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Mathematical modeling and optimal
control strategies to limit cochineal

infestation on cacti plants
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Abstract

This paper introduces a mathematical model, denoted as SIRMC, aimed
at understanding the dynamics of cochineal infestation in cacti plants. The
model incorporates two control strategies: biological control through Hy-
peraspis trifurcata, a natural predator of cochineal, and chemical control
via insecticide spraying. The objective is to reduce the number of in-
fected cacti while also achieving a balance between minimizing infection,
maximizing recovery over time, and minimizing the costs associated with
the control measures. The proposed framework effectively integrates these
strategies to manage cochineal dynamics. Optimal control strategies are
derived using Pontryagin’s maximum principle, and numerical simulations
conducted in MATLAB validate the theoretical results.
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1 Introduction

The cactus plant, often referred to as “the fruit of the poor” in some cultures,
is quite popular in Morocco. It holds significant importance in both the
culinary and natural heritage of many Moroccan regions. The fruit of the
cactus is commonly used in cooking and is an integral part of the traditional
diet in numerous households [1]. Additionally, the cactus is valued for its
medicinal properties in folk and traditional medicine, as it is believed to offer
various health benefits. Many also associate the cactus plant with important
nutritional and medicinal values [15]. Cacti are among the most readily
available and easily cared-for plants, making them a valuable resource in
areas with limited resources.

The appearance of the cochineal insect in Morocco for the first time in late
2014, specifically in the village of Saniat Bergig in the Sidi Bennur province,
led to significant losses, even causing the disappearance of the plant in certain
regions of Morocco [16]. The cochineal insect negatively affects cactus plants
primarily by extracting their sap. Through piercing and sucking mouthparts,
the insect consumes plant tissues, leading to a substantial loss of sap and hin-
dering the transport of essential nutrients and water within the plant. This
depletion of sap results in stunted growth and a reduction in size, particularly
affecting younger cactus plants. Observable signs of damage include changes
in leaf color and a loss of turgidity, compromising the aesthetic appearance
of the cactus [3]. Additionally, the overall health of the plant suffers, di-
minishing its ability to withstand environmental stressors such as drought or
temperature fluctuations. Effectively controlling the cochineal insect is cru-
cial for preserving the health of cactus plants, especially when infestations
are widespread and threaten crop vitality.

Cultivating cactus plants presents significant economic potential for farm-
ers due to the plant’s versatile applications [17]. Cactus oil, extracted for its
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3 Mathematical modeling and optimal control strategies to limit cochineal ...

moisturizing properties, is a key ingredient in beauty and skincare products,
creating a lucrative market [14]. The cactus plant’s resilience makes it well-
suited for cultivation in arid regions where other crops struggle, providing a
sustainable income source for farmers in such environments. Exporting cactus
products to international markets, provided quality standards are met, opens
opportunities for increased production and income. Additionally, adopting
organic farming practices with cactus plants can enhance their value in niche
markets, leading to higher prices and better overall income for farmers. In
essence, cactus plant cultivation offers farmers a multifaceted opportunity
to diversify their income streams and capitalize on the plant’s marketable
qualities across various industries [12].

Contrary to common belief, the cochineal insect is not native to Morocco.
Originally from South America, the cochineal insect has spread to various
parts of the world due to factors such as global trade and human movement
[5].

The cochineal insect, scientifically known as Dactylopius coccus, holds
significant historical importance for its role in producing a natural red dye.
Its use as a dye dates back to ancient civilizations, where it was highly valued
for coloring textiles and fabrics, contributing to various artistic and cultural
expressions [4]. The crimson hue derived from cochineal had a notable eco-
nomic impact, being one of the most valuable products globally during cer-
tain historical periods. It played a crucial role in international trade and the
economies of specific countries. Beyond its economic value, the cochineal in-
sect found applications in ancient medicine, potentially serving as a source of
natural dyes with medicinal properties. The red dye’s influence extended to
cultural and artistic realms, shaping the colors and patterns in artworks and
traditional clothing. The cochineal trade not only influenced economies but
also encouraged exploration, contributing to the interconnectedness of the
world. Despite its historical significance, the use of cochineal in dye produc-
tion has declined with technological advancements and the rise of synthetic
alternatives. Nevertheless, its historical impact is still evident in various
aspects of human culture and history [5].

The cochineal insect poses a serious threat to cacti, adversely affecting
crops and requiring efficient, eco-friendly control measures. Biological con-
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trol using Hyperaspis Trifurcata offers an innovative and safe method to com-
bat this pest without relying on harmful pesticides. As a natural predator,
Hyperaspis Trifurcata feeds on the cochineal insect without harming agricul-
tural plants, providing a dependable and safe solution for pest control. This
method offers significant environmental benefits by reducing pesticide use,
maintaining ecological balance, and mitigating the negative impacts on the
environment and wildlife. Furthermore, it helps preserve plant health by lim-
iting the spread of cochineal infestations, safeguarding agricultural crops, and
minimizing yield losses. The integration of Hyperaspis Trifurcata aligns with
sustainable agricultural practices, focusing on enhancing crop quality and
naturally managing pest populations. However, successful implementation
requires effective distribution, continuous monitoring, and proper deployment
in agricultural settings, with ongoing impact assessments. In essence, Hyper-
aspis Trifurcata represents an eco-friendly solution for managing cochineal
infestations and promoting sustainable agriculture, contributing to environ-
mental and agricultural equilibrium.

A key contribution of this study is the introduction of a novel mathe-
matical model, the SIRMC model, designed to understand the dynamics of
cochineal infestations in cactus plants. Additionally, our work explores two
control strategies for managing the spread of the cochineal insect. The first
involves biological control through Hyperaspis Trifurcata, a predator that
feeds on the cochineal insect without harming the host plant. The second
strategy involves insecticide spraying to chemically suppress infestations. The
goal is to reduce the number of infected cacti while also achieving a balance
between minimizing the infected and maximizing recovery over time.

This paper is structured as follows: Section 2 introduces a deterministic
model for the cochineal, outlining its fundamental characteristics. Section 3
constructs a mathematical model that integrates an optimal control strat-
egy for cochineal propagation, presenting results related to the existence of
optimal control as defined by Pontryagin’s maximum principle. Section 4
discusses a suitable numerical method and presents the corresponding simu-
lation results. Finally, Section 5 concludes with a summary of the insights
gained from this study.
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5 Mathematical modeling and optimal control strategies to limit cochineal ...

2 Formulation of the mathematical model

This study presents the nonlinear mathematical model SIRMC, which was
developed for the purpose of analyzing the control of the cochineal insect that
destroys cactus plants. The following section will explain the five sections of
the model in turn.

2.1 Description of SIRMC model dynamic

Before introducing our model, it is essential to understand the life cycle and
spread of the cochineal insect. These small, soft-bodied insects reproduce
quickly, with females laying eggs that hatch into larvae covered in a white,
waxy substance. This wax helps the larvae retain moisture and resist sun
exposure. The waxy threads also allow the insects to be carried by the wind
to nearby cacti, spreading infestations rapidly. Cochineal insects feed on
the fluids of cacti, which can cause significant damage, often leading to the
plant’s death in severe cases. Farmers typically rely on cutting, burying, or
burning infected plants to prevent further spread. However, the introduction
of natural predators like Hyperaspis trifurcata, a species of lady beetle, offers
a biological solution to this pest, reducing the need for more destructive
methods.

Our proposed model, denoted as SIRMC, is designed to simulate the dy-
namics of this interaction, focusing on the spread of the cochineal insect and
its control within cactus populations. The total cacti population is denoted
by N(t), which satisfies the equation:

N(t) = S(t) + I(t) +R(t).

The model is structured into five compartments:

Compartment S (Susceptible cacti): Represents healthy cacti that
are vulnerable to cochineal infection.
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Compartment I (Infectious cacti): Contains cacti that are currently
infested by cochineal insects and can transmit the infestation to other plants.

Compartment R (Recovered cacti): Represents cacti that have re-
covered from the infestation, either naturally or due to external interventions.

Compartment M (Cochineal insect): This compartment models the
population of cochineal insects responsible for spreading the infection among
cacti.

Compartment C (Hyperaspis trifurcata): Represents the popula-
tion of lady beetles that predate on cochineal insects, helping to control their
spread and protect the cacti.

The SIRMC model we propose is illustrated by the following diagram:

Figure 1: A diagram of the evolution of the transfer in the SIRMC model depicts
interactions between cactus populations, cochineal insects, and the control measure Hy-
peraspis trifurcata.
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7 Mathematical modeling and optimal control strategies to limit cochineal ...

The transition rules between the groups are illustrated as follows:

The Susceptible Cacti Population:
Susceptible cacti are introduced into the system through natural recruitment
at a rate Λ. However, they may become infested when they come into contact
with cochineal insects at a rate λSM . Additionally, healthy cacti may die
due to natural causes at a rate µS. The equation governing this transition is

dS

dt
= Λ− λSM − µS.

The Infected Cacti Population:
Once a healthy cactus becomes infested, it moves into the infected group. The
number of infected cacti increases when healthy cacti acquire the infestation
(λSM) or when recovered cacti are reinfected due to residual cochineal insects
(αMR). Infected cacti may either recover at a rate θI or die naturally at a
rate µI. This transition is expressed as

dI

dt
= λSM + αMR− θI − µI.

The Recovered Cacti Population:
Cacti that recover from infestation enter the recovered group at a rate θI.
However, some recovered cacti may be reinfected due to the presence of
cochineal insects at a rate αMR, while others die naturally at a rate µR.
The equation describing this transition is

dR

dt
= θI − αMR− µR.

The Cochineal Insect Population:
The cochineal insect population follows a logistic growth pattern, increasing
at a rate β1M(1−M/K1), where K1 is the carrying capacity. However, their
numbers decrease due to natural mortality at a rate γ1M and predation
by Hyperaspis Trifurcata at a rate α1MC. The governing equation for this
dynamic is

dM

dt
= β1M

(
1− M

K1

)
− γ1M − α1MC.
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The Predator Population (Hyperaspis Trifurcata):
The predator species, Hyperaspis Trifurcata, follows a similar logistic growth
pattern, increasing at a rate β2C(1−C/K2), where K2 is its carrying capac-
ity. The predator also benefits from consuming cochineal insects, leading to
additional reproduction at a rate α2MC. However, its population declines
due to natural mortality at a rate γ2C. This dynamic is represented by

dC

dt
= β2C

(
1− C

K2

)
− γ2C + α2MC.

The following system consists of nonlinear ordinary differential equations:

dS
dt = Λ− λSM − µS,
dI
dt = λSM + αMR− θI − µI,
dR
dt = θI − αMR− µR,
dM
dt = β1M

(
1− M

K1

)
− γ1M − α1M(t)C(t),

dC
dt = β2C

(
1− C

K2

)
− γ2C + α2M(t)C(t),

(1)

with the initial conditions: S(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0, M(0) ≥ 0, and
C(0) ≥ 0.

The parameters of model are defined in Table 1.

Table 1: Model parameters

Parameter Description

Λ The recruitment rate for the cacti plants.
β1 The growth rate for the cochineal insect.
β2 The growth rate for the Hyperaspis Trifurcata.
α The reinfection rate of cacti plants after recovery from the cochineal insect.
α1 The rate of Hyperaspis trifurcata encounters the cochineal insect and preys on

it.
α2 The reproduction rate of Hyperaspis trifurcata due to feeding on the cochineal

insect.
θ The recovery rate for cacti plants.
γ1 The natural death rate for the cochineal insect.
γ2 The natural death rate for Hyperaspis Trifurcata.
λ λ is the rate of cochineal insect encounters with cacti.
µ The cochineal insect mortality rate
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9 Mathematical modeling and optimal control strategies to limit cochineal ...

2.2 Positivity of solutions

Theorem 1. If S(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0, M(0) ≥ 0 and C(0) ≥ 0, then
the solutions S(t), I(t), R(t), M(t), and C(t) of system (1) are positive for
all t ≥ 0.

Proof. It follows from the first equation of system (1) that

dS
dt = Λ− λSM − µS ≥ − (λM + µ)S. (2)

Then, we have
dS
S

≥ − (λM + µ) dt. (3)

By integrating (2) from 0 to t, we obtain

S(t) ≥ Sb(0)e
−

∫ t
0
(λM+µ)ds.

That implies
S(t) ≥ 0 for all t ≥ 0.

Similarly, we prove that I(t) ≥ 0, R(t) ≥ 0, M(t) ≥ 0 and C(t) ≥ 0 for
all t ≥ 0.

2.3 Boundedness of the solutions.

Theorem 2. Let T1 = max{M(0),K1}, T2 = max{C(0),K2}. Then the set
Γ =

{
(S, I) ∈ R2

+ : N(t) ≤ Λ
µ

}
×{M ∈ R+ : M(t) ≤ T1}×{C ∈ R+ : C(t) ≤ T2}

is positively invariant under system (1) with nonnegative initial conditions
S(0), I(0), R(0), M(0), and C(0).

Proof. From the initial equations of (1), we derive

dN(t)

dt
= Λ− µN(t). (4)

Then,
N(t) ≤ N(0)e−µt +

Λ

µ

[
1− e−µt

]
. (5)
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If we consider the limit t → ∞, then 0 ≤ N(t) ≤ Λ
µ .

From the last equation of (1), we have

dM
dt ≤ βM

(
1− M

K1

)
. (6)

Hence, employing a typical comparison approach yields lim supt→∞ M(t) ≤
K1.

Similarly, we prove that lim supt→∞ C(t) ≤ K2.
Finally, the set Γ is positivity invariant for the system (1).

2.4 Existence of solutions

Theorem 3. The system (1) that satisfies a given initial condition
(S(0), I(0), R(0),M(0), C(0)) has a unique solution.

Proof. The model (1) can be expressed in matrix form as follows:
Let X(t) = (S, I,R,M,C)

T and F (X(t)) =
(
dS
dt ,

dI
dt ,

dR
dt ,

dM
dt

dC
dt

)T .
The model (1) can be rephrased as

F (X(t)) = AX +B(X(t)),

where

A =



−µ 0 0 0 0

0 − (µ+ θ) 0 0 0

0 θ −µ 0 0

0 0 0 β1 − γ1 0

0 0 0 0 β2 − γ2


and

B(X(t)) =



Λ− λSM

λSM + αMR

−αMR

−β1M
2

K1
− α1MC

−β2C
2

K2
+ α2MC


.

Let X1 and X2 be solutions of model (1). Then
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11 Mathematical modeling and optimal control strategies to limit cochineal ...

|B (X1)−B (X2)| ≤2 | λ(S2M2 − S1M1)|+ 2 | α(M1R1 −M2R2)|

+ | α1(M2C2 −M1C1)|+ | α2(M1C1 −M2C2)|

+ | β1

K1
(M2

2 −M2
1 )|+ | β2

K2
(C2

2 − C2
1 )|

≤2 | λ(S2M2 − S2M1)|+ 2 | λ(S2M1 − S1M1)|

+ 2 | α(M1R1 −M1R2)|+ 2 | α(M1R2 −M2R2)|

+ | α1(M2C2 −M2C1)|+ | α1(M2C1 −M1C1)|

+ | α2(M1C1 −M1C2)|+ | α2(M1C2 −M2C2)|

+ | β1

K1
(M2

2 −M2
1 )+ | β2

K2
(C2

2 − C2
1 )|

≤2λS2 | M2 −M1|+ 2λM1 | S2 − S1|

+ 2αM1 | R1 −R2|+ 2αR2 | M1 −M2|+ α1M2 | C2 − C1|

+ α1C1 | M2 −M1|+ α2M1 | C1 − C2|+ α2C2 | M1 −M2|

+
β1

K1
| M2 −M1| | M2 +M1|+

β2

K2
| C2 − C1| | C2 + C1|

≤2λΛ

µ
| M2 −M1|+ 2λT1 | S2 − S1|+ 2αT1 | R1 −R2|

+
2αΛ

µ
| M1 −M2|+ α1T1 | C2 − C1|

+ α1T2 | M2 −M1|+ α2T1 | C1 − C2|

+ α2T2 | M1 −M2|+
2β1T1

K1
| M2 −M1|+

2β2T2

K2
| C2 − C1|

≤
(
2λΛ

µ
+

2αΛ

µ
+

2β1T1

K1
+ (α1 + α2)T2

)
| M1 −M2|

+ 2λT1 | S1 − S2|+ 2αT1 | R1 −R2|

+

(
2β2

K2
+ (α1 + α2)T1

)
| C2 − C1|

≤N ∥X1 −X2∥ ,

where

N = max
(
2λΛ

µ
+

2αΛ

µ
+

2β1T1

K1
+ (α1 + α2)T2, 2λT1, 2αT1,

2β2

K2
+ (α1 + α2)T1, ∥A∥

)
.

Therefore,
∥F (X1)− F (X2)∥ ≤ N ∥X1 −X2∥ .
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Thus, it follows that the function F is uniformly Lipschitz continuous, and
the restriction on S(t) ≥ 0, I(t) ≥ 0, R(t) ≥ 0, M(t) ≥ 0 and C(t) ≥ 0 in
R5

+. Therefore, a solution of the model (1) exists [2].

3 The optimal control problem

Given the ongoing threat of cochineal infestations and their severe economic
impact on cactus production, farmers need a cost-effective strategy to control
the pest’s spread within a specific timeframe. To address this, we develop
an optimal control problem that focuses on minimizing the number of in-
fected plants while also achieving a balance between minimizing infection
and maximizing recovery over time. A key aspect of our approach is the
natural control provided by Hyperaspis trifurcata, a predatory beetle that
feeds on cochineal insects. By incorporating this biological control agent into
the model, we emphasize the beetle’s role in naturally reducing cochineal
infestations. Hyperaspis trifurcata offers a sustainable and environmentally
friendly alternative to chemical pesticides, as it directly targets the cochineal
population, helping to curb its spread.

The system of equations (1) is adjusted to include two control variables,
u1(t) and u2(t) for t ∈ [t0, tf ].



dS
dt = Λ− λS(t)M(t)− µS(t),
dI
dt = λS(t)M(t) + αM(t)R(t)− θI(t)− µI(t)− u1(t)I(t),
dR
dt = θI(t)− αM(t)R(t)− µR(t) + u1(t)I(t),
dM
dt = β1M(t)

(
1− M(t)

K1

)
− γ1M(t)− α1M(t)C(t)− u2(t)σ1M(t)C(t),

dC
dt = β2C(t)

(
1− C(t)

K2

)
− γ2C(t) + α2M(t)C(t) + u2(t)σ2M(t)C(t),

(7)
with the initial conditions S(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0, M(0) ≥ 0, and
C(0) ≥ 0.
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The control u1(t) represents the application of insecticide to combat
cochineal, while the control u2(t) denotes the use of Hyperaspis trifurcata, a
predator that feeds on cochineal.

The problem is to minimize the objective functional:

J(u1, u2) =I(tf ) +M(tf )−R(tf ) (8)

+

∫ tf

t0

[
I(t) +M(t)−R(t) +

C1

2
(u1(t))

2
+

C2

2
(u2(t))

2

]
dt,

where C1 > 0 and C2 > 0, are chosen to assign the relative importance of
u1(t) and u2(t) at any given time t, with tf representing the final time.

In other words, our goal is to find the optimal controls u∗
1 and u∗

2 such
that

J(u∗
1, u

∗
2) = min

(u
1
,u

2
)∈U

J(u1, u2),

where U is the set of admissible controls defined by

U = {(u1(t), u2(t)) : 0 ≤ u1(t) ≤ 1 0 ≤ u2(t) ≤ 1, / t ∈ [t0, tf ]} .

3.1 Existence of optimal controls

In this part, we present the theorem which proves the existence of an optimal
control (u∗

1,u∗
2) minimizing the cost function J .

Theorem 4. There exists an optimal control (u∗
1, u

∗
2) ∈ U such that

J(u∗
1, u

∗
2) = min

(u1,u2)∈U
J(u1, u2).

Proof. To use the existence result in [6], we must check the following prop-
erties:
(A1): The set of controls and the corresponding state variables is nonempty.
(A2): The control set U is convex and closed.
(A3): The right-hand side of the state system is bounded by a linear function
in the state and control variables.
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(A4): The integral L(I,R,M, u1, u2) of the objective functional is convex on
U , and there exist constants κ

1
> 0, κ

2
> 0, and ε > 1 such that

L(I,R,M, u1, u2) ≥ −κ1 + κ2

(
|u1|2 + |u2|2

) ε
2

.

The first condition (A1) is verified using the result in [11]. The set U is convex
and closed by the definition. Thus the condition (A2). Our state system is
linear in u1 and u2. Moreover, the solutions of the system are bounded as
proved in model (1), hence the condition (A3). Also, we have the last needed
condition (A4),

L(I,R,M, u1, u2) ≥ −κ1 + κ2

(
|u1|2 + |u2|2

) ε
2

,

where κ1 = 2 supt∈[t0,tf ]
(I(t), R(t),M(t)), κ2 = inf(C1

2
,
C2

2
), and ε = 2,

since C1 > 0 and C1 > 0.

We conclude that there exists an optimal control (u∗
1, u

∗
2) ∈ U such that

J(u∗
1, u

∗
2) = min

(u1,u2)∈U
J(u1, u2).

3.2 Characterization of the optimal controls

In this section, we utilize Pontryagin’s principle [13]. The central concept is
to introduce the adjoint function, which connects the system of differential
equations to the objective functional. This connection leads to the formula-
tion of the Hamiltonian. By applying this principle, the task of determining
a control that optimizes the objective functional with a specified initial con-
dition is transformed into the problem of finding a control that optimizes the
Hamiltonian pointwise.

To derive the optimal control conditions, we apply Pontryagin’s maximum
principle such that the Hamiltonian H at time t is defined by

Iran. J. Numer. Anal. Optim., Vol. ??, No. ??, ??, pp ??



15 Mathematical modeling and optimal control strategies to limit cochineal ...

H(t) = I(t) +M(t)−R(t) +
C1

2
(u1(t))

2
+

C2

2
(u2(t))

2
+

5∑
i=1

λihi, (9)

where hi is the right side of the system of differential equations (7) of ith
state variable.

Theorem 5. Given the optimal controls (u∗
1, u

∗
2) and solutions S∗, I∗, R∗,

M∗ and C∗ of the corresponding state system (7), there exist adjoint func-
tions λ1, λ2, λ3, λ3, and λ5 satisfying



λ′
1 = −dH

dS = λ1(λM(t) + µ)− λ2λM(t),

λ′
2 = −dH

dI = −1 + λ2 (θ + µ+ u1(t))− λ3 (θ + u1(t)) ,

λ′
3 = −dH

dR = 1− λ2αM(t) + λ3 (αM(t) + µ) ,

λ′
4 = − dH

dM = −1 + λ1λS(t)− λ2 (λS(t) + αR(t)) + λ3αR(t),

−λ4

(
β1

(
1− 2M(t)

K1

)
− γ1 − α1C(t)− u2(t)σ1C(t)

)
−λ5 (α2C(t) + u2(t)σ2C(t)) ,

λ′
5 = −dH

dC = λ4 (α1M(t) + u2(t)σ1M(t))

−λ5

(
β2

(
1− 2C(t)

K2

)
− γ2 + α2M(t) + u2(t)σ2M(t)

)
,

(10)

Such that the transversality conditions at time tf are



λ1(tf ) = 0,

λ2(tf ) = 1,

λ3(tf ) = −1,

λ4(tf ) = 1,

λ5(tf ) = 0.

(11)

In addition to that we have, for t ∈ [t0, tf ] , optimal controls u∗
1(t) and

u∗
2(t) are given by

u∗
1(t) = min

(
1,max

(
0,

1

C1
(λ2 − λ3) I(t)

))
,

u∗
2(t) = min

(
1,max

(
0,

1

C2
(σ1λ4 − σ2λ5)C(t)M(t)

))
.

(12)

Proof. The Hamiltonian H is defined as follows:
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H(t) = I(t) +M(t)−R(t) +
C1

2
(u1(t))

2
+

C2

2
(u2(t))

2
+

5∑
i=1

λihi,

where

h1 = Λ− λS(t)M(t)− µS(t),

h2 = λS(t)M(t) + αM(t)R(t)− θI(t)− µI(t)− u1(t)I(t),

h3 = θI(t)− αM(t)R(t)− µR(t) + u1(t)I(t),

h4 = β1M(t)
(
1− M(t)

K1

)
− γ1M(t)− α1M(t)C(t)− u2(t)σ1M(t)C(t),

h5 = β2C(t)
(
1− C(t)

K2

)
− γ2C(t) + α2M(t)C(t) + u2(t)σ2M(t)C(t).

For t ∈ [t0, tf ], the adjoint equations and transversality conditions can be
obtained by using Pontryagin’s maximum principle [13] such that

λ′
1 = −dH

dS = λ1(λM(t) + µ)− λ2λM(t),

λ′
2 = −dH

dI = −1 + λ2 (θ + µ+ u1(t))− λ3 (θ + u1(t)) ,

λ′
3 = −dH

dR = 1− λ2αM(t) + λ3 (αM(t) + µ) ,

λ′
4 = − dH

dM = −1 + λ1λS(t)− λ2 (λS(t) + αR(t)) + λ3αR(t),

−λ4

(
β1

(
1− 2M(t)

K1

)
− γ1 − α1C(t)− u2(t)σ1C(t)

)
−λ5 (α2C(t) + u2(t)σ2C(t))

λ′
5 = −dH

dC = λ4 (α1M(t) + u2(t)σ1M(t))

−λ5

(
β2

(
1− 2C(t)

K2

)
− γ2 + α2M(t) + u2(t)σ2M(t)

)
.

For t ∈ [t0, tf ], the optimal controls u∗
1 and u∗

2 can be solved from the
optimality condition we have

dH

du1
= C1u1(t)− λ2I(t) + λ3I(t) = 0.

So
u1(t) =

1

C1
(λ2 − λ3) I(t),

we have

dH

du2
= C2u2(t)− λ4σ1M(t)C(t) + λ5σ2M(t)C(t) = 0.

So
u2(t) =

1

C2
(σ1λ4 − σ2λ5)M(t)C(t).
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By the bounds in U of the controls, it is convenient to obtain u∗
1 and u∗

2

in the form of (12).

4 Numerical simulations

This section begins by introducing an iterative method for numerically solving
the optimality system, followed by a presentation of the numerical results
obtained using MATLAB.

4.1 Discretization and control algorithm

The numerical algorithm presented below uses a semi-implicit finite difference
method to discretize the time interval [t0, tf ] at the points ti = t0 + ih (i =
0, 1, . . . , n), where h is the time step such that tn = tf [7]. The state variables
S(t), I(t), R(t),M(t), C(t), and the adjoint variables λ1, λ2, λ3, λ4, λ5, along
with the control variables u1 and u2, are defined at the nodal points as
Si, Ii, Ri,Mi, Ci, λ

i
1, λ

i
2, λ

i
3, λ

i
4, λ

i
5, u

i
1, u

i
2.

We proceed with the discretization using a combination of forward and
backward difference approximations as follows: The method, developed by
[8] and presented in [9] and [10], is then read as

Si+1 − Si

h
= Λ− λSi+1Mi+1 − µSi+1,

Ii+1 − Ii
h

= λSi+1Mi+1 + αMi+1Ri+1 − θIi+1 − µIi+1 − ui
1Ii+1,

Ri+1 −Ri

h
= θIi+1 − αMi+1Ri+1 − µRi+1 + ui

1Ii+1,

Mi+1 −Mi

h
= β1Mi+1

(
1− Mi+1

K1

)
− γ1Mi+1 − α1Mi+1Ci+1 − ui

2σ1Mi+1Ci+1,

Ci+1 − Ci

h
= β2Ci+1

(
1− Ci+1

K2

)
− γ2Ci+1 + α2Mi+1Ci+1 + ui

2σ2Mi+1Ci+1.

Using a similar approach, we approximate the time derivative of the ad-
joint variables by applying a first-order backward difference and then use the
corresponding scheme as follows:
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λn−i
1 − λn−i−1

1

h
=

(
λn−i−1
1 − λn−i

3

)
(λMi+1 + µ)− λn−i

2 λMi+1,

λn−i
2 − λn−i−1

2

h
= −1 +

(
λn−i−1
1 − λn−i−1

2

)
(θ + µ+ ui

1)− λn−i
3 (θ + ui

1),

λn−i
3 − λn−i−1

3

h
= 1− λn−i−1

2 αMi+1 + λn−i−1
3 (αMi+1 + µ),

λn−i
4 − λn−i−1

4

h
= −1 + λn−i−1

1 λSi+1 − λn−i−1
2 (λSi+1 + αRi+1) + λn−i−1

3 αRi+1

− λn−i−1
4

(
β1

(
1− 2Mi+1

K1

)
− γ1 − α1Ci+1 − ui

2σ1Ci+1

)
− λn−i−1

5

(
α2Ci+1 + ui

2σ2Ci+1

)
,

λn−i
5 − λn−i−1

5

h
= λn−i−1

4

(
α1Mi+1 + ui

2σ1Mi+1

)
− λn−i−1

5

(
β2

(
1− 2Ci+1

K2

)
− γ2 + α2Mi+1 + ui

2σ2Mi+1

)
.

The control variables are updated as follows:

Algorithm 2

Step 1:

S(0) = S0, I(0) = I0, R(0) = R0, M(0) = M0, C(0) = C0,

λ1(tf ) = 0, λ2(tf ) = 1, λ3(tf ) = −1, λ4(tf ) = 1, λ5(tf ) = 0,

u1(0) = 0, u2(0) = 0.

Step 2:
For i = 0, . . . , n− 1, do:

Si+1 =
Si + hΛ

1 + h(λMi+1 + µ)
,

Ii+1 =
Ii + h(λSi+1Mi+1 + αMi+1Ri+1)

1 + h(θ + µ+ ui
1)

,

Ri+1 =
Ri + h(θIi+1 − αMi+1Ri+1 + ui

1Ii+1)

1 + hµ
,

Mi+1 =
Mi + hβ1Mi+1

(
1− Mi+1

K1

)
1 + h(γ1 + α1Ci+1 + ui

2σ1Ci+1)
,
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Ci+1 =
Ci + h(β2Ci+1

(
1− Ci+1

K2

)
+ α2Mi+1Ci+1 + ui

2σ2Mi+1Ci+1)

1 + hγ2
.

λn−i−1
1 =

λn−i
1 + h

(
(λn−i−1

1 − λn−i
3 )(λMi+1 + µ)− λn−i

2 λMi+1

)
1 + h(λMi+1 + µ)

,

λn−i−1
2 =

λn−i
2 + h

(
−1 + (λn−i−1

1 − λn−i−1
2 )(θ + µ+ ui

1)− λn−i
3 (θ + ui

1)
)

1 + h(θ + µ+ ui
1)

,

λn−i−1
3 =

λn−i
3 + h

(
1− λn−i−1

2 αMi+1 + λn−i−1
3 (αMi+1 + µ)

)
1 + h(αMi+1 + µ)

,

λn−i−1
4 =

λn−i
4 + h

(
− 1 + λn−i−1

1 λSi+1 − λn−i−1
2 (λSi+1 + αRi+1) + λn−i−1

3 αRi+1

)
1 + h(β1(1− 2Mi+1

K1
)− γ1 − α1Ci+1 − ui

2σ1Ci+1)
,

λn−i−1
5 =

λn−i
5 + h

(
λn−i−1
4 (α1Mi+1 + ui

2σ1Mi+1)
)

1 + h(β2(1− 2Ci+1

K2
)− γ2 + α2Mi+1 + ui

2σ2Mi+1)
.

T i+1 =
(λn−i−1

1 − λn−i−1
3 )Si+1

A
,

ui+1 = min(0.9,max(0, T i+1)).

End for.

Step 3:
For i = 0, . . . , n, write:

S∗(ti) = Si, I∗(ti) = Ii, R∗(ti) = Ri, M∗(ti) = Mi, C∗(ti) = Ci, u∗(ti) = ui.

End for.

4.2 Numerical results

In this subsection, we present the results obtained by solving the optimality
system. For our control problem, we define conditions for the state variables
and terminal conditions for the adjoint variables. The optimality system is
essentially a two-point boundary value problem, with conditions at the initial
time step i = t0 and the final time step i = tf . To solve this system, we ini-
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tially solve the state model, followed by solving the adjoint system in reverse
order. In the first iteration, we start with an initial guess for the control vari-
ables and update them based on a characterization of the optimal controls
before moving on to the next iteration. This process is repeated until the
iterates converge. To achieve this, we created a MATLAB code utilizing the
following parameters. Given the lack of real-world data, the parameter values
were chosen hypothetically. The plots illustrating susceptible, infected, and
recovered individuals—both with and without control measures—are gener-
ated based on these parameter values: Λ = 1000, λ = 0.0005, β1 = 0.0001,
β1 = 0.000001, µ = 0.00009, θ = 0.0002, α = 0.003, α1 = 0.001, α2 = 0.001,
γ1 = 0.008, γ2 = 0.001, σ = 1000, σ1 = 0.2, σ2 = 0.1. When analyzing the
graphs, please be aware that solid lines represent individuals without control
measures, whereas dashed lines indicate those with control measures.

4.3 Control Strategy 1: Impacts of Insecticide
Application on Cochineal

The goal of this approach is to minimize the function (8), with a primary
focus on reducing the cochineal population through insecticide spraying. Fig-
ure 2 illustrates the effects of this spraying on the cacti plants.

In Figure 2 (2.1), it is clear that in the absence of control measures, the
number of infected cacti steadily increases, reaching approximately 1.5× 105

within the first two months. However, when control measures are applied,
the number of infected cacti begins to decrease from day one of implementa-
tion, eventually dropping to around 1.2× 105.

In Figure 2 (2.2), the recovered cacti rises to about 2 × 104 with the
application of the control strategy, compared to 0.1× 104 birds when control
measures are not implemented.
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Figure 2: Dynamics with control u1.

4.4 Control Strategy 2: Use of Hyperaspis Trifurcata
that feeds on the cochineal

The main objective of treating cacti infested with cochineal, within the
context of a strategy, is to minimize the function (8) while maintaining other
control measures at zero. Figure 3 illustrates the disease dynamics, taking
into account the presence or absence of this control measure.

In Figure 3 (3.1), it is clear that without any control measures, the
cochineal population steadily increases, peaking at around 1,000 during
the first two months. However, with the implementation of controls, the
cochineal population begins to decline from the first day and decreases to
approximately 500 within two months.

In Figure 3 (3.2), the number of recovered cacti increases to approxi-
mately 4 × 104 with the use of the control strategy, whereas only 0.1 × 104

are recovered when no control measures are in effect.
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Figure 3: Dynamics with control u2.

4.5 Control Strategy 3: insecticide spraying and
Hyperaspis Trifurcata

This strategy aims to minimize the objective function (8) by implementing
both control measures. Figure 4 illustrates the disease progression with both
controls in effect, compared to the scenario where no control measures are
utilized to manage the disease.

In Figure 4 (4.1),the impact of insecticide as a control measure, along
with Use of an insect that feeds on the cochineal, on curbing the propagation
of the cochineal are clearly illustrated. It is evident that in the absence of
control measures, the number of infected cacti increases, peaking at around
1.5× 105 during the first two months. In contrast, with the implementation
of control measures, the infected cacti decreases to approximately 0.2 × 105

within two months.

In Figure 4 (4.2), it is observed that in the absence of control measures,
the number of the cochineal rises, peaking at around 1000 the first month. In
contrast, when control measures are put in place, the number of the cochineal
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Figure 4: Dynamics with control u1 and u2.

consistently decreases, ultimately reaching 250 within two months.

In Figure 4 (4.3), the number of recovered cacti rises within the first week
of implementing the control strategy, ultimately reaching about 4.5×104 over
the course of two months. In contrast, when no control measures are in effect,
the number of recovered cacti decreases to nearly zero.
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5 Conclusion

In this paper, we introduced a novel model designed to improve the under-
standing of cochineal dynamics in cactus plants. Our goal is to develop an
optimal control strategy based on the SIRMC model that minimizes the
number of infected cacti while also achieving a balance between minimiz-
ing infection and maximizing recovery. We compared scenarios with and
without control measures, demonstrating that the implementation of control
strategies substantially decreases the number of infected plants. To offer a
thorough overview of cochineal dynamics, we presented figures that display
the counts of infected, recovered, and cochineal in both scenarios (u1 and u2),
highlighting the differences with and without control measures, as illustrated
in Figures 1, 2, 3 and 4. Our results indicate the effectiveness of control
measures in reducing the spread of cochineal in cacti.
By incorporating the SIRMC model with optimal control strategies, we
underscore the potential to decrease disease prevalence and improve recov-
ery rates. These findings highlight the importance of proactive intervention
strategies in cactus fields, offering valuable insights for farmers.
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