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Space-time localized scheme to solve some
partial integro-differential equations

M. Hamaidi*, , M. Briki, A. Nouara and B. Hamdi

Abstract

It has been demonstrated that the space-time localized radial basis func-
tions collocation method has very good accuracy in several research studies.
In this paper, we extend the method to solve the partial integro-differential
equations. Since the unknowns of the localized scheme are the values of the
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interpolated function, the method can be easily combined with the trape-
zoidal rule to find the numerical solution. The main advantages of such
formulation are as follows: The time discretization is not applied; the time
stability analysis is not discussed; and the recomputation of the resulting
matrix at each time level is avoided because the matrix is computed once.
Different examples are solved to show the accuracy of such a method.

AMS subject classifications (2020): Primary 45K05, 65M99; Secondary 65N22.

Keywords: Partial integro-differential equation; Localized radial basis func-
tions; Space-time scheme; Collocation method; Trapezoidal rule.

1 Introduction

A partial integro-differential equation (PIDE) is an equation in which the
unknown function appears under the sign of integration and contains the
unknown function and its derivatives with respect to the space and time
variables. Many problems in various fields of physical, engineering, biological,
and epidemiology models are described by PIDEs.

The numerical solution of the PIDEs has recently gained much attention
from researchers. To our best knowledge, in all published works, the solu-
tion methods are based on first discretizing the time variable by applying
any time-stepping algorithms as implicit, explicit, Runge–Kutta or others,
and seeking the approximate solution at each instant t in a space domain
problem. Siddiqi and Arshed [14] employed cubic b-spline functions for spa-
tial derivatives and the Euler backward formula for time derivatives to solve
the PIDE. In [16, 15], it was used the 2-point Euler backward finite dif-
ference method was used for the discretization in time with a combination
of the finite difference method and the trapezoidal rule to solve the PIDE.
El-Sayed, Helal and El-Azab [4] implemented the implicit and explicit fi-
nite difference schemes for the time discretization. In most published works,
these methods are based on differentiating between time and space variables.
All methods start by discretizing the time variable using implicit, explicit,
Runge–Kutta, or any other known method, and then solving the problem by
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3 Space-time localized scheme to solve some partial ...

computing the approximate solution at each time t. The global radial basis
function (RBF) method for solving the linear integro-differential equations
was investigated by Golbabai and Seifollahi [6, 7]. Parand and Rad [12] pre-
sented the RBF collocation method for one-dimensional Volterra-Fredholm-
Hammerstein integral equations. All works used the global formulation of
RBF [6, 7, 12, 1, 17]. Therefore, in this paper, we develop an RBF-based
space-time localized meshless collocation method combined with the trape-
zoidal rule to solve the space and time PIDE as space-time one, without
differentiating between space and time variables. The posed problem can be
solved once to approximating the solution at any space-time point (x, t). The
main advantages of the considered technique are as follows:
(a). The discussion of the time stability analysis of the discrete system is
avoided [8].
(b). The computational time when dealing with PIDEs with time-dependent
coefficients is reduced as there is no need to recompute the matrix for the
resulting algebraic system at each time level.
(c). The method uses the sparse matrices to store only the nonzero elements,
so we save a significant amount of memory and speed up the resolution of
the linear system.

The paper is organized as follows. In section 2, we introduce the formula-
tion of the PIDE as a space-time problem and the space-time localized RBF
method implementation. Section 3 is devoted to the discussion of results
obtained by solving different PIDE examples. We conclude in Section 4.

2 Numerical details and discretization schemes

In this section, we describe the discretization scheme and the methodology
used to solve the PIDE. The considered PIDE has the following form:

D(x,t)u+ I(x,t)u = f(x, t) for all x ∈ (a, b), for all t ∈ (0, T ],

u(a, t) = g1(t) for all t ∈ (0, T ),

u(b, t) = g2(t) for all t ∈ (0, T ),

u(x, 0) = u0(x) for all x ∈ [a, b],

(1)
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where D(x,t) is a differential operator of second order with variable coefficients
defined by

D(x,t)u =
∂u

∂t
− a(x, t)

∂2u

∂x2
+ b(x, t)

∂u

∂x
+ c(x, t)u, (2)

I(x,t) is an integral operator of the form

I(x,t)u =

∫ t

0

k(x, t, s)u(x, s)ds, (3)

and f , g1, g2, u0, and k are given smooth functions.

2.1 Space-time problem methodology

The formulation of the time-depends problem given by the system (1) as a
space-time one starts by combining the space variable x and the time variable
t in one vector x̂ = (x, t). The constructed variable vector belongs to the
space-time domain ΩT = [a, b]×[0, T ] represented by Figure 1. The boundary
of the new formulated domain ΩT is given by ∂ΩT = Γ1∪Γ2∪Γ3∪Γ4, where
Γ1 = {a} × [0, T ], Γ2 = {b} × [0, T ], Γ3 = [a, b]× {0}, and Γ4 = [a, b]× {T}.

Then, the problem has the new form:

D(x,t)u+ I(x,t)u = f(x, t) for all (x, t) ∈ ΩT

u(x, t) = g1(t) for all (x, t) ∈ Γ1,

u(x, t) = g2(t) for all (x, t) ∈ Γ2,

u(x, t) = u0(x) for all (x, t) ∈ Γ3,

D(x,t)u+ I(x,t)u = f(x, t) for all (x, t) ∈ Γ4,

(4)

or in a reduced form, by setting ΩT = ΩT ∪ Γ4 and ∂ΩT = Γ1 ∪ Γ2 ∪ Γ3, we
have {

Dx̂u+ Ix̂u = f(x̂) for all x̂ ∈ ΩT ,

u(x̂) = g(x̂) for all x̂ ∈ ∂ΩT ,
(5)

where
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5 Space-time localized scheme to solve some partial ...

Figure 1: Space-time domain


g(x̂) = g1(x̂) for all x̂ ∈ Γ1,

g(x̂) = g2(x̂) for all x̂ ∈ Γ2,

g(x̂) = u0(x̂) for all x̂ ∈ Γ3.

(6)

2.2 The space-time localized RBFs scheme

To recall the technique, let {x̂i}Ni
i=1 and {x̂i}Ni=Ni+1 be center nodes in ΩT

and ∂ΩT , respectively (Interior and boundary nodes, where N is the total
number of nodes in the space-time domain ΩT ). To approximate the differ-
ential operator, using the localized RBF method, we first need to derive the
local approximation of the unknown function u [2, 3]. Then the local approx-
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imation of D(x,t)u(x, t) can be determined easily based on the components of
the function u. So, the local approximation of u in an influence domain Ωj

T

associated with a selecting collocation point x̂j = (xj , tj) and containing a
number nj of nearest neighboring points {x̂[j]

k = (x
[j]
k , t

[j]
k )}nj

k=1 ∈ Ωj
T , is given

by

u(x̂j) ≃ û(x̂j) =

nj∑
k=1

αkϕ(∥x̂j − x̂
[j]
k ∥), (7)

where {αk}
nj

k=1 are the unknown coefficients, ∥·∥ is the Euclidean norm, and
ϕ is the chosen RBF. There are many different RBFs to choose from. Among
them we can mention the multiquadric function ϕ(r) =

√
1 + (ϵr)2, Which

has been proven in many references [11, 5, 13] to be the most effective over
the past few decades (The real ϵ is the shape parameter of the RBF).

Using the collocation method, (7) is then applied to all collocation points
{x̂[j]

k }nj

k=1 belonging to the influence domain Ωj
T of x̂j . Then we have the

following nj × nj linear system:

û[j]
= �[j]α[j], (8)

where �[j] =
[
ϕ(∥x̂[j]

m − x̂
[j]
n ∥)

]
1≤m,n≤nj

, α[j] =
[
α
[j]
1 , α

[j]
2 , . . . , α

[j]
nj

]
, and û[j]

=[
u(x̂

[j]
1 ), u(x̂

[j]
2 ), . . . , u(x̂

[j]
nj )

]
.

Then, the problem of seeking the expansion coefficients {αk}
nj

k=1 is trans-
formed into a determination of the values of solution û[j] at each center point
{x̂[j]

k }nj

k=1 ⊂ Ωj
T by using the equation

α[j] = (�[j])−1 · û[j]
. (9)

The local approximation of Dx̂u can be determined by applying the differen-
tial operators Dx̂ to the equation (7) for any selected center point x̂j in any
sub-domain Ωj (Figure 2). For x̂j ∈ Ωj , we obtain the following equation:

Dx̂û(x̂j) =

nj∑
k=1

αkDx̂ϕ(∥x̂j − x̂
[j]
k ∥)

= D[j] · û[j]

= D[j] · û,

(10)
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7 Space-time localized scheme to solve some partial ...

where û[j] =
[
u(x̂

[j]
1 ), u(x̂

[j]
2 ), . . . , u(x̂

[j]
nj )

]
and D[j] = (Dx̂�[j]) · (�[j])−1.

To switch from the local system (10) to the global one, the vector û =

[u(x̂1), u(x̂2), . . . , u(x̂N )] is incorporated in (10) by adding zeros at the proper
locations based on the mapping of û[j] to û, and considering D[j]

1×N as the
global expansions of D[j]

1×nj
. For more details on space-time and localized

RBFs collocation method, see [8, 9, 10].

Figure 2: Nearest nodes

2.3 The trapezoidal rule on space-time

In the pace-time domain, the integral part of (1) can be achieved by the
trapezoidal rule. First, for each node x̂i = (xi, ti), we determine the in-

Iran. J. Numer. Anal. Optim., Vol. ??, No. ??, ??, pp ??



Hamaidi, Briki, Nouara and Hamdi 8

tegration nodes in a space-time influence domain IiT having pi elements.
With uniform distribution nodes, we have IiT = {(xi, ti), (xi, ti−ht), (xi, ti−
2ht), . . . , (xi, 0)} and ht =

T
Nt

, where Nt is the number of nodes on the time
axis. Then the integral can be calculated by the trapezoidal rule. The inte-
gration nodes are shown in Figure 3.

We have
Ix̂u =

∫ t

0

k(x, t, s)u(x, s)ds. (11)

Then, the discretization of Ix̂u is done as follows:

Ix̂u(x̂i) ≈ Îx̂ui

=
ht

2
k(xi, ti, 0)u(xi, 0) + ht

pi−1∑
k=1

k(xi, ti, tk)u(xi, tk)

+ht

2 k(xi, ti, ti)u(xi, ti)

=
ht

2
k(xi, ti, 0)u

[i]
1 + ht

pi−1∑
k=1

k(xi, ti, tk)u
[i]
k +

ht

2
k(xi, ti, ti)u

[i]
pi
.

(12)
In reduced form, we have

Îx̂ui = I[i] · û[i]
, (13)

where I[i] =
[
ht

2 k(xi, ti, 0), {htk(xi, ti, tk)}1≤k≤pi−1,
ht

2 k(xi, ti, ti)
]
and û[j]

=

[u(x̂
[i]
0 ), u(x̂

[i]
1 ), . . . , u(x̂

[i]
pi)].

Similar to the localized scheme, the vector û = [u(x̂1), u(x̂2), . . . , u(x̂N )]

is incorporated in (13) by adding zeros at the proper locations based on the
mapping of û[i] to û, and considering I1×N as the global expansions of I[i]1×pi

.

2.4 The combined scheme

For each node x̂i in the space-time domain ΩT , we determine the nearest
nodes {x̂k ∈ Ωi

T } and the integration nodes {x̂k ∈ I[i]}. Then we compute
the coefficients of û by {

Dx̂ûi = D[i] · û,
Îx̂ui = I[i] · û,

(14)
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9 Space-time localized scheme to solve some partial ...

Figure 3: Trapezoidal rule nodes

and we get {
Dx̂ûi + Îx̂ui = D[i] · û + I[i] · û

= (D[i] + I[i]) · û.
(15)

By substituting (15) into (5) for xi ∈ ΩT , we obtain

f(x̂i) = Dx̂ûi + Îx̂ui = (D[i] + I[i]) · û. (16)

For xi ∈ ∂ΩT , we have
g(x̂i) = ûi. (17)

By collocating all the interpolation points {xj}Nj=1 and using (16) and (17),
we get the following sparse linear system:

AU = B, (18)
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where A =



(D + I)(x̂1)

(D + I)(x̂2)
...

(D + I)(x̂Ni)

1Ni+1

...

1N


, U =



û1

û2

...

ûNi

ûNi+1

...

ûN


, and B =



f(x̂1)

f(x̂2)
...

f(x̂Ni
)

g(x̂Ni+1)
...

g(x̂N )


, where

1j · û = ûj , for all j ∈ [Ni + 1, N ].

Note that the linear algebraic system (18) is square since the number
of unknowns (the values of the approximate function) and the collocation
points are equal. The approximate solution {û(x̂j)}Nj=1 at the interpolation
points {x̂j}Nj=1 can be obtained by solving the above sparse linear system of
equations.

In practice, the mapping from D[i] to D and I[i] to I is automatic without
the need for inserting zeros, if we make good use of the index vector and store
the sparse matrix properly. Figure 4 shows the sparse matrix of the system
for some values of N . The nz value designates the nonzero elements in the
matrix.

2.5 Rate of convergence of the scheme

It is well known that the trapezoidal rule has a quadratic accuracy, and we
[8] demonstrated numerically that the rate of the localized space-time also
has a quadratic convergence. So we can assert that the proposed scheme in
this work also has a numerical quadratic rate of convergence.

The experimental rates of convergence with respect to the mesh size h =

sup
x̂∈ΩT

min
x̂j

∥x̂− x̂j∥ are calculated using the following formula:

ROC =
log

(
Ei+1

Ei

)
log

(
hi+1

hi

) ,
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11 Space-time localized scheme to solve some partial ...

Figure 4: Density of the sparse matrix for some values of N

where Ei is one of the specified errors MAE, RMSE, or L1
er corresponding

to the mesh size hi.

3 Numerical results and discussions

In this section, we investigate the numerical solution of the PIDE using a
spacetime localized RBF collocation method to show its efficiency and accu-
racy for solving such a problem.

To measure the numerical accuracy, we consider the maximum absolute
error (MAE), the root mean squared error (RMSE), and the L1

er relative
error defined as follows:

Iran. J. Numer. Anal. Optim., Vol. ??, No. ??, ??, pp ??
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MAE = max
1≤j≤N

|û(x̂j)− u(x̂j)|,

RMSE =

√√√√ 1
N

N∑
j=1

(û(x̂j)− u(x̂j))
2,

L1
er =

N∑
j=1

|û(x̂j)− u(x̂j)|

N∑
j=1

|u(x̂j)|

,

(19)

where u(x̂j) and û(x̂j) are the exact and the approximate solutions at the
node x̂j , respectively. We considered the maximum absolute error to show
that there is no big error. The RMSE is more significant; it measures the
average magnitude of the error. Moreover, L1

er shows that even for “big”
errors, it is relatively small. Since the norms are equivalent, RMSE suffices.

For all treated examples, the uniform node distribution is adopted. The
choice of the shape parameter is not discussed, and it is fixed at ϵ = 1. The
number of nearest nodes is chosen nj = 5 as the problems treated are in
two-dimensional space-time domains [8].

3.1 Example 1

The first example treated is a diffusion integro-differential problem of the
form:

∂u

∂t
(x, t)− ∂2u

∂x2
(x, t)−

∫ t

0

k(t, s)u(x, s)ds = f(x, t) on ΩT = (0, 1)2,

where k(t, s) = st. The function f and the boundary conditions on space-time
domain are chosen according to the analytical solution:

u(x, t) = sin(πx)e−π2t.

Table 1 shows errors for different values of N , the total interpolation points
in the space-time domain. The CPU time and matrix size are also given.
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13 Space-time localized scheme to solve some partial ...

The experimental rate of convergence in this simulation shows that nearly
quadratic convergence is achieved. Figure 5 shows the exact and numerical
solution and the absolute error on the entire domain ΩT = (0, 1)2 with N =

1012. It can be noted that the results have good accuracy.

Table 1: Errors for Example 3.1 for some values of N = Nx ×Nt

N h MAE ROC RMSE ROC L1
er ROC Time Size

112 0.100 3.76E-02 0.000 1.05E-02 0.000 6.40E-02 0.000 0.010 1212

212 0.050 1.12E-02 1.751 3.27E-03 1.686 2.39E-02 1.418 0.016 4412

312 0.033 5.15E-03 1.904 1.53E-03 1.872 1.20E-02 1.709 0.031 9612

412 0.025 2.94E-03 1.950 8.80E-04 1.926 7.11E-03 1.812 0.094 16812

512 0.020 1.90E-03 1.970 5.69E-04 1.951 4.69E-03 1.862 0.125 26012

612 0.017 1.32E-03 1.980 3.98E-04 1.964 3.32E-03 1.891 0.250 37212

712 0.014 9.73E-04 1.985 2.94E-04 1.972 2.48E-03 1.910 0.422 50412

812 0.013 7.46E-04 1.989 2.26E-04 1.977 1.92E-03 1.924 0.563 65612

912 0.011 5.90E-04 1.991 1.79E-04 1.980 1.53E-03 1.934 0.766 82812

1012 0.010 4.78E-04 1.994 1.45E-04 1.984 1.24E-03 1.942 0.969 102012

1112 0.009 3.95E-04 1.997 1.20E-04 1.988 1.03E-03 1.950 1.328 123212

1212 0.008 3.33E-04 1.988 1.01E-04 1.980 8.71E-04 1.946 1.703 146412

1312 0.008 2.83E-04 2.008 8.60E-05 2.001 7.44E-04 1.969 2.203 171612

1412 0.007 2.44E-04 1.982 7.43E-05 1.975 6.44E-04 1.946 2.719 198812

1512 0.007 2.13E-04 2.006 6.47E-05 1.999 5.62E-04 1.972 3.391 228012

1612 0.006 1.87E-04 2.015 5.68E-05 2.009 4.95E-04 1.984 4.109 259212

3.2 Example 2

As a second example, the following advection-diffusion integro-differential
equation is considered [14]:

∂u

∂t
(x, t)−a

∂2u

∂x2
(x, t)+b

∂u

∂x
(x, t)−

∫ t

0

k(t, s)u(x, s)ds = f(x, t) on ΩT = (0, 1)2,

where a = 0.4, b = 0.05, and k(t, s) =
√
t− s. The other parameters are

taken according to the analytical solution:

u(x, t) = (t2 + 1) sin(πx).

Iran. J. Numer. Anal. Optim., Vol. ??, No. ??, ??, pp ??
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Figure 5: Exact and numerical solutions and the absolute error for the example 3.1 with
N = 1012.

Table 2 shows the results of some simulations for Example 3.2. Same re-
marks are noted as in Example 3.1 concerning the accuracy and the rate of
convergence.
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15 Space-time localized scheme to solve some partial ...

Table 2: Errors for Example 3.2 for some values of N

N h MAE ROC RMSE ROC L1
er ROC

212 0.0500 8.889E-03 2.25E-03 1.69E-03
412 0.0250 2.474E-03 1.84508 6.01E-04 1.90682 4.49E-04 1.91278
612 0.0167 1.157E-03 1.87405 2.79E-04 1.89447 2.09E-04 1.88484
812 0.0125 6.740E-04 1.87914 1.62E-04 1.88032 1.22E-04 1.86126
1012 0.0100 4.432E-04 1.87820 1.07E-04 1.86698 8.11E-05 1.83983
1212 0.0083 3.148E-04 1.87711 7.63E-05 1.85763 5.82E-05 1.82456
1412 0.0071 2.361E-04 1.86681 5.74E-05 1.83785 4.41E-05 1.79623
1612 0.0063 1.842E-04 1.85918 4.50E-05 1.82052 3.48E-05 1.77233

3.3 Example 3

For this third example, more challenging problem is treated. The advection-
diffusion-reaction integro-differential equation with variable coefficients is de-
fined by

∂u

∂t
(x, t)− a(x, t)

∂2u

∂x2
(x, t) + b(x, t)

∂u

∂x
(x, t) + c(x, t)u(x, t)

−
∫ t

0

k(t, s)u(x, s)ds = f(x, t),

where a(x, t) = e−t, b = sin(x), c(x, t) = et, and k(t, s) = (t− s). The other
parameters are chosen according to the analytical solution:

u(x, t) = e−t cos(x)

and the space-time domain is ΩT = [0, π
2 ]× [0, 1].

We can observe from Table 3 that even for this kind of complex problem,
the results are very accurate. The same rate of convergence is observed.
Because we arrived at N = 2012 = 40401 nodes and the size of the matrix A
defined in (18) is 40401× 40401, without losing accuracy, we can assert that
the scheme is also stable.
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Table 3: Errors for Example 3.3 for some values of N

N h MAE ROC RMSE ROC L1
er ROC

112 0.1000 3.451E-03 1.65E-03 3.19E-03
212 0.0500 9.272E-04 1.89609 4.65E-04 1.82568 9.47E-04 1.75046
312 0.0333 4.195E-04 1.95598 2.13E-04 1.92592 4.40E-04 1.88872
412 0.0250 2.374E-04 1.97869 1.21E-04 1.95451 2.53E-04 1.92983
512 0.0200 1.522E-04 1.99211 7.82E-05 1.96759 1.64E-04 1.94926
612 0.0167 1.060E-04 1.98399 5.46E-05 1.97497 1.14E-04 1.96039
712 0.0143 7.794E-05 1.99569 4.02E-05 1.97968 8.45E-05 1.96754
812 0.0125 5.972E-05 1.99384 3.09E-05 1.98292 6.49E-05 1.97237
912 0.0111 4.721E-05 1.99551 2.44E-05 1.98531 5.15E-05 1.97605
1012 0.0100 3.824E-05 1.99960 1.98E-05 1.98753 4.18E-05 1.97932
1112 0.0091 3.163E-05 1.99372 1.64E-05 1.98745 3.46E-05 1.98002
1212 0.0083 2.657E-05 2.00062 1.38E-05 1.98999 2.91E-05 1.98332
1312 0.0077 2.265E-05 1.99703 1.18E-05 1.99127 2.48E-05 1.98521
1412 0.0071 1.952E-05 2.00184 1.01E-05 1.99476 2.14E-05 1.98928
1512 0.0067 1.701E-05 1.99955 8.84E-06 1.99140 1.87E-05 1.98606
1612 0.0063 1.495E-05 2.00023 7.77E-06 1.99566 1.64E-05 1.99084
1712 0.0059 1.326E-05 1.98254 6.89E-06 1.97510 1.46E-05 1.96957
1812 0.0056 1.181E-05 2.02565 6.14E-06 2.02247 1.30E-05 2.01969
1912 0.0053 1.060E-05 1.98603 5.52E-06 1.98652 1.17E-05 1.98243
2012 0.0050 9.585E-06 1.97164 4.99E-06 1.95884 1.06E-05 1.95271

4 Conclusion

In this paper, we presented a local space-time RBFs collocation method com-
bined with the trapezoidal rule to solve the PIDE as space-time one without
differentiating between space and time variables. The problem is solved once
to approximate the solution at any point (x, t). The main advantages of the
considered technique are as follows:
(1). The discussion of the time stability analysis of the discrete system is
avoided.
(2). The computational time when dealing with PIDEs with time-dependent
coefficients is reduced as there is no need to recompute the matrix for the
resulting algebraic system at each time level.
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(3). The method uses the sparse matrices to store only the nonzero elements,
so we save a significant amount of memory and speed up the resolution of
the linear system.
(4). The formulation is the same for any form of the linear differential op-
erator of second order Dx̂ and any form of the function k(x, t, s), only some
changes in the programming script can be made according to the problem to
be solved.

It has been demonstrated that our technique is simple, straightforward,
and applicable to a large type of problems as it is shown in this paper. The
application of the developed technique to equations with an integral boundary
condition is under investigation. Further work will focus on developing a
method without the trapezoidal rule to solve such a problem.
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