- Amirabedi, H., Asghari, Sh., Mesri, T., & Keivan behjo, F. (2013). Estimating of field capacity, permanent wilting point and available water content in Ardabil plain using regression and artificial neural network models. Applied Soil Research, 1(1), 60-72. (In Persian with English abstract)
- Bauer, A., & Black, A.L. (1992). Organic carbon effects on available water capacity of three soil textural groups. Soil Science Society of America Journal, 56, 248-254. https://doi.org/10.2136/sssaj1992.03615995005600010038x
- Blake, G.R., & Hartge, K.H. (1986). Bulk density. p. 363-375. In: Klute A. (ed). Methods of Soil Analysis Part 1, Physical and Mineralogical Methods. 2nd ed. American Society of Agronomy, Madison, WI. https://doi.org/ 10.2136/sssabookser5.1.2ed.c13
- Breiman, L. (2001). Random forests. Machine Learning, 45, 5-32.
- Cheema, S.J., Shah, S.H.H., Farooque, A.A., Jamei, M., Abbas, F., Esau, T.J., & Grewal, K.S. (2024). A comprehensive analytical and computational assessment of soil water characteristics curves in Atlantic Canada: Application of a novel SelectKbestbased GEP model. Agricultural Water Management, 298, 108868. https://doi.org/10.1016/j.agwat.2024.108868
- Ferreira, C. (2006). Gene Expression Programming: Mathematical modeling by an artificial intelligence. Springer, Berlin, Heidelberg, New York, p. 478.
- Gardner, W.H. (1986). Water content. p. 493-544. In: Klute A. (ed). Methods of Soil Analysis. Part 1. 2nd ed. Agronomy. Monograph. 9. ASA, Madison, WI.
- Gee, G.W., & Or, D. (2002). Particle-size analysis. p. 255–293. In: Dane J. H., & Topp G. C. (eds.). Methods of Soil Analysis. Part 4. SSSA Book Series No. 5. Soil Science Society of America, Madison, WI. https://doi.org/10.2136/sssabookser5.4.c12
- Ghorbani, M.A., Deo, R.C., Kashani, M.H., Shahabi M., & Ghorbani, S. (2019). Artificial intelligence-based fast and efficient hybrid approach for spatial modeling of soil electrical conductivity. Soil and Tillage Research, 186, 152–164. https://doi.org/10.1016/j.still.2018.09.012
- Jafari, M.M., Ojaghlou, H., & Karbasi, M. (2021). Comparison of the performance of artificial neural networks and gene expression programming in estimating the forest soil water characteristic curve. Iranian Journal of Soil and Water Research, 52(8), 2093-2109.
- Jury, W., & Horton, R. (2004). Soil Physics. John Wiley and Sons, Inc.
- Kiani, R., & Bayat, H. (2024). Capability of regression and random forest methods to estimate soil water retention curve by developing pseudo-continuous pedotransfer functions. Journal of Soil and Plant Science (Water and Soil Science), 34(4), 15-36. https://doi.org/10.3390/w12123425
- Kozak, E., Pachepsky, Y.A., Sokolowski, S., Sokolowska, Z., & Stepniewski, W. (1996). A modified number-based method for estimating fragmentation fractal dimensions of soils. Soil Science Society of America Journal, 60, 1291-1297. https://doi.org/10.2136/sssaj1996.03615995006000050002x
- Merdun, H., Cinar, O., Meral, R., & Apan, M. (2006). Comparison of artificial neural network and regression pedotransfer functions for prediction of soil water retention and saturated hydraulic conductivity. Soil and Tillage Research, 90, 108–116. https://doi.org/10.1016/j.still.2005.08.011
- Nelson, D.W., & Sommers, L.E. (1982). Total carbon, organic carbon, and organic matter. p. 539–579. In: A.L. Page et al. (ed.) Methods of Soil Analysis. Part 2. 2nd Agron. Monogr. 9. ASA and SSSA, Madison, WI. https://doi.org/10.2134/agronmonogr9.2.2ed.c29
- Ostovari, Y., Asgari, K., & Cornelis, W. (2015). Performance evaluation of pedotransfer functions to predict field capacity and permanent wilting point using UNSODA and HYPERS datasets. Arid Land Research Management, 29, 383-398. https://doi.org/10.1080/15324982.2015.1029649
- Rastgou, M., Bayat, H., Mansoorizadeh, M., & Gregory, A.S. (2020). Estimating the soil water retention curve: comparison of multiple nonlinear regression approach and random forest data mining technique. Computer and Electronics in Agriculture, 174, 1-13. https://doi.org/10.1016/j.compag.2020.105502
- Shirazi, M.A., & Boersma, L. (1984). A unifying quantitative analysis of soil texture. Soil Science Society American Journal, 48(1), 142–147. https://doi.org/10.2136/sssaj1984.03615995004800010026x
- Shiri, J., Keshavarzi, A., Kisi, O., & Karimi, S. (2017). Using soil easily measured parameters for estimating soil water capacity: Soft computing approaches. Computers and Electronics in Agriculture, 141, 327-339. https://doi.org/10.1016/j.compag.2017.08.012
- Shojaei, S., Farhadi Bansouleh, B., Fatehi, Sh., & Rahmani, M. (2023). Comparison of pedotransfer functions based on machine learning methods to estimate soil moisture at field capacity and permanent wilting point (Case study: Ravansar District, Kermanshah Province). Journal of Water and Soil Conservation, 30(1), 27-47. https://doi.org/10.3390/w13192639
- Waseem, M., Mani, N., Andiego, G., & Usman, M. (2017). A review of criteria of fit for hydrological models. International Research Journal of Engineering and Technology, 4(11), 1765-1772.
- Zhang, R., & Zhang, S. (2024). Coefficient of permeability prediction of soils using gene expression programming. Engineering Applications of Artificial Intelligence, 128 (107504). https://doi.org/10.1016/j.engappai.2023.107504
|