→ H1 is pseudomonotone on C and L1-Lipschitz continuous
on H1.

A3) lim sup
n→∞

⟨F1(x
n), y − yn⟩ ≤ ⟨F1(x), y − y⟩ holds for any sequences {xn}

and {yn} in H1 that converge weakly to x and y, respectively.

A4) F2 : H2 −→ H2 is pseudomonotone on Q and L2-Lipschitz continuous
on H2.

A5) lim sup
n→∞

⟨F2(u
n), v − vn⟩ ≤ ⟨F2(u), v − v⟩ holds for any sequences {un}

and {vn} in H2 that converge weakly to u and u, respectively.

One can see that in finite-dimensional spaces, the conditions A3 and A5

automatically result from the Lipschitz continuity of F1 and F2.

Remark 1. In Algorithm 1, we introduce a two-step inertial version of
Tseng’s extragradient method. The inertial update is applied in Step 2,
where we replace xn with yn = xn + αn(x

n − xn−1) + βn(x
n−2 − xn−1) for

the next step. Starting from Step 3, our algorithm closely follows [25, Al-
gorithm 3.1], as described in (8). The key differences between our approach
and [25, Algorithm 3.1] lie in the order of applying the modified Tseng’s ex-
tragradient method in the two spaces, as well as the inclusion of the two-step
inertial update. In [25, Algorithm 3.1], the authors first transform to space
H2, apply the modified Tseng’s extragradient method to the mapping F2,
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9 Two-step inertial Tseng’s extragradient methods for a class ...

Algorithm 1
Step 0. Choose µ0 > 0, λ0 > 0, µ ∈ (0, 1), λ ∈ (0, 1), {ρn} ⊂ [a, b] ⊂ (0, 1),
{γn} ⊂ [0,∞), {ξn} ⊂ [0,∞), {ηn} ⊂ (0,∞), {εn} ⊂ (0, 1) such that lim

n→∞

ηn

εn
= 0,

lim
n→∞

εn = 0,
∞∑

n=0

εn = ∞.

Step 1. Let x−2, x−1, x0 ∈ H1. Set n := 0.
Step 2. Compute yn = xn + αn(xn − xn−1) + βn(xn−2 − xn−1), where

αn =


min

{
ηn

∥xn − xn−1∥
, γn

}
if xn ̸= xn−1,

γn if xn = xn−1,

and

βn =


min

{
ηn

∥xn−2 − xn−1∥
, ξn

}
if xn−2 ̸= xn−1,

ξn if xn−2 = xn−1.

Step 3. Compute
zn = PC(yn − λnF1(y

n)),

tn = zn − λn(F1(z
n)− F1(y

n)),

where

λn+1 =


min

{
λ∥yn − zn∥

∥F1(yn)− F1(zn)∥
, λn

}
if F1(yn) ̸= F1(zn),

λn if F1(yn) = F1(zn).

Step 4. Compute un = A(tn) and

vn = PQ(un − µnF2(u
n)),

wn = vn − µn(F2(v
n)− F2(u

n)),

where

µn+1 =


min

{
µ∥un − vn∥

∥F2(un)− F2(vn)∥
, µn

}
if F2(un) ̸= F2(vn),

µn if F2(un) = F2(vn).

Step 5. Compute
sn = tn + δnA

∗(wn − un),

where the stepsize δn is chosen in such a way that

δn =


ρn∥wn − un∥2

∥A∗(wn − un)∥2
if A∗(wn − un) ̸= 0,

0 if A∗(wn − un) = 0.

Step 6. Compute
xn+1 = sn − εnF (sn).

Step 7. Set n := n+ 1, and go to Step 2.
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return to space H1, and then apply the method again to the mapping F1.
In contrast, our algorithm first applies this modified extragradient method
to the mapping F1 in space H1 (Step 3), then transforms to space H2 and
applies it to F2 (Step 4), before returning to space H1 in Step 5. Notably,
before applying the method to F1 in space H1, we use the two-step inertial
update yn = xn + αn(x

n − xn−1) + βn(x
n−2 − xn−1) instead of xn.

The following lemma is part of the proof of [25, Algorithm 3.1], but we
have made a slight modification to better suit the new proof.

Lemma 5. Assume that the conditions (A1) − (A5) are satisfied and that
ΩSVIP ̸= ∅. Let µ, λ as in Algorithm 1, let ε ∈

(
0,

2η

L2

)
, and let the sequences

{µn} and {λn}be generated by Algorithm 1. We show that there exists
n0 ∈ N such that

1−µ2 µ2
n

µ2
n+1

>
1− µ2

2
> 0, 1−λ2 λ2

n

λ2
n+1

>
1− λ2

2
> 0, εn < ε, for all n ≥ n0.

Proof. With F2 being L2-Lipschitz continuous on H2, it follows that ∥F2(u
n)−

F2(v
n)∥ ≤ L2∥un − vn∥. Consequently, employing induction, we have

µn ≥ min
( µ

L2
, µ0

)
> 0 for all n ≥ 0. The definition of µn+1 implies

µn+1 ≤ µn for all n ≥ 0. Combining this with µn ≥ min
( µ

L2
, µ0

)
> 0

for all n ≥ 0, we infer the existence of the limit of the sequence {µn}. Let us
denote lim

n→∞
µn = µ∗. It is evident that µ∗ ≥ min

( µ

L2
, µ0

)
> 0.

Using the same reasoning as before, we find that

λ0 ≥ λn ≥ min
( λ

L1
, λ0

)
> 0, for all n ≥ 0

and
lim
n→∞

λn = λ∗ ≥ min
( λ

L1
, λ0

)
> 0.

From lim
n→∞

µn = µ∗ > 0 and lim
n→∞

λn = λ∗ > 0, we get lim
n→∞

(
1−µ2 µ2

n

µ2
n+1

)
=

1−µ2 > 0, lim
n→∞

(
1−λ2 λ2

n

λ2
n+1

)
= 1−λ2 > 0. Since lim

n→∞
εn = 0, there exists

n0 ∈ N such that

1−µ2 µ2
n

µ2
n+1

>
1− µ2

2
> 0, 1−λ2 λ2

n

λ2
n+1

>
1− λ2

2
> 0, εn < ε, for all n ≥ n0.
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11 Two-step inertial Tseng’s extragradient methods for a class ...

Lemma 6. Let {tn}, {un}, {wn} and {sn} be the sequences generated by
Algorithm 1. Then, for all n ≥ n0, where n0 is given in Lemma 5, the
following inequalities hold:

0 ≤ a2

(∥A∥+ 1)2
∥wn − un∥2 ≤ ∥sn − tn∥2 ≤ b

1− b

(
∥tn − x∗∥2 − ∥sn − x∗∥2

)
,

where x∗ is the unique solution to the problem (4).

Proof. As ΩSVIP is nonempty, problem (4) has a unique solution denoted by
x∗. Specifically, x∗ ∈ ΩSVIP, implying that it satisfies x∗ ∈ Sol(C,F1) and
Ax∗ ∈ Sol(Q,F2). According to Lemma 1, for all n ≥ 0, we have

∥wn −Ax∗∥2 ≤ ∥un −Ax∗∥2 −
(
1− µ2 µ2

n

µ2
n+1

)
∥un − vn∥2, (9)

∥tn − x∗∥2 ≤ ∥yn − x∗∥2 −
(
1− λ2 λ2

n

λ2
n+1

)
∥yn − zn∥2. (10)

From Lemma 5, (9) and (10), we get

∥wn −Ax∗∥ ≤ ∥un −Ax∗∥, for all n ≥ n0, (11)

∥tn − x∗∥ ≤ ∥yn − x∗∥, for all n ≥ n0. (12)

From (11), since un = A(tn), we obtain, for all n ≥ n0

2⟨tn − x∗, A∗(wn − un)⟩ = 2⟨A(tn − x∗), wn − un⟩

= 2⟨un −Ax∗, wn − un⟩

= 2
[
⟨wn −Ax∗, wn − un⟩ − ∥wn − un∥2

]
=

(
∥wn −Ax∗∥2 − ∥un −Ax∗∥2

)
− ∥wn − un∥2

≤ −∥wn − un∥2. (13)

Case 1. A∗(wn − un) = 0.
In this case, sn = tn. Also, it follows from (13) that ∥wn − un∥ = 0. Thus,
the inequalities in Lemma 6 hold.
Case 2. A∗(wn − un) ̸= 0.
From (13) and {ρn} ⊂ [a, b] ⊂ (0, 1), we get for all n ≥ n0 that
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∥sn − x∗∥2 = ∥(tn − x∗) + δnA
∗(wn − un)∥2

= ∥tn − x∗∥2 + δ2n∥A∗(wn − un)∥2 + 2δn⟨tn − x∗, A∗(wn − un⟩

≤ ∥tn − x∗∥2 + δ2n∥A∗(wn − un)∥2 − δn∥wn − un∥2

= ∥tn − x∗∥2 + ρ2n∥wn − un∥4

∥A∗(wn − un)∥2
− ρn∥wn − un∥4

∥A∗(wn − un)∥2

= ∥tn − x∗∥2 − ρ2n∥wn − un∥4

∥A∗(wn − un)∥2
· 1− ρn

ρn

≤ ∥tn − x∗∥2 − ρ2n∥wn − un∥4

∥A∗(wn − un)∥2
· 1− b

b
. (14)

Then, from (14), we have

∥sn − tn∥2 = δ2n∥A∗(wn − un)∥2 =
ρ2n∥wn − un∥4

∥A∗(wn − un)∥2
(15)

≤ b

1− b

(
∥tn − x∗∥2 − ∥sn − x∗∥2

)
.

On the other hand,

0 < ∥A∗(wn−un)∥ ≤ ∥A∗∥∥wn−un∥ = ∥A∥∥wn−un∥ ≤ (∥A∥+1)∥wn−un∥.

Taking into account the last inequality together with (15), we find

∥sn − tn∥2 ≥ ρ2n∥wn − un∥4

(∥A∥+ 1)2∥wn − un∥2
=

ρ2n
(∥A∥+ 1)2

∥wn − un∥2

≥ a2

(∥A∥+ 1)2
∥wn − un∥2.

Lemma 7. Let {xn}, {yn}, {tn} and {sn} be the sequences generated by
Algorithm 1. Then the sequences {xn}, {yn}, {tn}, {sn}, and {F (sn)} are
bounded.

Proof. By the η-strong monotonicity and the L-Lipschitz continuity of F on
H1, we have

∥sn − x∗ − ε(F (sn)− F (x∗))∥2

= ∥sn − x∗∥2 − 2ε⟨sn − x∗, F (sn)− F (x∗)⟩+ ε2∥F (sn)− F (x∗)∥2

≤ ∥sn − x∗∥2 − 2εη∥sn − x∗∥2 + ε2L2∥sn − x∗∥2
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13 Two-step inertial Tseng’s extragradient methods for a class ...

=
[
1− ε(2η − εL2)

]
∥sn − x∗∥2. (16)

From (16), we obtain, for all n ≥ n0,

∥sn − εnF (sn)− (x∗ − εnF (x∗))∥

= ∥(sn − x∗)− εn(F (sn)− F (x∗))∥

=
∥∥∥(1− εn

ε

)
(sn − x∗) +

εn
ε

[
sn − x∗ − ε(F (sn)− F (x∗))

]∥∥∥
≤

(
1− εn

ε

)
∥sn − x∗∥+ εn

ε
∥sn − x∗ − ε(F (sn)− F (x∗))∥

≤
(
1− εn

ε

)
∥sn − x∗∥+ εn

ε

√
1− ε(2η − εL2)∥sn − x∗∥

=
[
1− εn

ε

(
1−

√
1− ε(2η − εL2)

)]
∥sn − x∗∥

=
(
1− εnτ

ε

)
∥sn − x∗∥, (17)

where
τ = 1−

√
1− ε(2η − εL2) ∈ (0, 1].

Alternatively, we have

0 ≤ αn∥xn − xn−1∥ ≤ ηn, for all n ≥ 0 (18)

and
lim
n→∞

αn

εn
∥xn − xn−1∥ = 0. (19)

Indeed, if xn = xn−1, then inequality (18) holds. Otherwise, we get

0 ≤ αn = min
{

ηn
∥xn − xn−1∥

, γn

}
≤ ηn

∥xn − xn−1∥

⇒ 0 ≤ αn∥xn − xn−1∥ ≤ ηn.

From (18), we have

0 ≤ αn

εn
∥xn − xn−1∥ ≤ ηn

εn
, for all n ≥ 0.

Since lim
n→∞

ηn
εn

= 0, it can be inferred from the above inequality that

lim
n→∞

αn

εn
∥xn − xn−1∥ = 0.

Using a similar argument, we arrive at
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0 ≤ βn∥xn−2 − xn−1∥ ≤ ηn, for all n ≥ 0 (20)

and
lim
n→∞

βn

εn
∥xn−2 − xn−1∥ = 0. (21)

From lim
n→∞

αn

εn
∥xn−xn−1∥ = 0 and lim

n→∞

βn

εn
∥xn−2−xn−1∥ = 0, we can infer

that there exist positive constants K1 and K2 such that αn

εn
∥xn−xn−1∥ ≤ K1

and βn

εn
∥xn−2 − xn−1∥ ≤ K2 for all n ≥ 0. So, we have

∥yn − x∗∥ = ∥(xn − x∗) + αn(x
n − xn−1) + βn(x

n−2 − xn−1)∥

≤ ∥xn − x∗∥+ εn · αn

εn
∥xn − xn−1∥+ εn · βn

εn
∥xn−2 − xn−1∥

≤ ∥xn − x∗∥+ εnK1 + εnK2

= ∥xn − x∗∥+ εnK3, for all n ≥ 0, (22)

where K3 = K1 +K2.

From Lemma 6, (12) and (22), we get

∥sn−x∗∥ ≤ ∥tn−x∗∥ ≤ ∥yn−x∗∥ ≤ ∥xn−x∗∥+εnK3, for all n ≥ n0. (23)

Employing (17) and (23), we derive, for all n ≥ n0,

∥xn+1 − x∗∥ = ∥sn − εnF (sn)− (x∗ − εnF (x∗))− εnF (x∗)∥

≤ ∥sn − εnF (sn)− (x∗ − εnF (x∗))∥+ εn∥F (x∗)∥

≤
(
1− εnτ

ε

)
∥sn − x∗∥+ εn∥F (x∗)∥ (24)

≤
(
1− εnτ

ε

)(
∥xn − x∗∥+ εnK3

)
+ εn∥F (x∗)∥

≤
(
1− εnτ

ε

)
∥xn − x∗∥+ εnK3 + εn∥F (x∗)∥

=
(
1− εnτ

ε

)
∥xn − x∗∥+ εnτ

ε
·
ε
(
K3 + ∥F (x∗)∥

)
τ

. (25)

From (25), we have, for every n ≥ n0,

∥xn+1 − x∗∥ ≤ max
{
∥xn − x∗∥,

ε
(
K3 + ∥F (x∗)∥

)
τ

}
.

So, by induction, we obtain
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15 Two-step inertial Tseng’s extragradient methods for a class ...

∥xn − x∗∥ ≤ max
{
∥xn0 − x∗∥,

ε
(
K3 + ∥F (x∗)∥

)
τ

}
, for all n ≥ n0.

Therefore, the sequence {xn} is bounded, and so are the sequences {yn}, {tn},
{sn}, and {F (sn)} due to {εn} ⊂ (0, 1), (23), and the Lipschitz continuity of
F .

Lemma 8. Let {xn} be the sequence generated by Algorithm 1. Then, there
exists a constant K > 0 such that for all n ≥ n0, we have

∥xn+1 − x∗∥2 ≤
(
1− εnτ

ε

)
∥xn − x∗∥2 + 2εn⟨F (x∗), x∗ − xn+1⟩

+Kαn∥xn − xn−1∥+Kβn∥xn−2 − xn−1∥.

Proof. From (23), we have

∥yn − x∗∥2 ≤
(
∥xn − x∗∥+ εnK3

)2
= ∥xn − x∗∥2 + εn

(
2K3∥xn − x∗∥+ εnK

2
3

)
≤ ∥xn − x∗∥2 + εnK4, (26)

where K4 = supn≥0

{
2K3∥xn − x∗∥+ εnK

2
3

}
.

From αn

εn
∥xn − xn−1∥ ≤ K1, βn

εn
∥xn−2 − xn−1∥ ≤ K2 for all n ≥ 0 and

{εn} ⊂ (0, 1), we deduce that αn∥xn − xn−1∥ ≤ K1, βn∥xn−2 − xn−1∥ ≤ K2

for all n ≥ 0. This, in conjunction with the boundedness of the sequence
{xn}, implies the existence of a constant K > 0 such that

2∥xn − x∗∥+ αn∥xn − xn−1∥+ βn∥xn−2 − xn−1∥ ≤ K, for all n ≥ 0. (27)

From (27), we get

∥yn − x∗∥2 =∥(xn − x∗) + αn(x
n − xn−1) + βn(x

n−2 − xn−1)∥2

=∥xn − x∗∥2 + 2αn⟨xn − x∗, xn − xn−1⟩

+ 2βn⟨xn − x∗, xn−2 − xn−1⟩

+ ∥αn(x
n − xn−1) + βn(x

n−2 − xn−1)∥2

≤∥xn − x∗∥2 + 2αn∥xn − x∗∥.∥xn − xn−1∥

+ 2βn∥xn − x∗∥.∥xn−2 − xn−1∥

+ α2
n∥xn − xn−1∥2 + 2αnβn∥xn − xn−1∥.∥xn−2 − xn−1∥
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+ β2
n∥xn−2 − xn−1∥2

=∥xn − x∗∥2 + αn∥xn − xn−1∥
(
2∥xn − x∗∥

+ αn∥xn − xn−1∥+ βn∥xn−2 − xn−1∥
)

+ βn∥xn−2 − xn−1∥
(
2∥xn − x∗∥+ αn∥xn − xn−1∥

+ βn∥xn−2 − xn−1∥
)

≤∥xn − x∗∥2 +Kαn∥xn − xn−1∥+Kβn∥xn−2 − xn−1∥. (28)

From (17), (23), and (28), we obtain, for all n ≥ n0,

∥xn+1 − x∗∥2 ≤ ∥xn+1 − x∗∥2 + ε2n∥F (x∗)∥2

= ∥xn+1 − x∗ + εnF (x∗)∥2 − 2⟨εnF (x∗), xn+1 − x∗⟩

= ∥sn − εnF (sn)− (x∗ − εnF (x∗))∥2 − 2εn⟨F (x∗), xn+1 − x∗⟩

≤
[(

1− εnτ

ε

)
∥sn − x∗∥

]2
− 2εn⟨F (x∗), xn+1 − x∗⟩

≤
(
1− εnτ

ε

)
∥sn − x∗∥2 − 2εn⟨F (x∗), xn+1 − x∗⟩ (29)

≤
(
1− εnτ

ε

)
∥yn − x∗∥2 + 2εn⟨F (x∗), x∗ − xn+1⟩

≤
(
1− εnτ

ε

)(
∥xn − x∗∥2 +Kαn∥xn − xn−1∥

+Kβn∥xn−2 − xn−1∥
)
+ 2εn⟨F (x∗), x∗ − xn+1⟩

≤
(
1− εnτ

ε

)
∥xn − x∗∥2 + 2εn⟨F (x∗), x∗ − xn+1⟩

+Kαn∥xn − xn−1∥+Kβn∥xn−2 − xn−1∥.

The theorem presented here establishes the validity and convergence of
Algorithm 1.

Theorem 1. Assume that Assumption 1 is satisfied. Then the sequence
{xn} generated by Algorithm 1 converges strongly to the unique solution of
the BSVIP (4), provided the solution set ΩSVIP = {x∗ ∈ Sol(C,F1) : Ax∗ ∈
Sol(Q,F2)} of the SVIP (1)–(2) is nonempty.

Proof. We prove that the sequence {xn} converges strongly to the unique
solution x∗ of the problem (4). Let us consider two cases.
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17 Two-step inertial Tseng’s extragradient methods for a class ...

Case 1. There exists n1 ∈ N such that {∥xn − x∗∥} is decreasing for all
n ≥ n1. Consequently, the limit of ∥xn − x∗∥ exists. Therefore, it follows
from (23), (26), and (29), for all n ≥ n0, that

−εnK4 ≤ ∥yn − x∗∥2 − ∥sn − x∗∥2 − εnK4

≤ ∥xn − x∗∥2 − ∥sn − x∗∥2

≤
(
∥xn − x∗∥2 − ∥xn+1 − x∗∥2

)
− εnτ

ε
∥sn − x∗∥2

− 2εn⟨F (x∗), xn+1 − x∗⟩.

Given the limit of ∥xn − x∗∥ exists, along with lim
n→∞

εn = 0, and both {xn}
and {sn} being bounded sequences, the above inequalities imply that

lim
n→∞

(
∥yn − x∗∥2 − ∥sn − x∗∥2 − εnK4

)
= 0

⇒ lim
n→∞

(
∥yn − x∗∥2 − ∥sn − x∗∥2

)
= 0, (30)

lim
n→∞

(
∥xn − x∗∥2 − ∥sn − x∗∥2

)
= 0. (31)

From (23), we get

0 ≤ ∥yn − x∗∥2 − ∥tn − x∗∥2 ≤ ∥yn − x∗∥2 − ∥sn − x∗∥2, for all n ≥ 0,

from which, by (30), it follows that

lim
n→∞

(
∥yn − x∗∥2 − ∥tn − x∗∥2

)
= 0. (32)

From Lemma 5 and (10), we have

1− λ2

2
∥yn − zn∥2 ≤ ∥yn − x∗∥2 − ∥tn − x∗∥2, for all n ≥ n0,

which together with (32) implies

lim
n→∞

∥yn − zn∥ = 0. (33)

From (30) and (32), it follows that

lim
n→∞

(
∥tn − x∗∥2 − ∥sn − x∗∥2

)
= 0.

Hence, by combining Lemma 6, we obtain
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lim
n→∞

∥wn − un∥ = 0, (34)

lim
n→∞

∥sn − tn∥ = 0. (35)

Using the triangle inequality and the L1-Lipschitz continuity of F1 on H1,
we get

∥yn − sn∥ ≤ ∥yn − zn∥+ ∥zn − tn∥+ ∥tn − sn∥

= ∥yn − zn∥+ ∥λn(F1(z
n)− F1(y

n))∥+ ∥tn − sn∥

≤ ∥yn − zn∥+ λnL1∥zn − yn∥+ ∥tn − sn∥

≤ (1 + λ0L1)∥yn − zn∥+ ∥tn − sn∥,

which together with (33), (35) implies

lim
n→∞

∥yn − sn∥ = 0. (36)

Now, observe that

∥wn −Ax∗∥2 = ∥un −Ax∗ + (wn − un)∥2

= ∥un −Ax∗∥2 + 2⟨un −Ax∗, wn − un⟩+ ∥wn − un∥2

= ∥un −Ax∗∥2 + 2⟨A(tn − x∗), wn − un⟩+ ∥wn − un∥2

≥ ∥un −Ax∗∥2 − 2∥A(tn − x∗)∥∥wn − un∥+ ∥wn − un∥2

≥ ∥un −Ax∗∥2 − 2∥A∥∥tn − x∗∥∥wn − un∥. (37)

Combining Lemma 5, (9) and (37) yields

1− µ2

2
∥un − vn∥2 ≤ 2∥A∥∥tn − x∗∥∥wn − un∥, for all n ≥ n0. (38)

From (34), (38), and the boundedness of the sequence {tn}, we obtain

lim
n→∞

∥un − vn∥ = 0. (39)

We now prove that
lim sup
n→∞

⟨F (x∗), x∗ − sn⟩ ≤ 0. (40)

Select a subsequence {snk} of {sn} such that lim sup
n→∞

⟨F (x∗), x∗ − sn⟩ =

lim
k→∞

⟨F (x∗), x∗ − snk⟩. Given that {snk} is bounded, we may assume that
{snk} converges weakly to some s ∈ H1.
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19 Two-step inertial Tseng’s extragradient methods for a class ...

Therefore

lim sup
n→∞

⟨F (x∗), x∗ − sn⟩ = lim
k→∞

⟨F (x∗), x∗ − snk⟩ = ⟨F (x∗), x∗ − s⟩. (41)

We deduce from snk ⇀ s and (35), (36) that tnk ⇀ s and ynk ⇀ s. From
(33), we have lim

k→∞
∥ynk − znk∥ = 0. Since znk = PC(y

nk − λnk
F1(y

nk)),

ynk ⇀ s, λnk
≥ min

( λ

L1
, λ0

)
> 0. By Lemma 2, we get s ∈ Sol(C,F1).

From tnk ⇀ s, we get unk = A(tnk) ⇀ A(s). This, together with (39),
where vnk = PQ(u

nk −µnk
F2(u

nk)) and µnk
≥ min

( µ

L2
, µ0

)
> 0, along with

Lemma 2, implies that A(s) ∈ Sol(Q,F2).
With s ∈ Sol(C,F1) and A(s) ∈ Sol(Q,F2), we conclude that s ∈ ΩSVIP.

Consequently, it follows from x∗ ∈ Sol(ΩSVIP, F ) that ⟨F (x∗), s − x∗⟩ ≥ 0,
which together with (41) implies (40).

From the boundedness of {F (sn)}, lim
n→∞

εn = 0 and (40), we have

lim sup
n→∞

⟨F (x∗), x∗ − xn+1⟩ = lim sup
n→∞

⟨F (x∗), x∗ − sn + εnF (sn)⟩

= lim sup
n→∞

[
⟨F (x∗), x∗ − sn⟩+ εn⟨F (x∗), F (sn)⟩

]
= lim sup

n→∞
⟨F (x∗), x∗ − sn⟩ ≤ 0. (42)

From Lemma 8, we get

∥xn+1 − x∗∥2 ≤ (1− an)∥xn − x∗∥2 + anbn, for all n ≥ n0, (43)

where an =
εnτ

ε
and

bn =
2ε⟨F (x∗), x∗ − xn+1⟩

τ
+

Kε

τ
· αn

εn
∥xn − xn−1∥+ Kε

τ
· βn

εn
∥xn−2 − xn−1∥.

Given (19), (21), and (42), it follows that lim sup
n→∞

bn ≤ 0. From 0 < εn < ε

for all n ≥ n0 and 0 < τ ≤ 1, we get
{
an =

εnτ

ε

}
n≥n0

⊂ (0, 1). So, from

(43),
∞∑

n=0

εn = ∞, lim sup
n→∞

bn ≤ 0 and Lemma 4, we have lim
n→∞

∥xn−x∗∥2 = 0,

that is, xn → x∗ as n → ∞.
Case 2. Suppose that for any integer m, there exists an integer n such

that n ≥ m and ∥xn − x∗∥ ≤ ∥xn+1 − x∗∥. In this situation, it follows from
Lemma 3 that there exists a nondecreasing sequence {τ(n)}n≥n2 of N such
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that lim
n→∞

τ(n) = ∞ and the following inequalities are true:

∥xτ(n) − x∗∥ ≤ ∥xτ(n)+1 − x∗∥, ∥xn − x∗∥ ≤ ∥xτ(n)+1 − x∗∥, for all n ≥ n2.

(44)
Choose n3 ≥ n2 such that τ(n) ≥ n0 for all n ≥ n3. From (23), (44) and
(24), we get, for all n ≥ n3,

−ετ(n)K3 ≤ ∥yτ(n) − x∗∥ − ∥sτ(n) − x∗∥ − ετ(n)K3

≤ ∥xτ(n) − x∗∥ − ∥sτ(n) − x∗∥

≤ ∥xτ(n)+1 − x∗∥ − ∥sτ(n) − x∗∥

≤ −
ετ(n)τ

ε
∥sτ(n) − x∗∥+ ετ(n)∥F (x∗)∥.

Thus, from the boundedness of {sn} and lim
n→∞

εn = 0, we have

lim
n→∞

(
∥yτ(n) − x∗∥ − ∥sτ(n) − x∗∥ − ετ(n)K3

)
= 0

⇒ lim
n→∞

(
∥yτ(n) − x∗∥ − ∥sτ(n) − x∗∥

)
= 0, (45)

lim
n→∞

(∥xτ(n) − x∗∥ − ∥sτ(n) − x∗∥) = 0. (46)

From (45), (46), and the boundedness of {xn}, {yn}, {sn}, we obtain

lim
n→∞

(∥yτ(n)−x∗∥2−∥sτ(n)−x∗∥2) = 0, lim
n→∞

(∥xτ(n)−x∗∥2−∥sτ(n)−x∗∥2) = 0.

Applying a similar line of reasoning as in the first case, we can arrive at the
conclusion that

lim sup
n→∞

⟨F (x∗), x∗ − sτ(n)⟩ ≤ 0.

Therefore, the boundedness of {F (sn)} and lim
n→∞

εn = 0 yield

lim sup
n→∞

⟨F (x∗), x∗ − xτ(n)+1⟩ = lim sup
n→∞

〈
F (x∗), x∗ − sτ(n) + ετ(n)F (sτ(n))

〉
= lim sup

n→∞

[
⟨F (x∗), x∗ − sτ(n)⟩

+ ετ(n)⟨F (x∗), F (sτ(n))⟩
]

= lim sup
n→∞

⟨F (x∗), x∗ − sτ(n)⟩ ≤ 0. (47)

From Lemma 8 and (44), we have, for all n ≥ n3,
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∥xτ(n)+1 − x∗∥2 ≤
(
1−

ετ(n)τ

ε

)
∥xτ(n) − x∗∥2 + 2ετ(n)⟨F (x∗), x∗ − xτ(n)+1⟩

+Kατ(n)∥xτ(n) − xτ(n)−1∥+Kβτ(n)∥xτ(n)−2 − xτ(n)−1∥

≤
(
1−

ετ(n)τ

ε

)
∥xτ(n)+1 − x∗∥2 + 2ετ(n)⟨F (x∗), x∗ − xτ(n)+1⟩

+Kατ(n)∥xτ(n) − xτ(n)−1∥+Kβτ(n)∥xτ(n)−2 − xτ(n)−1∥.

In particular, since ετ(n) > 0, we have, for all n ≥ n3

∥xτ(n)+1 − x∗∥2 ≤ 2ε

τ
⟨F (x∗), x∗ − xτ(n)+1⟩+ Kε

τ
·
ατ(n)

ετ(n)
∥xτ(n) − xτ(n)−1∥

+
Kε

τ
·
βτ(n)

ετ(n)
∥xτ(n)−2 − xτ(n)−1∥.

From (44) and the inequality given above, we derive, for all n ≥ n3,

∥xn − x∗∥2 ≤ 2ε

τ
⟨F (x∗), x∗ − xτ(n)+1⟩+ Kε

τ
·
ατ(n)

ετ(n)
∥xτ(n) − xτ(n)−1∥

+
Kε

τ
·
βτ(n)

ετ(n)
∥xτ(n)−2 − xτ(n)−1∥. (48)

By taking the limit in (48) as n → ∞ and utilizing (47), (19), and (21), we
deduce that

lim sup
n→∞

∥xn − x∗∥2 ≤ 0,

which implies xn → x∗.

From Algorithm 1, if we choose γn = 0 and ξn = 0 for all n ≥ 0, it is
evident that αn = 0 and βn = 0 for all n ≥ 0. In this case, Algorithm 1
reduces to the following algorithm. This algorithm, which we will refer to
as Algorithm 2, closely resembles [25, Algorithm 3.1], as described in (8).
The key difference between the two algorithms lies in the order in which the
modified Tseng’s extragradient method is applied in the two spaces H1 and
H2.

Assumption 2. Let the following hold

i) F : H −→ H is strongly monotone and Lipschitz continuous on H.

ii) G : H −→ H is pseudomonotone on C, Lipschitz continuous on H.
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Algorithm 2
Step 0. Choose µ0 > 0, λ0 > 0, µ ∈ (0, 1), λ ∈ (0, 1), {ρn} ⊂ [a, b] ⊂ (0, 1),

{εn} ⊂ (0, 1) such that lim
n→∞

εn = 0,
∞∑

n=0

εn = ∞.

Step 1. Let x0 ∈ H1. Set n := 0.
Step 2. Compute

yn = PC(xn − λnF1(x
n)),

zn = yn − λn(F1(y
n)− F1(x

n)),

where

λn+1 =


min

{
λ∥xn − yn∥

∥F1(xn)− F1(yn)∥
, λn

}
if F1(xn) ̸= F1(yn),

λn if F1(xn) = F1(yn).

Step 3. Compute un = A(zn) and

vn = PQ(un − µnF2(u
n)),

wn = vn − µn(F2(v
n)− F2(u

n)),

where

µn+1 =


min

{
µ∥un − vn∥

∥F2(un)− F2(vn)∥
, µn

}
if F2(un) ̸= F2(vn),

µn if F2(un) = F2(vn).

Step 4. Compute
tn = zn + δnA

∗(wn − un),

where the stepsize δn is chosen in such a way that

δn =


ρn∥wn − un∥2

∥A∗(wn − un)∥2
if A∗(wn − un) ̸= 0,

0 if A∗(wn − un) = 0.

Step 5. Compute
xn+1 = tn − εnF (tn).

Step 6. Set n := n+ 1, and go to Step 2.

iii) lim sup
n→∞

⟨G(xn), y − yn⟩ ≤ ⟨G(x), y − y⟩ holds for any sequences {xn}

and {yn} in H that converge weakly to x and y, respectively.

When F2 = 0 and Q = H2, the SVIP defined by (1) and (2) reduces to
the VIP given by (1). Consequently, according to Algorithm 1 and Theorem
1 (where H1 = H and F1 = G), we obtain the following result for solving
the BVIP specified by (5). It is important to note that the proposed algo-
rithm only requires a single projection onto the feasible set at each iteration
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and does not necessitate any knowledge of the Lipschitz constants for the
mappings F and G, nor the modulus of strong monotonicity of F .

Algorithm 3
Step 0. Choose λ0 > 0, λ ∈ (0, 1), {γn} ⊂ [0,∞), {ξn} ⊂ [0,∞), {ηn} ⊂ (0,∞),

{εn} ⊂ (0, 1) such that lim
n→∞

ηn

εn
= 0, lim

n→∞
εn = 0,

∞∑
n=0

εn = ∞.

Step 1. Let x−2, x−1, x0 ∈ H. Set n := 0.
Step 2. Compute yn = xn + αn(xn − xn−1) + βn(xn−2 − xn−1), where

αn =


min

{
ηn

∥xn − xn−1∥
, γn

}
if xn ̸= xn−1,

γn if xn = xn−1,

and

βn =


min

{
ηn

∥xn−2 − xn−1∥
, ξn

}
if xn−2 ̸= xn−1,

ξn if xn−2 = xn−1.

Step 3. Compute
zn = PC(yn − λnG(yn)),

tn = zn − λn(G(zn)−G(yn)),

where

λn+1 =


min

{
λ∥yn − zn∥

∥G(yn)−G(zn)∥
, λn

}
if G(yn) ̸= G(zn),

λn if G(yn) = G(zn).

Step 6. Compute
xn+1 = tn − εnF (tn).

Step 7. Set n := n+ 1, and go to Step 2.

Corollary 1. Suppose that Assumption 2 holds. Then the sequence {xn}
generated by Algorithm 3 converges strongly to the unique solution of the
BVIP (5), provided the solution set Sol(C,G) of the VIP (6) is nonempty.

Assumption 3. Consider the functions f and g which satisfy the following
conditions:

i) f : Rn −→ R is continuously differentiable and strongly convex, and its
gradient is Lipschitz continuous.

ii) g : Rn −→ R is convex and continuously differentiable such that its
gradient is Lipschitz continuous.
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Assuming that all conditions stated in Assumption 3 are satisfied, we
find that the gradient mapping ∇f : Rn −→ Rn is strongly monotone and
Lipschitz continuous on Rn. Similarly, ∇g : Rn −→ Rn is monotone and
Lipschitz continuous on Rn. By taking F = ∇f , G = ∇g, and C = Rn in
Algorithm 3 and Corollary 1, we derive the following algorithm and corollary
for the bilevel optimization problem:

Find x∗ ∈ Ω such that f(x) ≥ f(x∗), for all x ∈ Ω, (49)

in which Ω represents the nonempty set of minimizers associated with the
classical convex optimization problem min

x∈Rn
g(x).

Algorithm 4
Step 0. Choose λ0 > 0, λ ∈ (0, 1), {γn} ⊂ [0,∞), {ξn} ⊂ [0,∞), {ηn} ⊂ (0,∞),

{εn} ⊂ (0, 1) such that lim
n→∞

ηn

εn
= 0, lim

n→∞
εn = 0,

∞∑
n=0

εn = ∞.

Step 1. Let x−2, x−1, x0 ∈ H1. Set n := 0.
Step 2. Compute yn = xn + αn(xn − xn−1) + βn(xn−2 − xn−1), where

αn =


min

{
ηn

∥xn − xn−1∥
, γn

}
if xn ̸= xn−1,

γn if xn = xn−1,

and

βn =


min

{
ηn

∥xn−2 − xn−1∥
, ξn

}
if xn−2 ̸= xn−1,

ξn if xn−2 = xn−1.

Step 3. Compute
zn = yn − λn∇g(yn),

tn = zn − λn(∇g(zn)−∇g(yn)),

where

λn+1 =


min

{
λ∥yn − zn∥

∥∇g(yn)−∇g(zn)∥
, λn

}
if ∇g(yn) ̸= ∇g(zn),

λn if ∇g(yn) = ∇g(zn).

Step 6. Compute
xn+1 = tn − εn∇f(tn).

Step 7. Set n := n+ 1, and go to Step 2.

Corollary 2. Assuming that Assumption 3 is satisfied. Then the sequence
{xn} produced by Algorithm 4 converges strongly to the unique optimal
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solution of (49), given that the set Ω of all optimal solutions for the problem
min
x∈Rn

g(x) is nonempty.

From Algorithm 1 and Theorem 1, by setting F1 = F2 = 0, we derive the
following algorithm and corollary:

Algorithm 5
Step 0. Choose {ρn} ⊂ [a, b] ⊂ (0, 1), {γn} ⊂ [0,∞), {ξn} ⊂ [0,∞), {ηn} ⊂ (0,∞),

{εn} ⊂ (0, 1) such that lim
n→∞

ηn

εn
= 0, lim

n→∞
εn = 0,

∞∑
n=0

εn = ∞.

Step 1. Let x−2, x−1, x0 ∈ H1. Set n := 0.
Step 2. Compute yn = xn + αn(xn − xn−1) + βn(xn−2 − xn−1), where

αn =


min

{
ηn

∥xn − xn−1∥
, γn

}
if xn ̸= xn−1,

γn if xn = xn−1,

and

βn =


min

{
ηn

∥xn−2 − xn−1∥
, ξn

}
if xn−2 ̸= xn−1,

ξn if xn−2 = xn−1.

Step 3. Compute  zn = PC(yn), un = A(zn), vn = PQ(un),

tn = zn + δnA∗(vn − un),

where the stepsize δn is chosen in such a way that

δn =


ρn∥vn − un∥2

∥A∗(vn − un)∥2
if A∗(vn − un) ̸= 0,

0 if A∗(vn − un) = 0.

Step 4. Compute
xn+1 = tn − εnF (tn).

Step 5. Set n := n+ 1, and go to Step 2.

Corollary 3. Let C and Q be two nonempty closed convex subset of two
real Hilbert spaces H1 and H2, respectively. Let F : H1 −→ H1 be a strongly
monotone and Lipschitz continuous mapping. Then the sequence {xn} gen-
erated by Algorithm 5 converges strongly to x∗ ∈ Γ, which is the unique
solution of the VIP ⟨F (x∗), x− x∗⟩ ≥ 0, for all x ∈ Γ, provided the solution
set Γ = {x∗ ∈ C : Ax∗ ∈ Q} of the SFP is nonempty.
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We now apply Corollary 3 with F (x) = x for all x ∈ H1. It is clear that
the identity mapping F : H1 −→ H1 is 1-Lipschitz continuous and 1-strongly
monotone on H1. This leads us to the following result:

Corollary 4. Let C and Q be two nonempty closed convex subsets of two
real Hilbert spaces H1 and H2, respectively. The sequence {xn} generated by
Algorithm 5, in which step 4 specifies xn+1 = (1− εn)t

n, converges strongly
to the minimum-norm solution of the SFP, assuming that the solution set
Γ = {x∗ ∈ C : Ax∗ ∈ Q} is nonempty.

Next, we will analyze how Corollary 4 can be utilized in discrete optimal
control problems.

Let Ai and Bi be real matrices of size q × q and q × p, respectively,
for i = 0, 1, . . . , N − 1. We are examining a linear discrete optimal control
problem

xi+1 = Ai+1xi +Bi+1ui,

ui ∈ Ci, i = 0, 1, . . . , N − 1,

x0 = 0, xN ∈ Q,

J(x, u) := ∥u0∥2 + ∥u1∥2 + · · ·+ ∥uN−1∥2 −→ min
ui

,

(50)
where Ci ⊂ Rp for i = 0, 1, . . . , N − 1, and Q ⊂ Rq are nonempty closed
convex subsets that define the control and state constraints, respectively.

Establish a matrix of dimension q ×Np

A = [D0 D1 . . . DN−1],

where Di := ANAN−1 . . . Ai+2Bi+1, i = 0, 1, . . . , N − 2, and DN−1 = BN .
Let u := (u0, u1, . . . , uN−1), ∥u∥2 := ∥u0∥2 + ∥u1∥2 + · · · + ∥uN−1∥2 and

C := C0×C1×· · ·×CN−1. Then, (50) transforms into finding the minimum-
norm solution of the following SFP:

Find u ∈ C such that Au ∈ Q.

Thus, we can utilize Algorithm 5, where step 4 is given by xn+1 = (1−εn)t
n,

to solve the problem.
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4 Applications in production and consumption systems

A variation of the SVIP, defined by (1) and (2) and referred to as the SMNP,
arises when each Fi is the identity mapping on Hi for all i = 1, 2. In the
SMNP framework, the goal is to determine a solution x∗ ∈ C that minimizes
its norm while ensuring that its image y∗ = Ax∗ belongs to Q and also has
the smallest possible norm. Mathematically, this is expressed as follows:

Find x∗ ∈ C : ∥x∗∥ ≤ ∥x∥ for all x ∈ C

subject to the condition:

y∗ = Ax∗ ∈ Q : ∥y∗∥ ≤ ∥y∥ for all y ∈ Q.

In many practical applications, particularly in supply chain management and
production planning, there is a need to achieve efficiency in both production
and distribution. In this context, we consider a system where production and
consumption are intrinsically linked via a linear transformation. Let x ∈ RN

represent the production vector, quantifying the goods produced, and let
y ∈ RM denote the consumption vector, representing the goods delivered to
the market. The connection between production and consumption is modeled
by the matrix A ∈ RM×N , such that y = Ax. The production process is
constrained by various operational factors, including capacity and resource
limitations. These are encapsulated in the feasible set C ⊂ RN . For instance,
one may define

C = {x ∈ RN
+ : Bx ≤ b},

where the matrix B and the vector b represent production constraints such as
available resources or maximum production capacities. On the other hand,
the consumption or distribution process must satisfy market demand or qual-
ity requirements, which are modeled by the feasible set Q ⊂ RM . One com-
mon formulation is

Q = {y ∈ RM
+ : y ≥ d},

with d being the vector of minimum demand requirements ensuring that the
market receives at least the prescribed quantities.
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In the production set C, selecting x∗ with the smallest norm is crucial
because it ensures that among all feasible production plans, x∗ consumes the
least resources or incurs the lowest production cost. This minimality directly
translates into enhanced efficiency in production. Similarly, in the consump-
tion set Q, requiring that y∗ = Ax∗ has the smallest norm means that the
corresponding distribution of goods is accomplished with minimal overhead
or waste. This condition is essential for achieving an efficient distribution
process. Thus, the overall objective is to select a production plan x∗ ∈ C

that minimizes the production norm:

∥x∗∥ ≤ ∥x∥ for all x ∈ C,

thereby reducing production costs, resource usage, or energy consumption.
Simultaneously, the corresponding consumption vector y∗ = Ax∗ must belong
to Q and minimize the consumption norm:

∥y∗∥ ≤ ∥y∥ for all y ∈ Q.

The SMNP model provides an integrated framework for addressing the chal-
lenges of simultaneously optimizing production and distribution. By merging
the operational constraints of production with the market’s consumption re-
quirements and enforcing minimal norm conditions, the SMNP formulation
successfully reduces costs while enhancing overall supply chain efficiency.

5 Numerical illustration

In this section, we present numerical experiments to assess the performance
of the proposed algorithms and provide results from various comparisons.
All Python code was executed on a 2017 MacBook Pro featuring a 2.3 GHz
Intel Core i5 processor, an Intel Iris Plus Graphics 640 GPU with 1536 MB
of memory, and 8 GB of 2133 MHz LPDDR3 RAM. The experiments were
conducted using Python version 3.11.

Example 1. (see [25, Example 4.1]). Let RK be equipped with the standard
norm ∥x∥ =

√
x2
1 + x2

2 + · · ·+ x2
K for all x = (x1, x2, . . . , xK)T ∈ RK . Let
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A(x) = (x1 + x3 + x4, x2 + x3 − x4)
T for all x = (x1, x2, x3, x4)

T ∈ R4. This
shows that A is a bounded linear operator from R4 into R2.

Now, define the set

C = {(x1, x2, x3, x4)
T ∈ R4 : x1 − 3x2 − 2x3 + x4 ≥ −2},

and let the mapping F1 : R4 −→ R4 be defined by F1(x) = (sin ∥x∥ + 4)b0

for all x ∈ R4, where b0 = (1,−3,−2, 1)T ∈ R4. It is easy to verify that F1 is
pseudomonotone and Lipschitz continuous on R4.

Now, let Q = {(u1, u2)
T ∈ R2 : u1 − 2u2 ≥ −1}, and define another

mapping F2 : R2 −→ R2 by F2(u) = (sin ∥u∥+2)c0 for all u ∈ R2, where c0 =

(1,−2)T ∈ R2. Similarly, F2 is pseudomonotone and Lipschitz continuous on
R2.

Consider the mapping F : R4 −→ R4 defined by F (x) = 2x + a0 for all
x ∈ R4, where a0 = (−2, 0, 4,−6)T ∈ R4. It is straightforward to verify
that F is strongly monotone and Lipschitz continuous on R4. In [25], the
authors demonstrated that the unique solution to the BSVIP (4) is given by
x∗ =

( 4

27
,
44

27
,−11

9
,
8

27

)T

.

Table 1: A comparison between Algorithm 1 and [25,
Algorithm 3.1] with different tolerances ε and the stop-
ping criterion ∥xn − x∗∥ ≤ ε

ε = 10−3

Iter(n) CPU time(s)

Algorithm 1 9945 1.7804
[25, Algorithm 3.1] 14611 2.4233

ε = 10−4

Iter(n) CPU time(s)

Algorithm 1 99490 19.1084
[25, Algorithm 3.1] 146159 24.8806

We will now assess the performance of Algorithm 1 in comparison to [25,
Algorithm 3.1], as outlined in [25]. Both algorithms use the termination
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criterion ∥xn − x∗∥ ≤ ε and start with the same initial point, x0, where
its components are randomly generated within the closed interval [−10, 10].
Additionally, for Algorithm 1, the components of the initial points x−2 and
x−1 are also randomly selected from the same interval. The parameters for
each algorithm are specified as follows:

• Algorithm 1: λ0 = 3, µ0 = 2, λ = 0.3, µ = 0.4, γn = 0.1, ξn = 0.2,
ρn = 0.99, ηn =

1

(n+ 2)1.01
and εn =

1

n+ 2
.

• [25, Algorithm 3.1]: λ0 = 3, µ0 = 2, λ = 0.3, µ = 0.4 and εn =
1

n+ 2
.

The results presented in Table 1 indicate that Algorithm 1 outperforms
[25, Algorithm 3.1] in terms of both runtime and iteration count.

Example 2. Let a0 = (1,−6,−3, 2,−3, 6,−1,−2)T ∈ R8, and consider the
set C defined as C = {x = (x1, x2, . . . , x8)

T ∈ R8 : ⟨a0, x⟩ ≥ −2}. Now,
let us define a mapping G : R8 −→ R8 by G(x) = (sin ∥x∥ + 4)a0 for all
x ∈ R8. It can be easily verified that G is pseudomonotone on R8 and
Lipschitz continuous on R8 . Furthermore, it is evident that the solution set
Sol(C,G) of the VIP V IP (C,G) is given by

Sol(C,G) = {x = (x1, x2, . . . , x8)
T ∈ R8 : ⟨a0, x⟩ = −2}.

Let us consider the mapping F : R8 −→ R8 defined as F (x) = x for all
x ∈ R8. This mapping F is strongly monotone with η = 1 and Lipschitz
continuous with L = 1 on R8. In this context, problem (5) transforms
into finding the minimum-norm solution of the V IP (C,G). The result-
ing minimum-norm solution x∗ for the V IP (C,G) is x∗ = PSol(C,G)(0) =

(−0.02, 0.12, 0.06,−0.04, 0.06,−0.12, 0.02, 0.04)T .

We are set to compare the performance of Algorithm 3 with [25, Algo-
rithm 3.6], as presented in [25], for solving the BVIP problem (5). Both algo-
rithms start with the same initial point, x0, whose components are randomly
generated within the closed interval [−10, 10], and both use the termination
criterion ∥xn − x∗∥ ≤ ε. Additionally, for Algorithm 3, the components of
the initial points x−2 and x−1 are also randomly chosen from the same closed
interval [−10, 10]. The parameter settings for these methods are as follows:
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Table 2: A comparison between Algorithm 3 and [25,
Algorithm 3.6] with different tolerances ε and the stop-
ping criterion ∥xn − x∗∥ ≤ ε

ε = 10−3

Iter(n) CPU time(s)

Algorithm 3 1343 0.1411
[25, Algorithm 3.6] 13359 1.1035

ε = 10−4

Iter(n) CPU time(s)

Algorithm 3 12969 1.1198
[25, Algorithm 3.6] 133599 10.9758

• Algorithm 3: λ0 = 3, λ = 0.6, γn = 104, ξn = 10−2, ηn =
1

(n+ 2)1.01

and εn =
1

n+ 2
.

• [25, Algorithm 3.6]: λ0 = 3, λ = 0.6 and εn =
1

n+ 2
.

The results shown in Table 2 suggest that Algorithm 3 demonstrates
superior performance when compared to [25, Algorithm 3.6].

Example 3. Let H1 = RK and let H2 = RL, where K = 200 and L = 150.
We consider the SFP with the sets C = {x ∈ RK : ⟨c, x⟩ ≥ 0}, Q = {y ∈
RL : ⟨q, y⟩ ≥ 0} and the bounded linear operator A : RK −→ RL defined by
A(x) = Mx for all x ∈ RK , where M is an L×K real matrix. We generate
the elements of M randomly within the closed interval [−10, 10], and the
coordinates of c and q within the closed interval [2, 10]. It is straightforward
to observe that 0 ∈ C and A(0) = 0 ∈ Q. Therefore, 0 ∈ Γ = {x∗ ∈ C :

Ax∗ ∈ Q}. Thus, the minimum-norm solution x∗ of the SFP is x∗ = 0.
We aim to compare the performance of Algorithm 5, where F is the

identity mapping, with the algorithm described in [18, Corollary 3.2] for
solving the minimum-norm solution of the SFP. Both algorithms begin with
the same initial point, x0, whose components are randomly generated within
the closed interval [−10, 10]. They also both use the same stopping criterion,
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∥xn−x∗∥ ≤ ε and the same εn =
1

n+ 2
(in [18, Corollary 3.2], this is denoted

as αn). Additionally, in Algorithm 5, the components of the initial points x−2

and x−1 are also randomly selected from the same closed interval [−10, 10].
The parameter values in Algorithm 5 are chosen as γn = 106, ξn = 10−4,
ρn = 0.99, and ηn =

1

(n+ 2)1.01
.

Table 3: A comparison between Algorithm 5, where F is the identity
mapping, and the algorithm described in [18, Corollary 3.2], with
different tolerances ε and the stopping criterion ∥xn − x∗∥ ≤ ε

ε = 10−3

Iter(n) CPU time(s)

Algorithm 5 189 0.0148
Algorithm in [18, Corollary 3.2] 79652 4.9645

ε = 10−4

Iter(n) CPU time(s)

Algorithm 5 2498 0.1653
Algorithm in [18, Corollary 3.2] 776266 45.2463

Table 3 illustrates that our Algorithm 5 significantly outperforms the
algorithm in [18, Corollary 3.2] in terms of both iteration count and CPU
time.

6 Conclusions

This paper presented an iterative algorithm for addressing BSVIPs. We
established that the iterative sequence strongly converges to the unique so-
lution of the BSVIP without needing to compute or estimate the norm of a
bounded linear operator. Moreover, the algorithm can be implemented with-
out requiring any calculations or estimations of the Lipschitz and strongly
monotone constants of the mappings involved. We also applied this algorithm
to specific cases, including the bilevel VIPs, the bilevel optimization prob-
lems, and strongly monotone VIPs with split feasibility constraints. Finally,
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we provided an application of the SMNP in production and consumption
systems and presented several numerical experiments to demonstrate the im-
plementability of the proposed algorithms.

As a potential direction for future research, it would be interesting to
investigate the extension of our results to Banach spaces. This generalization
may present new challenges, particularly in handling the lack of Hilbert space
structure, but it could also broaden the applicability of our approach to a
wider class of problems.
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