[1] Abdelhakem, M. Shifted Legendre fractional pseudo-spectral integration matrices for solving fractional Volterra integro-differential equations and Abel’s integral equations, FRACTALS (fractals), 31, (10) (2023) 1–11.
[2] Abdelhakem, M., Alaa-Eldeen, T., Baleanu, D., Alshehri, M.G. and El-Kady, M. Approximating real-life BVPs via Chebyshev polynomials’ first derivative pseudo-Galerkin method, Fractal Fract., 5 (4) (2021) 165.
[3] Abdelhakem, M., Fawzy, M., El-Kady, M. and Moussa, H. Legendre polynomials’ second derivative tau method for solving Lane–Emden and Ricatti equations, Appl. Math. Inf. Sci., 17 (3) (2023) 437–445.
[4] Abdelhakem M. and Moussa, H. Pseudo-spectral matrices as a numerical tool for dealing bvps, based on Legendre polynomials’ derivatives, Alexandria Eng. J., 66, (2023) 301–313.
[5] Abdelhakem M. and Youssri, Y. Two spectral Legendre’s derivative algorithms for Lane–Emden, bratu equations, and singular perturbed problems, Appl. Numer. Math., 169, (2021) 243–255.
[6] Abd-Elhameed W. and Youssri, Y. Numerical solutions for Volterra-Fredholm-Hammerstein integral equations via second kind Chebyshev quadrature collocation algorithm, Adv. Math. Sci. Appl., 24, (2014) 129–141.
[7] Adel, W. and Sabir, Z. Solving a new design of nonlinear second-order Lane–Emden pantograph delay differential model via Bernoulli collocation method, Eur. Phys. J. Plus, 135 (5) (2020) 1–12.
[8] Adel, W., Sabir, Z., Rezazadeh, H. and Aldurayhim, A. Application of a novel collocation approach for simulating a class of nonlinear third-order Lane–Emden model, Math. Prob. Eng., 2022 (1) (2022) 5717924.
[9] Algazaa, S.A.T. and Saeidian, J. Spectral methods utilizing general-ized Bernstein-like basis functions for time-fractional advection–diffusion equations, Math. Method. Appl. Sci., 2025.
[10] Alsedaiss, N., Mansour, M.A., Aly, A.M., Abdelsalam, S.I. Artificial neural network validation of MHD natural bioconvection in a square enclosure: entropic analysis and optimization, Acta Mechanica Sinica, 41 (2025) 724507.
[11] Buzov, A., Klyuev, D., Kopylov, D.and Nescheret, A. Mathematical model of a two-element microstrip radiating structure with a chiral metamaterial substrate, J. Commun. Technol. Electron., 65 (2020) 414–420.
[12] Doha, E., Youssri, Y. and Zaky, M. Spectral solutions for differential and integral equations with varying coefficients using classical orthogonal polynomials, Bull. Iran. Math. Soc., 45, (2019) 527–555.
[13] Fageehi, Y.A. and Alshoaibi, A.M. Investigating the influence of holes as crack arrestors in simulating crack growth behavior using finite element method, Appl. Sci., 14 (2) (2024) 897.
[14] Farooq, U., Khan, H., Tchier, F., Hincal, E., Baleanu, D., and BinJe-breen, H. New approximate analytical technique for the solution of time fractional fluid flow models, Adv. Differ. Equ., 2021, (2021) 1–20.
[15] Fawzy, M., Moussa, H., Baleanu, D., El-Kady, M. and Abdelhakem, M.Legendre derivatives direct residual spectral method for solving some types of ordinary differential equations, Math. Sci. Lett., 11 (3) (2022) 103–108.
[16] Gamal, M., El-Kady, M. and Abdelhakem, M. Solving real-life BVPS via the second derivative Chebyshev pseudo-Galerkin method, Int. J. Mod. Phys. C (IJMPC), 35 (07) (2024) 1–20.
[17] Ghalini, R.G., Hesameddini, E. and Dastjerdi, H.L. An efficient spectral collocation method for solving volterra delay integral equations of the third kind, J. Comput. Appl. Math., 454, (2025) 116138.
[18] Ghayoor, M., Abbasi, W.S. Majeed, A.H., Alotaibi, H. and Ali, A.R. Interference effects on wakes of a cluster of pentad square cylinders in a crossflow: A lattice Boltzmann study, AIP Advances, 14 (12) (2024) 2024.
[19] Gowtham, K. and Gireesha, B.Associated Laguerre wavelets: Efficient method to solve linear and nonlinear singular initial and boundary value problems, Int. J. Appl. Comput. Math., 11 (16) (2025) 2025.
[20] Hafez, R. and Youssri, Y.Spectral Legendre-Chebyshev treatment of 2d linear and nonlinear mixed Volterra-Fredholm integral equation, Math. Sci. Lett., 9 (2) (2020) 37–47.
[21] Hamza, M.M., Sheriff, A., Isah, B.Y. and Bello, A. Nonlinear thermal radiation effects on bioconvection nano fluid flow over a convectively heated plate, Int. J. Non-Linear Mech., 171 (2025) 105010.
[22] Il’inskii, A. and Galishnikova, T. Integral equation method in problems of electromagnetic-wave reflection from inhomogeneous interfaces between media, J. Commun. Technol. Electron., 61, (2016) 981–994.
[23] Khan, I., Chinyoka, T., Ismail, E.A., Awwad, F.A. and Ahmad, Z. MHD flow of third-grade fluid through a vertical micro-channel filled with porous media using semi implicit finite difference method, Alexan-dria Eng. J., 86 (2024) 513–524.
[24] Kumar, S., Shaw, P.K., Abdel-Aty, A.-H. and Mahmoud, E.E. A numerical study on fractional differential equation with population growth model, Numer. Methods Partial Differ. Equ., 40 (1) (2024) e22684.
[25] Li, K., Xiao, L., Liu, M. and Kou, Y. A distributed dynamic load identification approach for thin plates based on inverse finite element method and radial basis function fitting via strain response, Eng. Struct., 322, (2025) 119072.
[26] Lighthill, M.J. Contributions to the theory of heat transfer through a laminar boundary layer, Proc. R. Soc. A: Math. Phys. Eng. Sci., 202 (1070) (1950) 359–37.
[27] Mahmoudi, Z., Khalsaraei, M.M., Sahlan, M.N. and Shokri, A. Laguerre wavelets spectral method for solving a class of fractional order PDEs arising in viscoelastic column modeling, Chaos. Soliton. Fract., 192, (2025) 116010.
[28] Mobarak, H.M., Abo-Eldahab, E.M., Adel, R. and Abdelhakem, M. Mhd 3d nanofluid flow over nonlinearly stretching/shrinking sheet with nonlinear thermal radiation: Novel approximation via Chebyshev polynomi-als’ derivative pseudo-Galerkin method, Alex. Eng. J., 102 (2024) 119–131.
[29] Mohammad, M. and Trounev, A. Implicit Riesz wavelets based-method for solving singular fractional integro-differential equations with applications to hematopoietic stem cell modeling, Chaos Solitons Fract., 138 (2020) 109991.
[30] PraveenKumar, P., Balakrishnan, S., Magesh, A., Tamizharasi, P. and Abdelsalam, S.I. Numerical treatment of entropy generation and Bejan number into an electroosmotically-driven flow of Sutterby nanofluid in an asymmetric microchannel Numer. Heat Trans. Part B: Fund., 2024 (2024) 1–20.
[31] Rahmani, S., Baiges, J. and Principe, J. Anisotropic variational mesh adaptation for embedded finite element methods, Comput. Method. Appl. Mech. Engin., 433 (2025) 117504.
[32] Raza, R., Naz, R.,Murtaza, S. and Abdelsalam, S.I. Novel nanostruc-tural features of heat and mass transfer of radiative Carreau nanoliquid above an extendable rotating disk, Int. J. Mod. Phys. B, 38 (30) (2024) 2450407.
[33] Sabir, Z., Raja, M.A.Z. and Baleanu, D. Fractional mayer neuro-swarm heuristic solver for multi-fractional order doubly singular model based on Lane–Emden equation, Fractals, 29 (05) (2021) 2140017.
[34] Sadiq, M., Shahzad, H., Alqahtani, H., Tirth, V., Algahtani, A., Irshad, K. and Al-Mughanam, T. Prediction of cattaneo–christov heat flux with thermal slip effects over a lubricated surface using artificial neural net-work, Eur. Phys. J. Plus, 139 (9) (2024) 851.
[35] Sadri, K., Amilo, D., Hosseini, K., Hinçal, E. and Seadawy, A.R.A Tau-Gegenbauer spectral approach for systems of fractional integro-differential equations with the error analysis, AIMS Math., 9 (2) (2024) 3850–3880.
[36] Samy, H., Adel, W., Hanafy, I. and Ramadan, M. A Petrov–Galerkin approach for the numerical analysis of soliton and multi-soliton solutions of the Kudryashov–Sinelshchikov equation, Iranian Journal of Numerical Analysis and Optimization, 14 (4) (2024) 1309–1335.
[37] Santamaría, G., Valverde, J., Pérez-Aloe, R., and Vinagre, B. Microelec-tronic implementations of fractional-order integro-differential operators, Comput. Nonlinear Dyn., 3 (2) (2009) 021301.
[38] Shahmorad, S., Ostadzad, M. and Baleanu, D. A tau–like numerical method for solving fractional delay integro–differential equations, Appl. Numer. Math., 151, (2020) 322–336.
[39] Shen, J., Tang, T. and Wang, L.-L. Spectral methods: Algorithms, analysis and applications, 41. Springer Science & Business Media, 2011.
[40] Stewart, J. Essential calculus: Early transcendentals. Brooks/Cole, a part of the Thomson Corporation, 2007.
[41] Sweis, H. Arqub, O.A. and Shawagfeh, N. Fractional delay integro-differential equations of nonsingular kernels: Existence, uniqueness, and numerical solutions using Galerkin algorithm based on shifted Legendre polynomials, Int. J. Modern Phys. C, 34 (04) (2023) 2350052.
[42] Sweis, H., Arqub, O.A., and Shawagfeh, N. Hilfer fractional delay differential equations: Existence and uniqueness computational results and pointwise approximation utilizing the shifted-Legendre Galerkin algorithm, Alexandria Eng. J., 81 (2023) 548–559.
[43] Sweis, H., Arqub, O.A. and Shawagfeh, N. Well-posedness analysis and pseudo-Galerkin approximations using tau Legendre algorithm for fractional systems of delay differential models regarding Hilfer (α, β)-framework set, Plos one, 19 (6) (2024) e0305259.
[44] Sweis, H., Shawagfeh, N. and Arqub, O.A. Fractional crossover delay differential equations of mittag-leffler kernel: Existence, uniqueness, and numerical solutions using the Galerkin algorithm based on shifted Legendre polynomials, Result. Phys., 41 (2022) 105891.
[45] Sweis, H., Shawagfeh, N. and Arqub, O.A. Existence, uniqueness, and Galerkin shifted Legendre’s approximation of time delays integro-differential models by adapting the Hilfer fractional attitude, Heliyon, 10, (4) (2024) e25903.
[46] Tarasov, E. Fractional integro-differential equations for electromagnetic waves in dielectric media, Theor. Math. Phys., 158, (2009) 355–359.
[47] Yang, Y., Yao, P. and Tohidi, E. Convergence analysis of an efficient multistep pseudo-spectral continuous Galerkin approach for solving Volterra integro-differential equations, Appl. Math. Comput., 494 (2025) 129284.
[48] Youssri, Y. and Hafez, R. Chebyshev collocation treatment of Volterra–Ffredholm integral equation with error analysis, Arab. J. Math., 9 (2020) 471–480.
[49] Yusufoğlu E. and Erbaş, B. Numerical expansion methods for solving Fredholm-Volterra type linear integral equations by interpolation and quadrature rules, Kybernetes, 37 (6) (2008) 768–785.
[50] Yüzbaşı, Ş. Improved Bessel collocation method for linear Volterra integro-differential equations with piecewise intervals and application of a Volterra population model, Appl. Math. Model., 40 (9-10) (2016) 5349–5363.
[51] Yüzbaşı, Ş., Sezer, M. and Kemancı, B. Numerical solutions of integro-differential equations Appl. Math. Model., 37 (4) (2013) 2086–2101.
[52] Zavodnik, J. and Brojan, M. Spherical harmonics-based pseudo-spectral method for quantitative analysis of symmetry breaking in wrinkling of shells with soft cores, Comput. Method. Appl. Mech. Eng., 433, (2025)117529.
[53] Zhang, J., Zhu, X., Chen, T. and Dou, G. Optimal dynamics control in trajectory tracking of industrial robots based on adaptive Gaussian pseudo-spectral algorithm, Algorithms, 18 (1) (2025) 18.
[54] Ziane, D., Cherif, M.H., and Adel, W. Solving the Lane–Emden and Emden-Fowler equations on cantor sets by the local fractional homotopy analysis method, Prog. Fract. Differ. Appl., 10, (2024) 241–250.