- Abidi, A., Soltani, A., & Zeinali, E. (2024). Identifying plant traits to increase wheat yield under irrigated conditions. Heliyon, 10(11). https://doi.org/10.1016/j.heliyon.2024.e31734
- Ali, M. G. M., Ahmed, M., Ibrahim, M. M., El Baroudy, A. A., Ali, E. F., Shokr, M. S., Aldosari, A. A., Majrashi, A., & Kheir, A. M. S. (2022). Optimizing sowing window, cultivar choice, and plant density to boost maize yield under RCP8.5 climate scenario of CMIP5. International Journal of Biometeorology, 66(5), 971-985. https://doi.org/10.1007/s00484-022-02253-x
- Basso, B., Liu, L., & Ritchie, J. T. (2016). A Comprehensive Review of the CERES-Wheat, -Maize and -Rice Models’ Performances. In D. L. Sparks ed., Advances in Agronomy, 136, 27-132. Academic Press, Cambridge, UK. https://doi.org/10.1016/bs.agron.2015.11.004
- Beah, A., Kamara, A. Y., Jibrin, J. M., Akinseye, F. M., Tofa, A. I., & Ademulegun, T. D. (2021). Simulation of the optimum planting windows for early and intermediate-maturing maize varieties in the nigerian savannas using the APSIM model. Frontiers in Sustainable Food Systems, 5. https://doi.org/10.3389/fsufs.2021.624886
- Chisanga, C. B., Moombe, M., & Elijah, P. (2022). Modelling climate change impacts on maize. CABI Reviews, 2022. https://doi.org/10.1079/cabireviews202217008
- Eradatmand Asli, D., Farrokhi, G. R., & Usefi Rad, M. (2009). Effect of pyridoxine and different levels of nitrogen on yield and yield components of corn (Zea mays Var. SC. 704). Journal on Plant Science Researches, 14(2), 9.
- (2021). http://www.fao.org/faostat
- García-Lara, S., & Serna-Saldivar, S. O. (2019). Chapter 1 - Corn history and culture. pp. 1-18 in S. O. Serna-Saldivar (Ed.), Corn (3rd Edition). AACC International Press and Woodhead Publishing, Cambridge, UK. https://doi.org/10.1016/B978-0-12-811971-6.00001-2
- Ghadiri, H., & Majidian, M. (2003). Effect of different nitrogen fertilizer levels and moisture stress during milky and dough stages on grain yield, yield components and water use efficiency of corn (Zea mays). Journal of Water and Soil Science, 7(2), 103-113. (in Persian with English abstract). http://jstnar.iut.ac.ir/article-1-467-fa.html
- Ghobadi, R., Ghobadi, M., Mondani, F., Jalali Honarmand, S., & Farhadi Bansooleh, B. (2017). Effect of irrigation and nitrogen interactions on phenologic characteristics and growth indices of seed corn. Plant Process and Function, 6(21), 20. (in Persian with English abstract). http://dorl.net/dor//20.1001.1.23222727.1396.6.21.13.5
- Guiguitant, J., Marrou, H., Vadez, V., Gupta, P., Kumar, S., Soltani, A., Sinclair, T. R., & Ghanem, M. E. (2017). Relevance of limited-transpiration trait for lentil (Lens culinaris) in South Asia. Field Crops Research, 209, 96-107. https://doi.org/10.1016/j.fcr.2017.04.013
- Haghshenas, H., Soltani, A., Ghanbari Malidarreh, A., Ajam Norouzi, H., & Dastan, S. (2020). Selecting the ideotype of improved rice cultivars using multiple regression and multivariate models. Archives of Agronomy and Soil Science, 66(8), 1134-1153. https://doi.org/10.1080/03650340.2019.1658866
- Hammer, G. L., van Oosterom, E., McLean, G., Chapman, S. C., Broad, I., Harland, P., & Muchow, R. C. (2010). Adapting APSIM to model the physiology and genetics of complex adaptive traits in field crops. Journal of Experimental Botany, 61(8), 2185-2202. https://doi.org/10.1093/jxb/erq095
- Hammer, G., Messina, C., Wu, A., & Cooper, M. (2019). Biological reality and parsimony in crop models—why we need both in crop improvement. In Silico Plants, 1(1), diz010. https://doi.org/10.1093/insilicoplants/diz010
- Izadi, M. H., & Emam, Y. (2009). Effect of planting pattern, plant density and nitrogen levels on grain yield and yield components of maize cv. SC704. Iranian Journal of Crop Sciences, 12(3), 13. (in Persian with English abstract). http://dorl.net/dor/1001.1.15625540.1389.12.3.2.3
- Jing, Q., Boote, K. J., Liu, K., Hoogenboom, G., White, J. W., Smith, W., Jégo, G., Grant, B., Crépeau, M., Shang, J., Liu, J., Chipanshi, A., & Qian, B. (2024). Simulating the development and growth of lentil using the CSM-CROPGRO model. Agronomy Journal, 116(5), 23. https://doi.org/10.1002/agj2.21654
- Kafaie Ghaeini, A., Soltani, A., Deihimfard, R., & Ajam Norouzi, H. (2023). Modifying sowing date as an adaptation strategy to climate change in grain maize (Zea mays) under mild-arid climates as simulated by the SSM-Maize model. International Journal of Plant Production, 17(3), 437-447. https://doi.org/10.1007/s42106-023-00252-5
- Karimi, H., Mazaheri, D., Peyghambari, S. A., & Mirabzadeh Ardakani, M. (2011). Effect of organic and chemical fertilizers application on grain yield and yield components of maize (Zea mays) SC704. Iranian Journal of Crop Sciences, 13(4), 16. (in Persian with English abstract). http://dorl.net/dor/20.1001.1.15625540.1390.13.4.2.2
- Kimball, B. A., Thorp, K. R., Boote, K. J., Stockle, C., Suyker, A. E., Evett, S. R., Brauer, D. K., Coyle, G. G., Copeland, K. S., Marek, G. W., Colaizzi, P. D., Acutis, M., Alimagham, S., Archontoulis, S., Babacar, F., Barcza, Z., Basso, Bertuzzi, P., Constantin, J., De Antoni Migliorati, M., Dumont, B., Durand, J. L., Fodor, N., Gaiser, T., Garofalo, P., Gayler, S., Giglio, L., Grant, R., Guan, K., Hoogenboom, G., Jiang, Q., Kim, S. H., Kisekka, I., Lizaso, J., Masia, S., Meng, H., Mereu, V., Mukhtar, A., Perego, A., Peng, B., Priesack, E., Qi, Z., Shelia, V., Snyder, R., Soltani, A., Spano, D., Srivastava, A., Thomson, A., Timlin, D., Trabucco, A., Webber, H., Weber, T., Willaume, M., Williams, K., van der Laan, M., Ventrella, D., Viswanathan, M., Xu, X., & Zhou, W. (2023). Simulation of evapotranspiration andyield of maize: An inter-comparison among 41 maize models. Agricultural and Forest Meteorology, 333, 109396. https://doi.org/10.1016/j.agrformet.2023.109396
- Kiniry, J. R. (1991).Maize phasic development. In R. J. Hanks & J. T. Ritchie (Eds.), Modeling plant and soil systems (pp. 55–70). Agronomy Monograph No. 31. Madison, WI: American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. https://doi.org/10.2134/agronmonogr31.c4
- Koo, J., & Dimes, J. (2013). HC27 Generic Soil Profile Database. Harvard Dataverse. https://doi.org/10.7910/DVN/90WJ9W
- Lak, S., Naderi, A., Siyadat, S. A., Ayenehband, A., & Nourmohammadi, G. (2006). Effect of different levels of nitrogen and plant density on grain yield and its components and water use efficiency of maize (Zea mays) cv. SC. 704 under different moisture conditions in Khuzestan. Iranian Journal of Crop Sciences, 8(2), 153-170. (in Persian with English abstract). http://agrobreedjournal.ir/article-1-297-fa.html
- Madadizadeh, M., & Amiri, S. R. (2022). Evaluation of growth, development and yield of maize cultivars for sustainable nitrogen management. Journal of Agricultural Science and Sustainable Production, 32(4), 22. (in Persian with English abstract). https://doi.org/10.22034/saps.2022.47202.2717
- Madadizadeh, M., Amiri, S. R., Kambouzia, J., & Soufizadeh, S. (2023). Calibration and evaluation of APSIM model for simulation of growth and development of KSC 704 and maxima maize hybrids under different amounts of nitrogen. Iranian Journal of Field Crops Research, 20(4), 18. (in Persian with English abstract). https://doi.org/10.22067/jcesc.2022.71744.1071
- Madadizadeh, M., Kambouzia, J., & Soufizadeh, S. (2017). Evaluation of maize (Zea mays) hybrids thermal time requirements of different soil fertility in the arid climate of Kerman. Iranian Journal of Applied Ecology, 6(2), 10. (in Persian with English abstract). https://doi.org/10.18869/acadpub.ijae.6.2.43
- Madadizadeh, M., Kambouzia, J., Soufizadeh, S., & Panahi, B. (2017). Evaluation of physiological responses of maize hybrids to different nitrogenlevels in Kerman province, Iran. Iranian Journal of Field Crops Research, 15(2), 14. (in Persian with English abstract). https://doi.org/10.22067/gsc.v15i2.60121
- Manschadi, A. M., Eitzinger, J., Breisch, M., Fuchs, W., Neubauer, T., & Soltani, A. (2021). Full parameterisation matters for the best performance of crop models: Inter-comparison of a simple and a detailed maize model. International Journal of Plant Production, 15(1), 61-78. https://doi.org/1007/s42106-020-00116-2
- Manschadi, A. M., Palka, M., Fuchs, W., Neubauer, T., Eitzinger, J., Oberforster, M., & Soltani, A. (2022). Performance of the SSM-iCrop model for predicting growth and nitrogen dynamics in winter wheat. European Journal of Agronomy, 135, 126487. https://doi.org/10.1016/j.eja.2022.126487
- Messina, C. D., Sinclair, T. R., Hammer, G. L., Curan, D., Thompson, J., Oler, Z., Gho, C., & Cooper, M. (2015). Limited-transpiration trait may increase maize drought tolerance in the US corn belt. Agronomy Journal, 107(6), 1978-1986. https://doi.org/10.2134/agronj15.0016
- Muchow, R. C., & Sinclair, T. R. (1991). Water deficit effects on maize yields modeled under current and “greenhouse” climates. Agronomy Journal, 83(6), 1052-1059. https://doi.org/10.2134/agronj1991.00021962008300060023x
- Muchow, R. C., Sinclair, T. R., & Bennett, J. M. (1990). Temperature and solar radiation effects on potential maize yield across locations. Agronomy Journal, 82(2), 338-343. https://doi.org/10.2134/agronj1990.00021962008200020033x
- Nehbandani, A., Barani, H., Soltani, A., Torabi, B., & Sharifian Bahraman, A. (2023). Estimating rangeland production in current and future conditions using SSM-iCrop2 model in Iran. Agricultural Research, 12(3), 346-355. https://doi.org/10.1007/s40003-023-00652-z
- Nehbandani, A., Soltani, A., Nourbakhsh, F., & Dadrasi, A. (2020). Estimating crop model parameters for simulating soybean production in Iran conditions. Oilseeds & fats Crops and Lipids, 27, 1-9. https://doi.org/10.1051/ocl/2020057
- Nehbandani, A. R., Soltani, A., Zeinali, E., Raeisi, S., & Najafi, R. A. (2015). Parameterization and evaluation of SSM-soybean model for prediction of growth and yield of soybean in Gorgan. Journal of Plant Production Research, 22(3), 1-26. (in Persian with English abstract). https://dor.isc.ac/dor/20.1001.1.23222050.1394.22.3.1.2
- Ochieng’, I. O., Gitari, H. I., Mochoge, B., Rezaei-Chiyaneh, E., & Gweyi-Onyango, J. P. (2021). Optimizing maize yield, nitrogen efficacy and grain protein content under different N forms and rates. Journal of Soil Science and Plant Nutrition, 21(3), 1867-1880. https://doi.org/10.1007/s42729-021-00486-0
- Pickering, N. B., Hansen, J. W., Jones, J. W., Wells, C. M., Chan, V. K., & Godwin, D. C. (1994). WeatherMan: A utility for managing and generating daily weather data. Agronomy Journal, 86(2), 332-337. https://doi.org/10.2134/agronj1994.00021962008600020023x
- Rugira, P., Ma, J., Zheng, L., Wu, C., & Liu, E. (2021). Application of DSSAT CERES-Maize to identify the optimum irrigation management and sowing dates on improving maize yield in Northern China. Agronomy, 11(4), 674. https://www.mdpi.com/2073-4395/11/4/674
- Saddique, Q., Cai, H., Ishaque, W., Chen, H., Chau, H. W., Chattha, M. U., Hassan, M. U., Khan, M. I., & He, J. (2019). Optimizing the sowing date and irrigation strategy to improve maize yield by using CERES (crop estimation through resource and environment synthesis)-Maize model. Agronomy, 9(2), 109. https://doi.org/10.3390/agronomy9020109
- Sadeghi, H., & Bahrani, M. J. (2001). Effect of plant density and nitrogen rates on yield and yield components of corn (Zea mays). Iranian Journal of Crop Sciences, 3(2), 13. (in Persian with English abstract). http://agrobreedjournal.ir/article-1-439-fa.html
- Salo, T. J., Palosuo, T., Kersebaum, K. C., Nendel, C., Angulo, C., Ewert, F., Bindi, M., Calanca, P., Klein, T., Moriondo, M., Ferrise, R., Olesen, J. E., Patil, R. H., Ruget, F., TakÁČ, J., Hlavinka, P., Trnka, M., & RÖTter, R. P. (2016). Comparingthe performance of 11 crop simulation models in predicting yield response to nitrogen fertilization. The Journal of Agricultural Science, 154(7), 1218-1240. https://doi.org/10.1017/S0021859615001124
- Shen, H., Xu, F., Zhao, R., Xing, X., & Ma, X. (2020).Optimization of sowing date, irrigation, and nitrogen management of summer maize using the DSSAT-CERES-Maize model in the Guanzhong plain, China. Transactions of the ASABE, 63(4), 789-797. https://doi.org/10.13031/trans.13654
- Sinclair, T. R., & Muchow, R. C. (1995). Effect of nitrogen supply on maize yield: I. modeling physiological responses. Agronomy Journal, 87(4), 632-641. https://doi.org/10.2134/agronj1995.00021962008700040005x
- Soltani, A., & Hoogenboom, G. (2007). Assessing crop management options with crop simulation models based on generated weather data. Field Crops Research, 103(3), 198-207. https://doi.org/10.1016/j.fcr.2007.06.003
- Soltani, A., & Sinclair, T. R. (2012). Modeling Physiology of Crop Development, Growth and Yield. Wallingford, Oxfordshire, UK: CABI Publishing. 322 p.
- Soltani, A., & Sinclair, T. R. (2015). A comparison of four wheat models with respect to robustness and transparency: Simulation in a temperate, sub-humid environment. Field Crops Research, 175, 37-46. https://doi.org/10.1016/j.fcr.2014.10.019
- Soltani, A., Maddah, V., & Sinclair, T. R. (2013). SSM-Wheat: Asimulation model for wheat development, growth and yield. International Journal of Plant Production, 7(4), 711-740. https://doi.org/10.22069/ijpp.2013.1266
- Tang, J., Wang, J., Fang, , Wang, E., Yin, H., & Pan, X. (2018). Optimizing planting date and supplemental irrigation for potato across the agro-pastoral ecotone in North China. European Journal of Agronomy, 98, 82-94. https://doi.org/10.1016/j.eja.2018.05.008
- (2023). Statistics of Crops Production in Iran, The Year 1402. (in Persian). https://www.maj.ir/
- Yakoub, A., Lloveras, J., Biau, A., Lindquist, J. L., & Lizaso, J. I. (2017). Testing and improving the maize models in DSSAT: Development, growth, yield, and N uptake. Field Crops Research, 212, 95-106. https://doi.org/10.1016/j.fcr.2017.07.002
- Zeinali, E., Soltani, A., & Khadempir, M. (2016). Parameterization of SSM-Maize model for growth and yield simulation in Gorgan. Gorgan University of Agricultural Sciences and Natural Resources. Reasearch Report. (in Persian with English abstract).
|