[1] Alipanah, A. and Esmaeili, S. Numerical solution of the two-dimensional Fredholm integral equations using Gaussian radial basis function, J. Comput. Appl. Math. 235(18) (2011) 5342–5347.
[2] Chen, C.S., Fan, C.M. and Wen, P.H. The method of particular solutions for solving elliptic problems with variable coefficients, Int. J. Comput. Method. 8 (2011) 545–559.
[3] Chen, C.S., Fan, C.M. and Wen, P.H.The method of particular solutions for solving certain partial differential equations, Numer. Method. Partial Differ. Equ. 28 (2012) 506–522.
[4] El-Sayed, A.M.A., Helal, S.M. and El-Azab, M.S.Solution of a parabolic weakly-singular partial integro-differential equation with multi-point non-local boundary conditions, J. Fract. Calc. Appl. 7(1) (2016) 1–11.
[5] Fornberg, B. and Flyer, N. Accuracy of radial basis function interpola-tion and derivative approximations on 1-D infinite grids, Adv. Comput. Math. 23 (2005) 5–20.
[6] Golbabai, A. and S. Seifollahi, Numerical solution of the second-kind in-tegral equations using radial basis function networks, Appl. Math. Com-put. 174 (2) (2006) 877–883.
[7] Golbabai, A. and Seifollahi, S. Radial basis function networks in the numerical solution of linear integro-differential equations, Appl. Math. Comput. 188 (1) (2007) 427–432.
[8] Hamaidi, M., Naji, A. and Charafi, A. Space-time localized radial basis function collocation method for solving parabolic and hyperbolic equa-tions, Eng. Anal. Bound. Elem. 67 (2016) 152–163.
[9] Hamaidi, M., Naji, A., Ghafrani, F. and Jourhmane, M. Noniterative localized and space-time localized RBF meshless method to solve the ill-posed and inverse problem, Model. Simul. Eng. 2020 (2020) 5046286.
[10] Hamaidi, M., Naji, A. and Taik, A. Solving parabolic and hyperbolic equations with variable coefficients using space-time localized radial basis function collocation method, Model. Simul. Eng. 2021 (2021) 6688806.
[11] Jiang, Z.W., Wang, R.H., Zhu, C.G. and Xu, M. High accuracy mul-tiquadric quasi-interpolation, Appl. Math. Model. 35 (5) (2011) 2185–2195.
[12] Parand, K. and Rad, J.A.Numerical solution of nonlinear Volterra-Fredholm-Hammerstein integral equations via collocation method based on radial basis functions, Appl. Math. Comput. 218 (9) (2012) 5292–5309.
[13] Scott, S. and Kansa, E.J. Multiquadric radial basis function approxima-tion methods for the numerical solution of partial differential equations, Adv. Comput. Mech. 2(2) (2009) 220.
[14] Siddiqi, S.S. and Arshed, S. Numerical solution of convection-diffusion integro-differential equations with a weakly singular kernel, J. Basic Appl. Sci. Res. 3(11) (2013) 106–120.
[15] Soliman, A.F., El-Asyed, A.M.A. and El-Azab, M.S.On the numerical solution of partial integro-differential equations, Math. Sci. Lett. 1(1) (2012) 71–80.
[16] Soliman, A.F., El-Azab, M.S. and El-Asyed, A. Fourth and sixth order compact finite difference Schemes for partial integro-differential equa-tions, J. Math. Comput. Sci. 2 (2) (2013) 206–225.
[17] Zhang, H.Q., Chen, Y., and Nie, X. Solving the linear integral equations based on radial basis function interpolation, J. Appl. Math. 2014 (2014), 793582.