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Abstract. In this paper, the superiority conditions for a general class of shrinkage estimators
in the estimation problem of the normal mean are established under divergence loss. This
approach is an extension of the work of Ghosh and Mergel (2009).
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1 Introduction

In the line of seminal works of Stein (1956) and James and Stein (1961), there is growing
interest in modifying and generalizing the latter work to bring a new estimator of shrinkage
type in order to outperform the sample mean. Interesting studies may include in the couple of
works done by Baranchik (1970), Efron and Morris (1973), Strawderman (1971), Faith (1978),
Stein (1981), Brandwein and Strawderman (1980), Casella (1990), George (1991), Shao et al.
(1994), Maruyama (2004), Srivastava and Kubokawa (2005), Ghosh et al. (2008), Wells and Zhou
(2008), Ghosh and Mergel (2009) and Arashi and Tabatabey (2010) under different settings.

This work is arisen from the recent study due to Ghosh and Mergel (2009). They considerably
investigated on the superiority conditions of Baranchik-type estimators over the sample mean
in multivariate normal model, with divergence loss. In this paper, a minor extension is then
carried out for another class of shrinkage estimators.

For the precise setup, first of all suppose that X ∼ Np(θ,σ2Ip), where θ and σ2 are both
unknown. Further, S ∼ (σ2/(m+2))χ2

m is independent of X. The aim of this work is to establish
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conditions in which the general class of shrinkage estimators given by

δ(X) =X+Sg(X) (1)

outperforms X, where g : Rp →Rp satisfies some regularity conditions which will be given later.
The outline of this paper is as follows: In Section 2, some preliminary results as well as some

notations are given, while the main results are exhibited in Section 3. Some important remarks
are also given in Section 4.

2 Preliminaries
Before revealing the main results, we express some useful notations. For any x,y ∈ Rp, let

x ·y =
p

∑
j=1

x jy j, ∥x∥2 =
p

∑
i=1

x2
i .

Definition 1. A function h : Rp →R is said to be almost differentiable if there exists a function
▼h : Rp → Rp such that, for all z ∈ Rp,

h(x+z)−h(x) =
∫ 1

0
z ·▼h(x+ tz)dt

for (Lebesgue measure) almost all x ∈ Rp. A function g : Rp → Rp is almost differentiable if
all its coordinate functions are almost differentiable. Essentially, ▼ is the vector differential
operator of first partial derivatives with ith coordinate ▽i = ∂/∂xi.

Definition 2. A function g : Rp → Rp is said to be homogeneous of degree −1, if it satisfies

g(λx) =
1
λ
g(x)

for all real λ ̸= 0 and for all x ∈ Rp.

As an example satisfying the regularity condition in Definition 2, consider the reciprocal
function g(x) = (g(x1), . . . ,g(xp))

′ where g(x) = x−1. Obviously, g(λx) = 1/(λx) = λ−1g(x).
In this paper, we employ the expectation of divergence loss, which includes Kullback-Leibler

(KL for short) loss and Bhattacharyya-Hellinger (BH) loss, as a measurement. The divergence
loss has been considered by many authors in other contexts. Among others, we refer to Amari
(1982) and Cressie and Read (1984).

Definition 3. Suppose that N (x|θ,σ2Ip) denotes the probability density function of Np(θ,σ2Ip).
For an estimator a of θ, the divergence loss is defined by

Lβ (θ;a) =
1

β (1−β )

(
1−

∫
Rp

N 1−β (x|θ,σ2Ip)N
β (x|a,σ2Ip)dx

)
=

1
b

(
1− exp

[
− b

2σ2 ∥a−θ∥2
])

, (2)

where b = β (1−β ) and β ∈ (0,1).
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The second equality in (2) is a consequence of Lemma 2.2 of Ghosh et al. (2008). The KL
loss and the BH loss occur as special cases of the divergence loss when β → 0 or β → 1, and
β = 1/2, respectively. Some graphical displays are presented in Figure 1, illustrating the relative
behavior of the loss function for σ = 0.5. In this figure, β varies within the range (0,1), while
∥a−θ∥2 changes from small to large values across different panes to demonstrate the effect of its
magnitude. As shown, for moderate values of ∥a−θ∥2, the shape of the loss function is clearly
bath-shaped.

Figure 1: Behavior of the divergence loss relative to β and ∥a−θ∥2.
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To close this section, note that since ∥X −θ∥2 ∼ σ2χ2
p, under the loss, it can be directly

concluded that the risk of X is given by

Rβ (θ;X) =
1− (1+b)−p/2

b
. (3)

3 Main results
In this section, we first give sufficient conditions in which the estimator δ(X) given by (1)
dominates X for the case of Σ = σ2Ip (Case I). Also, for the case of the general framework Σ
(Case II), we give sufficient conditions so that an estimator dominates X.

Case I: (Σ = σ2Ip, σ2 is unknown)

Theorem 1. Assume X ∼ Np(θ,σ2Ip) and S ∼ (σ2/(m+ 2))χ2
m are independent, where θ and

σ2 are both unknown. Further, assume that for a given estimator δ(X) in (1), g is almost
differentiable and homogenous function of degree −1 satisfying E|(∂/∂Wi)gi(W )| < ∞ for all
η ∈Rp and for i= 1, · · · , p, where W ∼Np(η, Ip/(b+1)) is independent of S. Then, the estimator
δ(X) has smaller risk than X, under the divergence loss (2), provided that

∥g(w)∥2 +
2

b+1
▼ ·g(w)≤ 0

for all w ∈ Rp.

Proof. Let Y =X/σ , η = θ/σ , S∗ = S/σ2. Then, by the homogeneity of g and the inequality
ex − ey ≥ ey(x− y) (x,y ∈ R), the risk difference between X and δ(X) is given by

Rβ (θ;X)−Rβ (θ;δ(X)) =
1
b

E
[

exp
(
− b

2σ2 ∥X+Sg(X)−θ∥2
)
− exp

(
− b

2σ2 ∥X−θ∥2
)]

≥− 1
2σ2 E

[
exp

(
− b

2σ2 ∥X−θ∥2
)(

S2∥g(X)∥2 +2S(X−θ) ·g(X)
)]

=−1
2

E
[

exp
(
−b

2
∥Y −η∥2

)(
S∗2∥g(Y )∥2 +2S∗(Y −η) ·g(Y )

)]
. (4)

Since Y ∼ Np(η, Ip) and S∗ ∼ (m+ 2)−1χ2
m are independent, and E (S∗) = E

(
S∗2) = m/(m+ 2),

the right hand side in (4) is rewritten by

− m
2(m+2)

E
[

exp
(
−b

2
∥Y −η∥2

)(
∥g(Y )∥2 +2(Y −η) ·g(Y )

)]
=− m

2(m+2)
(b+1)−p/2E

[
∥g(W )∥2 +2g(W ) · (W −η)

]
. (5)

By the Stein identity, we have

E [g(W ) · (W −η)] =
1

b+1
E [▼ ·g(W )] . (6)
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Substituting (5) and (6) in (4) concludes that

Rβ (θ;X)−Rβ (θ;δ(X))≥− m
2(m+2)

(b+1)−p/2E
[
∥g(W )∥2 +

2
b+1

▼ ·g(W )

]
≥ 0 (7)

for all θ ∈ Rp and for all σ2 > 0. Here, we have to show that the inequality in (7) holds strictly
for some θ and σ2. Since P{Sg(X)+2(X−θ) = 0}= 0, the equality in (4) holds only if g(X) = 0
(a.s.), that is, δ (X) =X (a.s.). This completes the proof.

As a supplement, the earlier result can be proposed in a more general situation. In this
regard, we have the following essential consequence.

Theorem 2. Suppose that X ∼ Np(θ,σ2Ip) and S ∼ (σ2/(m+2))χ2
m are independent, where θ

and σ2 are both unknown. Consider the class of shrinkage estimators

δ∗(X) =X+ cSg(X),

where g is as in Theorem 1. Then, δ∗(X) outperforms X under divergence loss provided that

(i) there exists a function h(.) such that, for all x ∈ Rp

1
2
∥g(x)∥2 ≤ h(x)≤− 1

1+b
▼ ·g(x),

(ii) 0 < c ≤ 1.

Proof. By the same way as the proof of Theorem 1, the risk difference between X and δ∗(X)
is given by

Rβ (θ;X)−Rβ (θ;δ∗(X))≥− m
2(m+2)

(b+1)−p/2E
[

c2∥g(W )∥2 +
2c

b+1
▼ ·g(W )

]
≥− m

m+2
(b+1)−p/2c(c−1)E [h(W )]

≥ 0 (8)

for all c ∈ (0,1]. By the same reason as Theorem 1, the equality in (8) holds for all θ and for all
σ2 only if δ (X) =X (a.s.).

Now, let S (p) be the set of all positive definite matrices of order p.

Case II: (Unknown Σ ∈ S (p))

In this case, first of all, let n−1 mutually independent random vectors Z1, · · · ,Zn−1 ∼Np(0,Σ)
be independent of Zn ∼Np(θ,Σ), in which p ≥ 3. We deal with a more general type of improved
shrinkage estimators, based on the sufficient statistic (Zn,S), of the form

γ(Zn,S) =Zn +F (Zn,S), (9)

where S = ∑n−1
j=1 Z jZ

′
j.
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Definition 4. Suppose that N (x|θ,Σ) denotes the probability density function of Np(θ,Σ). For
an estimator a of θ, the generalized divergence loss (GDL) function is defined by

LΣ
β (θ;a) =

1
β (1−β )

(
1−

∫
Rp

N 1−β (x|θ,n−1Σ)N β (x|a,n−1Σ)dx
)

=
1
b

(
1− exp

[
−nb

2
∥a−θ∥2

Σ

])
, (10)

where ∥a−θ∥2
Σ = (a−θ)′Σ−1(a−θ).

Theorem 3. Suppose that
E
[
F ′(U ,S)F (U ,S)

]
< ∞

for all θ ∈ Rp and for all Σ ∈ S (p), where U ∼ Np(θ,Σ/(nb+ 1)) is independent of S. Then,
the estimator γ(Zn,S) given by (9) has smaller risk than Zn, under GDL function given by (10)
provided that

2▼u ·F (u,S)+(n− p+2)(nb+1)F ′(u,S)S−1F (u,S)≤ 0,

where ▼u states getting derivative with respect to u.

Proof. By the same way as the proof of Theorem 1, the risk difference between Zn and γ(Zn,S)
is given by

Rβ (θ;Zn)−Rβ (θ;γ(Zn,S))≥−n
2

E
[(
∥F (Zn,S)∥2

Σ +2F ′(Zn,S)Σ−1(Zn −θ)
)

e(−
nb
2 ∥Zn−θ∥2

Σ)
]
.

(11)

Let Vi = Zi/
√

nb+1 for i = 1, · · · ,n− 1, T = ∑n−1
j=1 V jV

′
j , G(u,T ) = F (u,(nb+ 1)T ) and Λ =

Σ/(nb+1). Then, the right hand side in (11) is rewritten by

−n
2
(nb+1)−1−p/2E

[
G′(U ,T )Λ−1G(U ,T )+2G′(U ,T )Λ−1(U −θ)

]
.

By applying Lemma 1 of Fourdrinier et al. (2003), we see that

E
[
G′(U ,T )Λ−1G(U ,T )+2G′(U ,T )Λ−1(U −θ)

]
≤ E

[
2▼U ·G(U ,T )+(n− p+2)G(U ,T )′T−1G(U ,T )

]
. (12)

Since T = S/(nb+1), the right hand side in (12) is expressed as

E
[
2▼U ·F (U ,S)+(n− p+2)(nb+1)F ′(U ,S)S−1F (U ,S)

]
. (13)

From (11) to (13), we have

Rβ (θ;Zn)−Rβ (θ;γ(Zn,S))≥−n
2
(nb+1)−1−p/2

×E
[
2▼U ·F (U ,S)+(n− p+2)(nb+1)F ′(U ,S)S−1F (U ,S)

]
≥ 0 (14)

for all θ ∈ Rp and Σ ∈ S (p). By the same reason as Theorem 1, the equality in (14) holds only
if F (Zn,S) = 0 (a.s.).
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4 Conclusions
In this paper, we establish the conditions under which a general class of shrinkage estimators
outperforms the consistent estimator of a multivariate normal population mean when using a
divergence loss function. The results obtained apply to both known and unknown covariance
scenarios. Furthermore, our findings extend the earlier work of Ghosh and Mergel (2009) to a
broader class of dominant estimators. The proofs of the proposed theorems are presented in a
more straightforward manner than in the previous reference. This method can also be applied
to exponential-type loss functions, such as LINEX, and reflected normal losses. Importantly, the
conditions for superiority are robust concerning the squared error loss function, which further
validates our derivations, as the divergence loss encompasses the square error loss as a special
case.

4.1 Easy understanding
In conclusion, we provide a simple approach for making decisions regarding the superiority
conditions based on divergence loss. As previously mentioned, the square error loss is a specific
case of divergence loss. It is important to note that the graphs of both losses are parabolic.
Additionally, the graph of the risk of X in Equation (3) also follows a parabolic form (see Figure
2). From a graphical perspective, for any estimator of θ to be superior to X, it must have a risk
that is lower than that of the parabolic shape. Therefore, we can conclude that determining the
superiority conditions for the proposed shrinkage estimators can be achieved by examining them
under the square error loss. Interestingly, the conditions derived in this study align exactly with
those found in the work of Ghosh and Mergel (2009), as they are the same under square error
loss when b → 0.

Figure 2: Risk of X under the divergence loss.
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