- Abadía, J., & Grusak, M.A. (2013). Iron deficiency in plants: An insight from proteomic approaches. Plant Nutrition. https://doi.org/10.3389/fpls.2013.00254
- Abd-Alla, M.H., Nafady, N.A., Bashandy, S.R., & Hassan, A.A. (2019). Mitigation of salt-stress effects on nodulation, nitrogen fixation and growth of chickpea (Cicer arietinum) by triple microbial inoculation. Rhizosphere, 10(12), 100–148. https://doi.org/10.1016/j.rhisph.2019.100148
- Aliaga, M.E., Carrasco-Pozo, C., López-Alarcón, C., Olea-Azar, C., & Speisky, H. (2011). Superoxide-dependent reduction of Fe³⁺ and release of Fe²⁺ from ferritin by the physiologically occurring Cu(I)–glutathione complex. Bioorganic & Medicinal Chemistry, 19(1), 534–541. https://doi.org/10.1016/j.bmc.2010.10.064
- Alizadeh, A. (2006). The relationship between water, soil and plant (6th ed.). Imam Reza University Press. (In Persian)
- Bremner, J.M., & Mulvaney, C.S. (1982). Total nitrogen. In A. L. Page (Ed.), Methods of soil analysis: Part 2 – Chemical and microbiological properties (2nd ed., pp. 595–624). Soil Science Society of America. https://doi.org/10.2134/agronmonogr9.2.2ed.c31
- Briat, J.-F., Dubos, C., & Gaymard, F. (2015). Iron nutrition, biomass production and plant product quality. Trends in Plant Science, 20(1), 33–40. https://doi.org/10.1016/j.tplants.2014.07.005
- Chen, W.-W., Yang, J.-L., Qin, C., Jin, C.-W., Mo, J.-H., Ye, T., & Zheng, S.-J. (2010). Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in Arabidopsis thaliana. Plant Physiology, 154(2), 810–819. https://doi.org/10.1104/pp.110.161109
- De Souza-Torres, A., Govea-Alcaide, E., Masunaga, S.H., Fajardo-Rosabal, L., Effenberger, F., Rossi, L.M., & Jardim, R.F. (2019). Impact of Fe₃O₄ nanoparticles on nutrient accumulation in common bean plants grown in soil. SN Applied Sciences, 1(3), Article 321. https://doi.org/10.1007/s42452-019-0321-y
- De Souza-Torres, A., Govea-Alcaide, E., Gómez-Padilla, E., Masunaga, S.H., Effenberger, F.B., Rossi, L.M., & Jardim, R.F. (2021). Fe₃O₄ nanoparticles and Rhizobium inoculation enhance nodulation, nitrogen fixation and growth of common bean grown in soil. Rhizosphere, 17, 100275. https://doi.org/10.1016/j.rhisph.2020.100275
- Fuentes, M., Bosch, G., Hita, D., Olaetxea, M., Erro, J., Zamarreño, Á.M., & García-Mina, J.M. (2023). Supramolecular arrangement of lignosulfonate-based iron complexes and consequences for Ca²⁺ interaction at alkaline pH and Fe uptake. Journal of Agricultural and Food Chemistry, 71(30), 11404–11417. https://doi.org/10.1021/acs.jafc.3c03474
- Gee, G.W., & Bauder, J.W. (1986). Particle-size analysis. In A. Klute (Ed.), Methods of soil analysis: Part 1 – Physical and mineralogical methods (2nd ed., pp. 383–411). Soil Science Society of America. https://doi.org/10.2136/sssabookser5.1.2ed.c15
- Gheshlaghi, Z., Khorassani, R., & Abadía, J. (2022). Two Fe mining by-products and three thiol compounds alleviate Fe deficiency in soybean grown in calcareous soil under greenhouse conditions. Plant and Soil, 479, 1–22. https://doi.org/10.21203/rs.3.rs-1656181/v1
- Gheshlaghi, , Khorassani, R., Abadía, J., Kafi, M., & Fotovat, A. (2019). Glutathione foliar fertilisation prevents lime-induced iron chlorosis in Medicago scutellata grown in soil. Journal of Plant Nutrition and Soil Science, 182(4), 607–624. https://doi.org/10.1002/jpln.201800692
- Ghorashi, L.S., Haghnia, G.H., Lakzian, A., & Khorasani, R. (2012). Effect of lime, phosphorus and organic matter on maize ability for iron uptake. Journal of Water and Soil, 26(4), 818–820. (In Persian with English abstract).
- Gill, S.S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48, 909–930. https://doi.org/10.1016/j.plaphy.2010.08.016
- Helmke,A., & Sparks, D.L. (1996). Lithium, sodium, potassium, rubidium and cesium. In D. L. Sparks (Ed.), Methods of soil analysis: Part 3 – Chemical methods (pp. 551–576). Soil Science Society of America. https://doi.org/10.2136/sssabookser5.3.c19
- Iannone, M.F., Groppa, M.D., De Sousa, M.E., Van Raap, M.B.F., & Benavides, M.P. (2016). Impact of magnetite nanoparticles on wheat development: Evaluation of oxidative damage. Environmental and Experimental Botany, 131, 77–88. https://doi.org/10.1016/j.envexpbot.2016.07.004
- Jiao,, Wang, F., Ma, C., Zhang, F., & Jensen, E.S. (2021). Interspecific interactions of iron and nitrogen use in peanut–maize intercropping on calcareous soil. European Journal of Agronomy, 128, 126303. https://doi.org/10.1016/j.eja.2021.126303
- Jungk,, Waisel, Y., & Kafkafi, U. (2002). Dynamics of nutrient movement at the soil–root interface. In Y. Waisel, A. Eshel, & U. Kafkafi (Eds.), Plant roots: The hidden half (3rd ed., pp. 587–616). Marcel Dekker. https://doi.org/10.1201/9780203909423
- Kobayashi,, & Nishizawa, N.K. (2012). Iron uptake, translocation and regulation in higher plants. Annual Review of Plant Biology, 63, 131–152. https://doi.org/10.1146/annurev-arplant-042811-105522
- Koen, E., Szymańska, K., Klinguer, A., Dobrowolska, G., Besson-Bard, A., & Wendehenne, D. (2012). Nitric oxide and glutathione impact expression of iron-uptake and transport genes and metal content in Arabidopsis thaliana under iron deficiency. Plant Signaling & Behavior, 7(10), 1246–1250. https://doi.org/10.4161/psb.21548
- Kokina, I., Plaksenkova, I., Jermaļonoka, M., & Petrova, A. (2020). Impact of iron oxide nanoparticles on yellow medick (Medicago falcata) plants. Journal of Plant Interactions, 15(1), 1–7. https://doi.org/10.1080/17429145.2019.1708489
- Kong, J., Dong, Y., Xu, L., Liu, S., & Bai, X. (2014). Foliar application of salicylic acid and nitric oxide alleviates iron-deficiency-induced chlorosis in peanut (Arachis hypogaea). Botanical Studies, 55, 9. https://doi.org/10.1186/1999-3110-55-9
- Kong, J., Dong, Y., Zhang, X., Wang, Q., Xu, L., Liu, S., & Fan, Z. (2015). Exogenous salicylic acid affects physiological characteristics of peanut seedlings under iron-deficiency stress. Journal of Plant Nutrition, 38(1), 127–144. https://doi.org/10.1080/01904167.2014.920391
- Loeppert, R.H., & Suarez, D.L. (1996). Carbonate and gypsum. In D. L. Sparks (Ed.), Methods of soil analysis: Part 3 – Chemical methods (pp. 437–474). Soil Science Society of America. https://doi.org/10.2136/sssabookser5.3.c15
- Lindsay, W.L., & Norvell, W.A. (1978). Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal, 42, 421–428. https://doi.org/10.2136/sssaj1978.03615995004200030009x
- Lindsay, W.L., & Schwab, A.P. (1982). The chemistry of iron in soils and its availability to plants. Journal of Plant Nutrition, 5(4–7), 821–840. https://doi.org/10.1080/01904168209363012
- Lucena, J.J., & Chaney, L. (2006). Synthetic iron chelates as substrates of root ferric-chelate reductase in iron-stressed cucumber plants. Journal of Plant Nutrition, 29(3), 423–439. https://doi.org/10.1080/01904160500524886
- Malakouti, M.J. (1995). Sustainable agriculture and yield increase through balanced fertilization. Karaj Agricultural Education Publishing. (In Persian with English abstract)
- Malakouti, M., & Homaee, M. (1989). Soil fertility of arid and semiarid regions: Difficulties and solutions. Tarbiat Modares University Press. (In Persian with English abstract)
- Malakouti, M.J., & Tehrani, M.M. (1991). Effects of micronutrients on yield and quality of agricultural products. In Proceedings of the Workshop on Micronutrients (pp. 342–360). Tarbiat Modares University. (In Persian with English abstract)
- Marschner, H. (1995). Mineral nutrition of higher plants (2nd ed.). Academic Press.
- Mohammadipour, R., Sedaghat-Hoor, S., & Mahboub-Khomami, A. (2013). Effect of soil and foliar iron fertilization on growth of Spathiphyllum illusion. European Journal of Experimental Biology, 3(6), 232–240. (In Persian with English abstract)
- Olsen, S.R., & Sommers, L.E. (1982). Phosphorus. In A. L. Page (Ed.), Methods of soil analysis: Part 2 – Chemical and microbiological properties (2nd ed., pp. 403–427). Soil Science Society of America. https://doi.org/10.2134/agronmonogr9.2.2ed.c24
- Panjtandoust, M., Sorooshzadeh, A., & Ghanati, F. (2010). Effect of soil and foliar iron application on qualitative characteristics of peanut (Arachis hypogaea) in calcareous soil. Department of Agronomy, Tarbiat Modares University. (In Persian with English abstract)
- Plaksenkova, I., Jermaļonoka, M., Bankovska, L., Gavarane, I., Gerbreders, V., Sledevskis, E., & Kokina, I. (2019). Effects of Fe₃O₄ nanoparticle stress on growth and development of rocket (Eruca sativa). Journal of Nanomaterials, 2019, 2678247. https://doi.org/10.1155/2019/2678247
- Rachaputi, R., Yashvir, S.C., & Wilson, G.C. (2021). Crop physiology case histories for major crops (Chap. 11, pp. 360–382). In V. O. Sadras & D. Calderini (Eds.), Crop physiology (2nd ed.). Academic Press. https://doi.org/10.1016/B978-0-12-819194-1.00011-6
- Ramirez, L., Bartoli, C.G., & Lamattina, L. (2013). Glutathione and ascorbic acid protect Arabidopsis thaliana against detrimental effects of iron deficiency. Journal of Experimental Botany, 64(11), 3169–3178. https://doi.org/10.1093/jxb/ert153
- Rhoades, J.D. (1996). Salinity: Electrical conductivity and total dissolved solids. In D. L. Sparks (Ed.), Methods of soil analysis: Part 3 – Chemical methods (pp. 417–435). Soil Science Society of America. https://doi.org/10.2136/sssabookser5.3.c14
- Rombolà, D., Pinton, R., & Zocchi, G. (2019). Glutathione foliar fertilisation prevents lime-induced iron chlorosis in kiwifruit (Actinidia deliciosa). Journal of Plant Nutrition and Soil Science, 182(2), 271–277. https://doi.org/10.1002/jpln.201800692
- Roosta, H.R., & Mohsenian, Y. (2012). Effects of foliar spray of different Fe sources on pepper (Capsicum annuum) plants in an aquaponic system. Scientia Horticulturae, 146, 182–191. https://doi.org/10.1016/j.scienta.2012.08.018
- Rouhier, , Couturier, J., Johnson, M.K., & Jacquot, J.-P. (2010). Glutaredoxins: Roles in iron homeostasis. Trends in Biochemical Sciences, 35(1), 43–52. https://doi.org/10.1016/j.tibs.2009.08.005
- Rui,, Ma, C., Hao, Y., Guo, J., Rui, Y., Tang, X., & Zhu, S. (2016). Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Frontiers in Plant Science, 7, 815. https://doi.org/10.3389/fpls.2016.00815
- Shanmugam, V., Wang, Y.-W., Tsednee, M., Karunakaran, K., & Yeh, K.-C. (2015). Glutathione plays an essential role in nitric-oxide-mediated iron-deficiency signalling and tolerance in Arabidopsis thaliana. The Plant Journal, 84(3), 464–477. https://doi.org/10.1111/tpj.13011
- Song, Y., Dong, Y., Tian, X., Bai, X., & He, Z. (2016). An exogenous source of nitric oxide modulates iron nutritional status in peanut seedlings (Arachis hypogaea). Journal of Plant Growth Regulation, 35(3), 730–743. https://doi.org/10.1007/s00344-016-9578-1
- Song, Y., Dong, Y., Tian, X., Wang, W., & He, Z. (2017). Mechanisms of exogenous nitric oxide and 24-epibrassinolide in alleviating iron deficiency stress of peanut seedlings. Pedosphere, 27(5), 987–997. https://doi.org/10.1016/S1002-0160(17)60446-6
- Thomas, W. (1996). Soil pH and soil acidity. In D. L. Sparks (Ed.), Methods of soil analysis: Part 3 – Chemical methods (pp. 475–490). Soil Science Society of America. https://doi.org/10.2136/sssabookser5.3.c16
- Tsutsumi, R., Yamashita, T., Muraoka, M., Hirata, K., & Nagano, K. (2024). γ-Glutamylcysteine, a glutathione precursor, exhibits higher thiol reactivity for complex formation with iron(III) ions than glutathione. BPB Reports, 7(6), 218–222. https://doi.org/10.1248/bpbreports.7.6_218
- Walkley, A., & Black, I.A. (1934). An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29–38. https://doi.org/10.1097/00010694-193401000-00003
- Yang, X., Alidoust, D., & Wang, C. (2020). Effects of iron oxide nanoparticles on mineral composition and growth of soybean (Glycine max). Acta Physiologiae Plantarum, 42, 128. https://doi.org/10.1007/s11738-020-03104-1
- Zhang, X., Dong, Y., Kong, J., Liu, Z., & Wang, Q. (2014). Effects of nitric oxide on alleviation of iron-deficiency stress in peanut. Journal of Plant Nutrition, 37(13), 2108–2127. https://doi.org/10.1080/01904167.2014.920371
- Zuchi, S., Watanabe, M., Bromke, M., Osorio, S., & Astolfi, S. (2015). The interplay between sulfur and iron nutrition in tomato. Plant Physiology and Biochemistry, 93, 62–71. https://doi.org/10.1104/pp.15.00995
Zuo, Y., Ren, L., Zhang, F., & Jiang, R.F. (2007). Bicarbonate concentration as affected by soil water content controls iron nutrition of peanut in calcareous soil. Plant Physiology and Biochemistry, 45(5), 357–364. https://doi.org/10.1016/j.plaphy.2007.03.017
|