
Bayesian change point inference in time series
analysis of COVID-19 pandemic dynamics

Masoud Majidizadeh∗

Department of Statistics, Faculty of Mathematical Sciences, Shahid Beheshti University,
Tehran, Iran

Email(s): tm_majidizadeh@sbu.ac.ir

Stochastic Models in Probability and Statistics
Vol. 2, No. 1, 2025, pp. 75–99. Research Article

Abstract. The present study aims to estimate multiple change points in the time series data of
confirmed COVID-19 cases and deaths, as well as to assess trends within the identified multiple
change points in various countries. The data were analyzed using Poisson time series models that
incorporate exogenous variables and autoregressive components, and the estimation of change
points was conducted using the reversible jump Markov chain Monte Carlo method. Using
the proposed method, we analyze the trajectory of cumulative COVID-19 cases and deaths
in these countries, uncovering significant patterns that may have important implications for
the effectiveness of pandemic responses across different nations. Furthermore, utilizing a change
point detection algorithm in conjunction with a flexible time series model, we apply a forecasting
method for COVID-19 and demonstrate its effectiveness in predicting the number of deaths in
Japan.

Keywords: Multiple change points, Poisson time series data, Posterior inferences, Reversible jump Markov
chain Monte Carlo.

1 Introduction
In this paper, we propose a modeling approach for the time series of confirmed COVID-19
cases and deaths in some countries using a Poisson autoregressive regression model (the formal
definition is provided later). Specifically, we aim to model the mean of the infections and deaths
as a log-linear model that accommodates an unknown number of potential changes in both the
intercept and the slope. This approach is warranted, as it is reasonable to anticipate that the
spread of COVID-19 may progress through several distinct phases. Initially, the growth rate is
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typically rapid due to the absence of immunity and insufficient preparedness. Subsequently, the
dynamics may transition into phases characterized by slower growth, influenced by government
interventions and public health responses aimed at flattening the curve. The estimation of this
model can be framed as a change point detection problem.

In recent years, change point analysis has emerged as a vibrant area of research within statis-
tics and econometrics, owing to its diverse applications across various fields. Notable examples
include bioinformatics (Fan and Mackey, 2017), climate science (Gromenko et al., 2017), eco-
nomics (Bai, 1994, 1997; Cho and Fryzlewicz, 2015), finance (Fryzlewicz, 2014), medical science
(Chen and Gupta, 2011), and signal processing (Chen and Gu, 2018). Recent reviews on this
topic can be found in the works of Perron (2006), Aue and Horváth (2013), and Truong et
al. (2020). However, much of the existing literature on change point analysis operates under
the assumption of piecewise stationarity. This assumption posits that while the time series in
question may be (potentially) nonstationary, it can be segmented into distinct intervals where
each segment is stationary and characterized by a common parameter of interest, such as the
mean or variance. Although the piecewise stationarity assumption has proven to be effective for
many applications, methods developed within this framework are often inadequate for address-
ing time series with inherent nonstationarity, such as the cumulative infection or death curves
of COVID-19.

Following the emergence of the COVID-19 epidemic, several authors have employed change
point methods to analyze related data; see, for example, Jiang et al. (2022), ST et al. (2022),
Jiang et al. (2023), Dehning et al. (2020), Majidizadeh and Taheriyoun (2024) and Majidizadeh
(2024). These methods provide valuable insights into the dynamics of the epidemic, allowing
for the identification of significant shifts in trends and patterns over time. By detecting change
points, researchers can better understand the impact of various factors, such as government
interventions and public health measures, on the progression of the virus.

1.1 The Data

The scope of our analysis encompasses four countries: Iran, Spain, the United States, and
Japan. The temporal domains for data segmentation are as follows: first, from April 10, 2020,
to October 30, 2021, for the analysis of data in Iran and Spain; second, from April 1, 2021,
to November 30, 2021, to examine the effects of vaccination and nonvaccination public health
measures in the United States; and third, for short-term forecasting in Japan, the period is May
2020.

During the period from April 10, 2020, to October 30, 2021, both Iran and Spain experienced
significant challenges due to the COVID-19 pandemic. This timeframe saw multiple waves of
infections, the introduction of various public health measures, and the rollout of vaccination
campaigns.

Iran experienced several waves of COVID-19 infections during this period. The first wave
began in February 2020, with a significant increase in cases noted in March and April 2020.
The second wave peaked in late June and early July 2020, followed by a third wave starting in
November 2020, which continued into early 2021. The fourth wave began in April 2021, largely
driven by the Delta variant, which became prevalent in mid-2021 (World Health Organization,
2021). The Iranian government implemented various restrictions throughout these waves, in-

https://covid19.who.int/region/emro/country/ir
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cluding lockdowns, travel bans, and the closure of schools and nonessential businesses. For
instance, in response to the surge in cases during the third wave, authorities imposed stricter
measures in November 2020 and continued to adapt these measures based on the epidemiologi-
cal situation (Iran Ministry of Health, 2021). Iran began its vaccination campaign in February
2021, initially using the Russian Sputnik V vaccine and later incorporating other vaccines such
as Sinopharm and AstraZeneca. By October 2021, the vaccination rate was gradually increasing,
but challenges related to vaccine supply and public hesitancy remained (Iranian Red Crescent
Society, 2021).

Spain faced several waves of COVID-19 infections, with the first wave peaking in April
2020. The second wave began in late summer 2020, peaking in January 2021. A third wave
occurred in March 2021, driven by the emergence of new variants, including the Alpha variant.
The Delta variant began to spread in mid-2021, contributing to a fourth wave that peaked in
July 2021 (Spanish Ministry of Health, 2021). The Spanish government implemented strict
lockdown measures during the initial wave in March 2020, which were gradually eased in the
summer. However, restrictions were reintroduced in response to subsequent waves, including
curfews, limits on gatherings, and the closure of nightlife venues. In late 2020 and early 2021,
measures were adapted based on regional epidemiological data (Government of Spain, 2021).
Spain’s vaccination campaign began in December 2020, with a rapid rollout of vaccines, primarily
the Pfizer-BioNTech and Moderna vaccines. By October 2021, Spain had one of the highest
vaccination rates in Europe, with over 80% of the adult population fully vaccinated (European
Centre for Disease Prevention and Control, 2021). Figure 1 presents the graphs depicting the
total confirmed COVID-19 cases and total deaths in Iran and Spain from April 10, 2020, to
October 30, 2021.

From April 1, 2021, to November 30, 2021, the United States faced significant challenges due
to the COVID-19 pandemic, marked by multiple waves of infections, the emergence of variants,
the implementation of government restrictions, and a nationwide vaccination campaign. The
United States experienced several distinct waves of COVID-19 infections during this period. The
initial wave peaked in April 2020, with a rapid increase in cases and deaths, particularly in New
York and other urban areas. A resurgence of cases occurred in the late summer and fall of 2020,
peaking in January 2021. This wave was characterized by increased hospitalizations and deaths,
driven by social gatherings and holiday travel (Centers for Disease Control and Prevention,
2021). Following a decline in early 2021, a third wave began in March 2021, driven by the
emergence of new variants, particularly the Alpha variant. This wave peaked in late April
and early May 2021 (Centers for Disease Control and Prevention, 2021). The Delta variant
became the dominant strain in mid-2021, leading to a significant increase in cases during the
summer months, particularly among unvaccinated populations. This surge peaked in late July
and early August 2021 (World Health Organization, 2021). The vaccination campaign in the
United States began in December 2020, with the rollout of the Pfizer-BioNTech and Moderna
vaccines. By April 2021, vaccination efforts were expanded to include all adults, and by mid-
2021, the vaccination rate significantly increased. By October 2021, approximately 70% of adults
had received at least one dose of a COVID-19 vaccine, with over 60% fully vaccinated (Centers
for Disease Control and Prevention, 2021). Throughout the pandemic, various government
restrictions were implemented to curb the spread of the virus: In March 2020, many states
implemented stay-at-home orders and closed nonessential businesses. As cases declined in mid-

https://ird.behdasht.gov.ir/search
https://en.rcs.ir/portal/SearchResult/
https://en.rcs.ir/portal/SearchResult/
https://www.sanidad.gob.es/buscador/iniciar.do
https://www.lamoncloa.gob.es/lang/en/Paginas/buscadoravanzado.aspx
https://www.ecdc.europa.eu/en/search?s=
https://www.ecdc.europa.eu/en/search?s=
https://covid.cdc.gov/covid-data-tracker
https://covid.cdc.gov/covid-data-tracker
https://search.cdc.gov/search/?query=
https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/
https://www.cdc.gov/coronavirus/2019-ncov/vaccines/index.html
https://www.cdc.gov/coronavirus/2019-ncov/vaccines/index.html
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2020, many states began to ease restrictions, allowing businesses to reopen with capacity limits
and social distancing measures. In response to surges in cases during the fall and winter of
2020, many states reinstated restrictions, including mask mandates and limits on gatherings
(National Conference of State Legislatures, 2021). By late 2021, several states and employers
began implementing vaccine mandates to encourage vaccination among employees and the public
(The White House, 2021).

2 Count time series model
Suppose that {Yt} is a time series of counts and that FY,λt represents the σ -field generated by
{Y0, . . . ,Yt ,λ0}. Specifically, we define the σ -field as follows: FY,λt = σ(Ys,s ≤ t,λ0), where σ
denotes the smallest σ -algebra generated by the random variables Ys for s≤ t and the constant
λ0. This σ -field captures all the information available up to time t.

Furthermore, we note that the collection of σ -fields {FY,λt}t≥0 forms a filtration. A filtration
is an increasing family of σ -fields, which represents the accumulation of information over time.
In this context, it reflects how the information about the counts Yt and the intensity process λt

evolves as t increases, thus allowing for the modeling of dependencies over time. In the follow-
ing, we develop a regression model that incorporates exogenous variables and past experiences,
expressed by a nonlinear model. Consider the model given by

Yt |FY,λt−1 ∼ Poisson(λt),

log(λt) = τ(a1 log(λt−1)+b1 log(Yt−1 +1))+(1− τ) (1)

×

(
d +

p

∑
i=2

ai log(λt−i)+
q

∑
i=2

bi log(Yt−i +1)+c⊤ xt

)
,

for t ≥ 1, where the parameters d,ai, and bi ∈ R, xt is the vector of time-varying covariates and
c ∈ Rr is the regression coefficient parameters, and let a = (a1, . . . ,ap)

⊤ and b = (b1, . . . ,bq)
⊤.

Also, τ is a smoothing parameter (0 < τ < 1) that limits the changes in λt from one time step
to the next. In addition, we assume that λ0 and Y0 are fixed. We consider a pre-identified
smoothing parameter in our study, which ensures that we highly account for the effect of the
rate of the parameter in our model. This is particularly important in epidemiological contexts,
where rates can have a significant impact on the dynamics of the epidemic.

For the Poisson distribution, the conditional mean is equal to the conditional variance, that
is,

E[Yt |FY,λt−1 ] = Var[Yt |FY,λt−1 ] = λt .

Thus, the proposed modeling is based on the evolution of the mean of the Poisson distribution,
rather than its variance. For a comprehensive review of count time series models, we refer
readers to Weiß (2018) and Fokianos (2012).

Remark 1. It would be advantageous to treat τ, p, and q as parameters, allowing the observations
and methods to estimate them. In this scenario, estimating p and q would require a separate
the reversible jump Markov chain Monte Carlo (RJMCMC) method sampling algorithm and
incorporate additional complexity into the model. However, for the purpose of our study and to
manage computational costs, we assume that these parameters have been identified.

https://www.ncsl.org/research
https://www.whitehouse.gov/news/
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2.1 A priori assumptions for the model without change point

We assume that p(a⊤,b⊤,c⊤,d) = p(a⊤)× p(b⊤)× p(c⊤)× p(d). This independence plays an
important role in the computational cost of posterior computation. Let us define ξ(p,q) =
(a⊤,b⊤,c⊤,d)⊤. We propose N(0,α2Ik) prior for ξ(p,q), where Ik is a k×k identity matrix and α2

is variance parameter (hyper-parameter). We consider a uniform prior U (0,cα) for α2, where
cα is a known large value.

Our Bayesian computation is a fusion of Gibbs sampler and RJMCMC, which requires the
full conditional distributions. The conditional distribution of ξ(p,q) is

p(ξ(p,q), | α2,x,y) ∝ f (Y |ξ(p,q))exp

(
− 1

2α2 ξ
(p,q)⊤ξ(p,q)

)
, (2)

where f (Y |ξ(p,q)) is the likelihood function in (1) and note that

p(α2 | ξ(p,q)) ∝ (α2)−k/2 exp
(
− 1

2α2 ξ
(p,q)⊤ξ(p,q)

)
, α2 ∈ (0,c], (3)

which is the truncated inverse gamma distribution, IG(k/2− 1,− 1
2ξ

(p,q)T
ξ(p,q)) (Majidizadeh,

2024), Majidizadeh and Taheriyoun (2024).

3 Segmentation of count responses

3.1 Model and notations

Consider a Markov chain whose finite-dimensional distributions change at K−1 unknown time
points, where K is also unknown. Given a partition into K segments, denote the unknown change
points by ε = (ε0,ε1, . . . ,εK)

⊤, with ε0 = 0 and εK = n. Here, K = 1 indicates that there are no
change points. Let Ys = {yt ;εs−1 + 1 ≤ t ≤ εs} represent the set of all observed values of the
response variable in the sth segment for s = 1, . . . ,K. Our main goal is to estimate the unknown
number of change points K, the change points ε, and the corresponding parameters within each
segment.

Let ns = #{t : εs−1 +1≤ t ≤ εs} for s = 1, . . . ,K denote the number of observations in the sth
segment. In this model, the observed count responses are partitioned into K segments, where the
parameters may differ from those in neighboring segments. The parameters for the sth segment
are denoted by the subscript s:

log(λt) = τ× (a1,s log(λt−1,s)+b1,s log(Yt−1,s +1))+(1− τ) (4)

×

(
ds +

p

∑
i=2

ai,s log(λt−i,s)+
q

∑
i=2

bi,s log(Yt−i,s +1)+c⊤s xt

)
,

and ξ(p,q)
s = (a⊤s ,b

⊤
s ,c

⊤
s ,ds)

⊤, where s = 1, . . . ,K.
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3.2 Model priors
We can also assume that the number of segments K is a priori distributed as a truncated negative
binomial distribution given by

Pr(K = k) =
1

cr,p,kmax

(
k+ r−1

k

)
pk(1− p)r, k = 1, . . . ,kmax,

for appropriate choices of parameters r (the number of successes until the experiment is stopped)
and p (the success probability), where cr,p,kmax is a normalizing constant. This distribution allows
for overdispersion relative to the Poisson distribution and can be useful in modeling scenarios
where the variance exceeds the mean. A conservative guideline for kmax is “large enough” but
a large value of kmax obviously causes a high computational cost. Employing an expert’s idea
or preprocessing with other frequentist methods is useful in determining the value of kmax. We
suggest the following values for the parameters of the truncated negative binomial distribution:

1. r = 5, this value provides moderate overdispersion, allowing for variability in the counts.

2. p = 0.3, a 30% chance of success in each trial allows for a wider spread in the distribution,
appropriate for count data with larger counts being less frequent.

3. cr,p,kmax , the normalizing constant ensures that the probabilities sum to 1 over the truncated
range of K.

cr,p,kmax =
kmax

∑
k=1

(
k+ r−1

k

)
pk(1− p)r.

This value is computed based on the chosen r, p, and kmax. For example, if kmax = 10, we
would compute c5,0.3,10 using the formula above.

Concerning the prior on the locations of change points, we assume that ns ≥ nmin for s =
1, . . . ,K, where nmin is the minimum segment length taken to be large enough to avoid sparsity.
We further assume that the location of the first change point, ε1, is a priori distributed according
to a uniform distribution over {nmin, . . . ,n− (K− 1)nmin}. This distribution is characterized by
a constant probability density function, indicating that all locations within the specified range
are equally likely. The prior on the jth change point, ε j, given ε j−1, is also modeled using a
uniform distribution on {ε j−1 +nmin, . . . ,n− ε j−1− (K− j)nmin} for j = 2, . . . ,K−1.

3.3 Sampling scheme

Define E= (ε⊤,α2⊤,ξ(p,q)⊤)⊤ as the collection of all parameters, where α2 = (α2
1, . . . ,α2

K)
⊤ and

ξ(p,q) = (ξ(p,q)⊤
1 , . . . ,ξ

(p,q)⊤
K )
⊤. Thus, E has a varying dimension during the algorithm’s runs. Each

MCMC iteration alternates between two updating steps: the within-model (WM) movements
and the switching-model (SM) movements, which are outlined below. The complete algorithm
for the comprehensive RJMCMC scheme, which facilitates the detection of change points and
the estimation of model parameters, is presented in Algorithm 1. For simplicity, we consider λs

as the first element of ξ(p,q)
s for s = 1, . . . ,K.
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In this algorithm and overall, the prime symbol is used for the proposed values and T is
the number of iterations. In what follows and particularly in calculation of the acceptance
probabilities, we use functions p(·) for priors and marginal distributions. The arguments of
this function discriminate that the density function is calculated for which random variable or
vector. Similarly, p(· | ·) is employed to represent the conditionals and likelihoods and q(· | ·) for
proposal density functions.

3.3.1 Switching-model (SM) movement

We aim to propose new values for the parameters, (E′,k′), using the proposal density q(E′,k′ |E,k)
based on the current parameters (E,k). This update involves proposing transitions between
competing models. The proposed number of segments may either increase by one (birth) or
decrease by one (death). We denote k′ as the proposed number of segments, which is randomly
chosen from k′ = k+1 or k′ = k−1 with the following proposal density:

q(k′ = s | k) =


1/2 if s = k+1, and k ̸= kmax, n j ≥ 2nmin for at least one j,
1/2 if s = k−1, and k ̸= 1,
1 if s = k−1 and k = kmax,
1 if s = k+1 and k = 1.

Birth (k′ = k+1):
This step involves creating a new segment by adding an additional change point to the existing
set of change points. To this end, a segment, denoted as s∗, is randomly selected from all
segments that can be partitioned into two. The new change point in this segment is determined
by generating a random number from a uniform distribution over the set {εs∗−1 + nmin, . . . ,n−
εs∗−1− (K − j)nmin}. Let ε ′s∗ be the generated change point, which must be included in the
proposed vector ε′.

The point εs∗
′ is chosen to satisfy the conditions εs∗

′−εs∗−1 ≥ nmin and εs∗−ε ′s∗ ≥ nmin. Given
εs∗
′, we need two new hyper-parameters for the variance of the conditional distribution of the

coefficients ξ(p,q)′
s∗ and ξ(p,q)′

s∗+1 for each new segment. To ensure positivity and simplify ac-
ceptance probability calculations, we propose new hyper-parameters α2

s∗
′ and α2

s∗+1
′, generated

using an auxiliary variable u∼U (0,1) and deterministic functions of u and α2
s∗ as follows:

α2′
s∗ = α2

s∗
( u

1−u

) εs∗+1−εs∗
εs∗+1−εs∗−1 , α2′

s∗+1 = α2
s∗
(1−u

u

) εs∗−εs∗−1
εs∗+1−εs∗−1 . (5)

Two new coefficients are proposed based on these new hyper-parameters. The acceptance prob-
ability of the algorithm for this step is Green (1995)

min
{

1,( likelihood ratio)× (prior ratio)× (proposal ratio)× (Jacobian)
}
.

Thus, the birth movement is accepted with probability min{1,A1}, where

A1 =
f (E′ | Y ′,k′)
f (E | Y ′,k)

p(E′ | k′)p(k′)
p(E | k) p(k)

q(k | k′)q(ε | k′,k)
q(k′ | k)q(ε′ | k,k′)p(u)

|J|,
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where p(u) = 1, u ∈ [0,1], and it is straightforward to show that
p(k′)
p(k)

=
p(k+5)

k+1
,

p(ε′ | k′)
p(ε | k)

= 1,

q(ε | k,k′)
q(ε′ | k,k′)

= 1,

where k′ = k+1. Note that, although we are calculating the current or proposed values in the
prior ratio in (6), we have

p(k,E) = p(k,ε,α2,ξ(p,q)) = p(k)p(ε | k)p(α2 | ε,k)p(ξ(p,q) | α2,ε,k).

The denominator in the proposal ratio refers to the conditional density of the proposed number
of segments and parameters given the current state, as follows:

q(k′,E′ | k,E) = q(k′ | k)q(E′ | k,k′,E)
= q(k′ | k)q(ε′,α2′,ξ(p,q)′ | k,k′,E)
= q(k′ | k)q(ε′ | k,k′,E)q(α2′,ξ(p,q)′ | ε′,k,k′,E)q(ξ(p,q)′ |α2′,ε′,k,k′,E).

After acceptance of this move we update ξ(p,q)′
s∗ and ξ(p,q)′

s∗+1 using the Adaptive Rejection
Sampling (ARS) (see Gilks and Wild, 1992).

The determinant of the Jacobian of the transformation between the parameters of the two
models, |J|, is

|J|=
∣∣∣∣d(α ′s∗ ,α ′s∗+1)

d(αs∗ ,u)

∣∣∣∣=
(
α ′s∗+α ′s∗+1

)2

αs∗
.

Death (k′ = k−1):
One of the change points, εs∗ , is randomly chosen from the set {ε1,ε2, . . . ,εk−1} to be removed.
After selecting the hyper-parameters α2

s∗ and α2
s∗+1, and using the reversing labeling described

in (5), the proposed hyper-parameter, denoted as α2′
s∗ , is constructed. This is achieved by re-

versing the process explained in the Birth step. Once again, due to the lack of a computationally
suitable form for the conditional posterior, we update the coefficient vector ξ(p,q)′

s∗ using the ran-
dom walk Metropolis algorithm. Note that the acceptance probability, min{1,A2}, for the death
movement is simply obtained using the inverse of that for the birth and is summarized as

A2 =
f (E′ | Y ′,k′)
f (E | Y ′,k)

p(E′ | k′)p(k′)
p(E | k) p(k)

q(k | k′)q(ε | k′,k)
q(k′ | k)q(ε′ | k,k′)p(u)

|J|,

where p(u) = 1, u ∈ [0,1], |J|= (αs∗+αs∗+1)
−2α ′s∗ and

p(k′)
p(k)

=
k+1

p(k+5)
,

p(ε′ | k′)
p(ε | k)

= 1,

q(ε | k,k′)
q(ε′ | k,k)

= 1,
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where k′ = k−1 and

α ′s∗ =
(
αs∗
) εs∗−εs∗−1

εs∗+1−εs∗−1 ×
(
αs∗+1

) εs∗+1−εs∗
εs∗+1−εs∗−1 . (6)

After accepting the move we update ξ(p,q)′
s∗ using ARS.

3.3.2 Within-model (WM) movement

This moving scheme involves sampling the parameters of the current model using Metropolis-
Hastings updates. In this step, the number of segments remains unchanged, so k′ = k. A change
point is randomly selected for relocation. Specifically, we first select a change point, εs∗ , and then
propose a new location from the interval [εs∗−1,εs∗+1]. The corresponding acceptance probability
for this move is given by min{1,A3}, where

A3 =
f (ξ(p,q)′

s∗ ,ξ
(p,q)′

s∗+1 | Y ′
s∗ ,Y

′
s∗+1,k

′)

f (ξ(p,q)
s∗ ,ξ

(p,q)
s∗+1 | Ys∗ ,Ys∗+1,k,α2

s∗ ,α2
s+1∗)

p(ξ(p,q)′
s∗ | k′)p(ξ(p,q)′

s∗+1 | k′)
p(ξ(p,q)

s∗ | k′)p(ξ(p,q)
s∗+1 | k′)

.

Note also that the hyper-parameters α2′
s∗ and α2′

s∗+1 are updated via Gibbs sampler, and also
ξ(p,q)′

s∗ and ξ(p,q)′
s∗ are updated via ARS.

In our RJMCMC algorithm, we define the stopping time based on the generation of a total
of 50,000 pseudo-random samples. The procedure involves the following steps:

• Total samples: The algorithm is designed to generate a total of Ntotal = 50,000 samples.

• Burn-in period: The first Nburn = 10,000 samples are excluded from analysis to allow
the Markov chain to reach convergence. These samples are considered the burn-in period
and will not be used for parameter estimates.
The algorithm will stop once the total number of generated samples reaches Ntotal. The
valid samples used for inference will thus be the last Ntotal−Nburn = 40,000 samples.

Example 1. To demonstrate the functionality of the presented method in both scenarios—
with and without a change point—we generate one realization from the model. In the following
simulation studies, we consider p = q = r = 1, and also we set τ = 0.6. We construct xt =
1−0.5 ·N (0,1) as the covariate and generate two datasets, each consisting of 300 observations
with ε1 = 150. For these datasets, we set

ξ(p,q) = (U (−0.9,0.2),U (−0.5,0.5),U (0,1),U (−0.7,0.7))⊤+ c,

where c = 0 for dataset 1 and c = 0.9 for dataset 2. Therefore, dataset 1 can be effectively
considered to have no change point, while dataset 2 exhibits a pronounced change point in the
parameters. Figure 2 presents a realization for dataset 2. Figures 3a and 3b display the posterior
distributions of the number of change points for the models without and with the change point,
respectively. According to Figure 3a, the method demonstrates no false positive performance
in models without a change point. Figure 3c shows the estimated posterior distribution of the
change point. This represents a single application of the Bayesian method; the average behavior
across multiple replications will be explored in the following section.
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4 Simulation studies
To assess the performance of our methodology, we apply it to two different simulated data
settings.

In the first simulation setting, we examine the estimator for the single change point problem.
Accordingly, we consider the following parameters setting for the model defined in Section 3.1:{

ξ(p,q)
1 = (U (−1,1),U (−0.5,0.5),U (0,0.8),U (−2,2))⊤ , for 1≤ x≤ 150,

ξ(p,q)
2 = (U (1.2,1.5),U (−1,0),U (1.2,1.4),U (−3,−2))⊤ , for 150 < x≤ 300.

(7)

Using 300 observaosterior samples. The algorithm generates 50,000 pseudo-random numbers,
excluding the first 10,000 values as a burn-in period for all parameter estimates. According to
Figure 4a, the maximum a posteriori (MAP) estimator of the number of change points is 2 across
all replications. Figure 4c illustrates the empirical posterior density of the single change point
location, confirming that the method provides an accurate estimate of the change point location
at 150. This simulation study focuses on estimation loss, so we do not fix the parameter values.
The mean of the empirical squared errors (MESE) of the parameters is presented in Table 1.

We use the Bayesian information criteria (BIC) for model comparison. The resulting average
BIC based on the obtained estimates is 1040.175. By eliminating the possibility of a change
point in this study, the average BIC increases to 1173.404, confirming the accuracy of the model
with change point even though its number of parameters is more than twice that of the model
without change point.

A further simulation study is conducted with three change points, using the following pa-
rameter settings:

ξ(p,q)
1 = (U (−1,0.5),U (−0.5,0.8),U (0.2,0.8),U (−0.5,0.5))⊤ , for 1≤ x≤ a1,

ξ(p,q)
2 = (U (0.7,1.3),U (0.8,0.9),U (−0.9,0),U (−1.3,−0.7))⊤ , for a1 < x≤ a2,

ξ(p,q)
3 = (U (−1,0),U (0.2,0.6),U (−1.5,−0.5),U (0,0.7))⊤ , for a2 < x≤ a3,

ξ(p,q)
4 = (U (0.2,0.6),U (−1,0),U (0.1,0.8),U (1,1.5))⊤ for a3 < x≤ 1000.

(8)

The ai values are randomly chosen from the intervals [225,275], [475,525], and [725,775] for
i = 1,2,3, thereby randomizing the change point locations. The simulation setting is replicated
200 times, each with 1,000 observations, and we set kmax = 10 and nmin = 50. A posteriori bar plot
of the number of change points is illustrated in Figure 4b, suggesting that the MAP estimate is
three in all replicates. The empirical posterior densities are shown in Figure 4d. The estimates
of change point locations are generally reliable; in 97.30%, 97.40%, and 98.30% of simulations,
the estimated values of ε1, ε2, and ε3 fall within the original intervals, respectively. The mean
of the evaluated empirical loss for this setting is provided in Table 2. An independent numeric
study is conducted with the same settings but with fixed change points at 250, 500, and 750,
with a single replication. The MAP estimates of the change points vector ε are (238,529,774),
while the posterior sample mean is (246,508,764) in this recent simulation study. The bar
plot of the number of change point and the empirical density values of the generated change
points are shown in Figures 4e and 4f. Based on the BIC, our analysis confirms that the three
change point model demonstrates a superior fit compared to both the two change point and
four change point models. This finding suggests that the three change point model effectively
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balances model complexity and goodness of fit, providing a more parsimonious representation
of the underlying data structure. Furthermore, the BIC serves as a robust criterion for model
selection, penalizing excessive complexity while rewarding models that adequately capture the
data’s essential features. The preference for the three change point model indicates that it
captures the significant shifts in the data while avoiding overfitting, which can occur in more
complex models.

Remark 2. We also employed the methodologies presented by Ko et al. (2015) and Fearnhead
(2006), both of which demonstrated a high level of accuracy in detecting change points and
estimating model parameters. However, our findings indicate that our proposed method exhibits
slightly superior accuracy in the estimation of these parameters.

5 COVID-19 data analysis using the proposed method
In this section, we analyze the COVID-19 pandemic using the proposed RJMCMC method and
the Poisson time series model. Section 5.1 presents a segmentation of the coronavirus infection
and mortality curves across four countries. Building on the proposed algorithm, Section 5.2
evaluates the impact of COVID-19 vaccination and public health measures on the number of
confirmed cases and deaths in the USA. Finally, Section 5.3 provides forecasts for deaths in
Japan based on the proposed Poisson time series model.

5.1 Segmentation of COVID-19 confirmed cases and deaths
The primary objective of this study is to develop a robust technique for accurately identify-
ing change points in the dynamics of COVID-19 outbreaks. To achieve this, we employed an
RJMCMC-based method applied to Model (1) for a comprehensive analysis of data from Iran,
and Spain, covering the period from April 10, 2020, to October 30, 2021. This analysis focuses
on segmenting daily confirmed cases and COVID-19-related deaths, thereby enhancing our un-
derstanding of the evolving patterns of the pandemic across different regions. In this section,
we analyze the relationship between the total number of deaths attributed to COVID-19 and
various covariates. Specifically, we consider the logarithm of total tests administered (x1) and
the logarithm of total confirmed cases (or alternatively, the total deaths, (x2) as covariates in
our model.

Figure 5 presents the timing of the change points identified by the proposed model in the case
and death curves for both Iran and Spain. The following paragraph offers a series of detailed
explanations regarding the detected change points and their relationship to various factors,
including government restrictions, initiatives by the Ministry of Health, vaccination efforts, and
the emergence of different strains of the coronavirus.

The detected change points in COVID-19 deaths in Iran from April 10, 2020, to October 30,
2021, reflect significant shifts in the pandemic’s trajectory influenced by public health measures
and vaccination efforts. Key dates include May 2, 2020, marking the decline after the initial peak
due to lockdowns (World Health Organization, 2020); June 3, 2020, and July 5, 2020, indicating
resurgence as restrictions were relaxed (Ministry of Health and Medical Education, Iran, 2020);
and October 4, 2020, signaling the onset of a second wave (WHO Iran, 2020). The introduction

https://www.who.int/countries/irn/
http://behdasht.gov.ir/
https://www.who.int/iran/
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of vaccines in December 2020 and the subsequent vaccination campaign beginning January 2021
contributed to a notable decrease in deaths (CNN, 2020); (Al Jazeera, 2021). However, new
variants and public fatigue with health measures led to further spikes, particularly in August
and September 2021 (The Guardian, 2021). These change points underscore the dynamic nature
of the pandemic in Iran, necessitating ongoing public health interventions (Health Ministry of
Iran, 2021).

The identified change points in COVID-19 deaths in Spain from April 1, 2021, to November
30, 2021, reflect critical shifts in the pandemic’s dynamics influenced by various public health
measures and vaccination efforts. The change point on April 24, 2020, marks the beginning of
a decline in deaths following strict lockdown measures implemented in March (World Health
Organization, 2020). On May 17, 2020, a gradual easing of restrictions led to a resurgence in
cases and subsequent deaths, indicating the challenges of reopening (Ministry of Health, Spain,
2020). The change point on August 1, 2020, corresponds to a notable increase in deaths as the
summer wave emerged (El País, 2020). Subsequent change points in September and November
2020 reflect the impact of the second wave, exacerbated by increased social interactions and the
onset of colder weather (The Lancet, 2020). The December 3, 2020, change point coincides with
the approval of vaccines, shifting the focus towards vaccination campaigns (CNN, 2020). The
early 2021 change points, particularly January 8 and February 3, highlight the peak of the third
wave, leading to significant mortality (The Guardian, 2021). As vaccination efforts ramped up in
March and April 2021, deaths began to decline, with further stabilization observed by June (Al
Jazeera, 2021). However, new variants and public compliance issues led to fluctuations in deaths
through late summer and fall, as indicated by the change points in August and October 2021
(Reuters, 2021). These change points illustrate the complex interplay between public health
interventions, seasonal effects, and vaccination strategies in managing the COVID-19 pandemic
in Spain.

In Table 3, the parameters of the Bayesian change point model for COVID-19 deaths in
Iran exhibit significant variability across the 17 segments, reflecting the dynamic nature of the
epidemic. In the initial segments, the parameter a shows both negative and positive values,
indicating fluctuations in the influence of previous predicted counts on current counts. The
parameter b generally remains positive, suggesting a reinforcing effect of past observed deaths,
particularly strong in segments 2, 6, and 15. However, as the segments progress, both parameters
demonstrate stabilization, with a approaching zero in segments 10 and 11, while b shows a
gradual decline in its influence. The variability in these parameters highlights the changing
relationships between past predictions, observed counts, and covariates, emphasizing the model’s
ability to capture the evolving dynamics of the epidemic in response to public health measures
and changing circumstances.

5.2 Impact of public health measures and vaccination on reducing COVID-19
deaths in the USA

In this subsection, we investigate the impact of public health measures and vaccination efforts on
the reduction of COVID-19 deaths in the USA . Utilizing the Bayesian change point for Model
(1), we aim to identify significant shifts in the trends of confirmed cases and mortality rates
in response to various interventions. By analyzing data from this country, we seek to quantify

https://www.cnn.com/2020/12/24/health/iran-covid-vaccine-intl/index.html
https://www.aljazeera.com/news/2021/1/2/iran-begins-covid-19-vaccination
https://www.theguardian.com/world/2021/aug/07/iran-covid-cases-surge-delta-variant
http://behdasht.gov.ir/
http://behdasht.gov.ir/
https://www.who.int/countries/esp/
https://www.who.int/countries/esp/
https://www.mscbs.gob.es/
https://www.mscbs.gob.es/
https://english.elpais.com/society/2020-08-01/covid-19-in-spain-the-summer-wave.html
https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)32110-6/fulltext
https://www.cnn.com/2020/12/02/europe/spain-covid-vaccine-approval-intl/index.html
https://www.theguardian.com/world/2021/jan/08/spain-covid-deaths-surge-new-year
https://www.aljazeera.com/news/2021/4/2/spain-covid-vaccination-rate-increases
https://www.aljazeera.com/news/2021/4/2/spain-covid-vaccination-rate-increases
https://www.reuters.com/world/europe/spain-faces-covid-19-surge-amid-vaccination-push-2021-08-07/
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the effectiveness of these measures over time, providing insights into their role in controlling
the pandemic and informing future public health strategies. In this analysis, we examine the
total number of deaths attributed to COVID-19 as the response variable. To explore the factors
influencing this outcome, we include several covariates: the logarithm of the total number of
vaccinations administrated (x1), the duration of school closures (x2), and the extent of stay-at-
home orders implemented during the pandemic (x3).

Figure 6 illustrates the detected change points for COVID-19 related deaths in the United
States during the specified period. Below, we provide a detailed explanation of the timing and
context surrounding these identified change points.

The change points identified from April 1, 2021, to November 30, 2021, illustrate critical
transitions in COVID-19 mortality trends in the United States, largely driven by vaccination
efforts and public health interventions. The first change point on 2021-04-20 aligns with the
expansion of vaccine eligibility, particularly for adults, which significantly increased vaccination
rates (Centers for Disease Control and Prevention, 2021). By 2021-05-25, the CDC updated
its guidance to reflect the growing number of vaccinated individuals, allowing for relaxed mask
mandates, which likely influenced public behavior and contributed to a decline in deaths (Cen-
ters for Disease Control and Prevention, 2021). The change point on 2021-06-19 coincides
with the onset of summer, traditionally associated with lower transmission rates, although by
2021-07-15, the emergence of the Delta variant began to reverse these trends, leading to in-
creased cases and deaths (World Health Organization, 2021). The subsequent change point on
2021-08-19 marked a resurgence in deaths as schools reopened and community transmission
increased, while by 2021-09-13, public health officials noted a concerning rise in hospitaliza-
tions and deaths among unvaccinated populations (Centers for Disease Control and Prevention,
2021). On 2021-10-18, the impact of ongoing vaccination campaigns was evident, yet rising
cases persisted, culminating in the change point on 2021-11-09 with the authorization of the
Pfizer vaccine for children aged 5-11, marking a significant shift in vaccination strategy aimed
at reducing mortality in younger populations (U.S. Food and Drug Administration, 2021).

The parameter estimates from the Poisson time series model for COVID-19 deaths in the U.S.
reveal significant variability across the nine segments in Table 4. The parameter a fluctuates from
a slight positive value in Segment 1 (0.0012) to a notable negative value in Segment 2 (-0.30231),
indicating a shift in the influence of previous predictions on current counts. The parameter b
shows a strong positive influence in Segment 1 (1.8623) and an even higher value in Segment
2 (10.1215), reflecting a surge in deaths, but drops significantly in later segments, indicating
stabilization. The covariate parameters c1, c2, and c3 exhibit varying effects, with c2 showing a
strong negative impact in Segment 4 (-1.5203), suggesting effective public health measures, while
d fluctuates, indicating changes in the baseline death rate. Overall, these changes highlight the
complex interactions between vaccination, public health interventions, and COVID-19 mortality
dynamics.

5.3 Forecasting

The coronavirus pandemic exhibits a series of distinct epidemic phases, as demonstrated by
the nonuniform and fluctuating growth rates of confirmed cases. This variability indicates that
any prediction or forecasting model that assumes stationarity and stability within the time

https://www.cdc.gov/coronavirus/2019-ncov/vaccines/index.html
https://www.cdc.gov/coronavirus/2019-ncov/community/schools-childcare/index.html
https://www.cdc.gov/coronavirus/2019-ncov/community/schools-childcare/index.html
https://www.who.int/en/activities/tracking-SARS-CoV-2-variants
https://covid.cdc.gov/covid-data-tracker
https://covid.cdc.gov/covid-data-tracker
https://www.fda.gov/news-events/press-announcements/fda-authorizes-pfizer-biontech-covid-19-vaccine-emergency-use-children-5-11-years-age


88 Masoud Majidizadeh

series is likely to be inaccurate. Traditional models that do not account for these fluctuations
may fail to capture the underlying dynamics of the epidemic, leading to misleading forecasts
and ineffective public health responses. From the perspective of change point detection, a
more natural and straightforward approach is to first segment the time series into periods that
display relative stability in their behavior. This segmentation allows for the identification of
distinct phases of the epidemic, each characterized by its own growth patterns and trends. By
isolating these segments, analysts can better understand the factors influencing each phase,
such as public health interventions, changes in population behavior, and the emergence of new
variants. Following this segmentation, forecasts can be generated based on observations from
the most recent segment. This methodology not only enhances the accuracy of predictions but
also provides valuable insights into the evolving nature of the pandemic. Moreover, it enables
policymakers and public health officials to tailor their strategies to the specific conditions of each
phase, ultimately improving the effectiveness of their responses. This approach is supported
by the works of Pesaran and Timmermann (2002), Bauwens et al. (2015) and Jiang et al.
(2022), which emphasize the importance of recognizing structural changes in the data for more
accurate modeling and forecasting in the context of complex and dynamic phenomena such as
the coronavirus pandemic.

The method was backtested to generate short-term forecasts of COVID-19 deaths in Japan.
In this analysis, daily COVID-19 cases in the country were treated as covariates. Specifically,
forecasts were generated for a one-month period, commencing on May 1, 2020. Panel b of Figure
7 displays the actual values alongside the forecasted values for Total COVID-19 deaths in Japan
from May 1 to May 30, 2020, as generated by Model 1. Overall, the model provides reasonable
short-term forecasts with acceptable accuracy. However, it is important to note that the method
is less effective for long-term forecasting, particularly when the data exhibits significant changes.
As observed, the forecasting values are highly valid and reliable during the initial days of the
month; however, by the end of the month, the forecasts demonstrate a degree of inaccuracy.
This discrepancy can be attributed to changes in the behavior of the pandemic. Therefore, it is
crucial to consider segmented methods for forecasting and predicting the trajectory of contagious
diseases, as they can better account for the dynamic nature of such outbreaks. Panel a of Figure
7 presents the Total deaths in Japan form April 1, 2020 to July 15, 2020, highlighting three
detected change points during this period.

6 Conclusion

In this paper, we presented an autoregressive regression time series model tailored for Poisson
responses, aimed at analyzing COVID-19 infection and mortality curves across various covari-
ates. We introduced an adapted RJMCMC segmentation algorithm to estimate multiple change
points. Our simulation studies and real-world applications illustrated the model’s accuracy and
its potential to enhance public health decision-making during the COVID-19 pandemic.

Applying our methodology to COVID-19 data from multiple countries, we successfully iden-
tified both significant and subtle trends, demonstrating high sensitivity to changes. Notably, the
detected change points correlated with public health interventions and vaccination campaigns,
indicating that the effects of these factors on disease spread evolved over time. This framework
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Table 1: The squared root of the mean of evaluated
squared errors of each parameter in (7).

Segment 1 Segment 2
Parameters

√
MESE Parameters

√
MESE

a1 0.058 a2 0.9044
b1 0.022 b2 0.079
c1 0.049 c2 0.178
d1 0.5908 d2 0.3035

Table 2: The squared root of the mean of the evaluated squared errors of each param-
eter in (8).

Segment 1 Segment 2 Segment 3 Segment 4
parameters

√
MESE parameters

√
MESE parameters

√
MESE parameters

√
MESE

a1 0.025 a2 0.018 a3 0.042 a4 0.010
b1 0.030 b2 0.007 b3 0.072 b4 0.033
c1 0.034 c2 0.016 c3 0.147 c4 0.082
d1 0.133 d2 0.002 d3 0.049 d4 0.110

not only elucidates the drivers of COVID-19 transmission but also aids in formulating effective
mitigation strategies.

While our approach is based on certain assumptions and limitations related to prior and
proposal functions, it relies solely on publicly accessible data. We believe our model enriches
the existing literature on COVID-19 by complementing mechanistic models with robust in-
sample and out-of-sample predictions. Furthermore, the autoregressive regression framework
and RJMCMC method may be applicable to other infectious disease outbreaks characterized by
dynamic parameter shifts.

Data availability statement
The COVID-19 data used in this analysis are available in the R-package COVID19 accessible
from CRAN. The data is originally sourced from COVID-19 Data Hub; see Guidotti (2022).
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(a) Total confirmed cases (b) Total number of deaths

Figure 1: Panel a: Total confirmed cases in Iran and Spain from April 10, 2020, to October 30,
2021. Panel b: Total deaths in Iran and Spain from April 10, 2020, to October 30, 2021.
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Algorithm 1 The Proposed RJMCMC Algorithm
Require: (ξ(p,q),α2,k,ε,kmax) either randomly or deterministically.

0: for i = 1, . . . ,T do
0: SM movement- Update the number and the location of change points with proposed k′

and ε′ from the proposal densities.
0: (ξ(p,q),α2,k,ε)← (ξ(p,q)i−1

,α2i−1
,ki−1,εi−1)

0: while i≤ N do
0: Generate k′

0: if k′ = k+1 then {Birth step}
0: Randomly select the segment number s∗ to split.
0: Generate εs∗ at random in the s∗th segment and update ε.
0: Update α2′ using the appropriate formula.
0: Compute acceptance probability A1 and generate ν ∼U (0,1).
0: if A1 ≥ ν then
0: Generate ξ(p,q)′

s, s = s∗,s∗+1, by ARS algorithm.
0: Save E′ := (ξ(p,q)′,α2′,k′,ε′) and set i← i+1.
0: else
0: Go back to select s∗.
0: end if
0: else[k′ = k−1] {Death step}
0: Randomly choose εs∗ and remove it from ε to obtain ε′.
0: α2′

s∗ ←
√

α2
s∗α2

s∗+1 and generate ξ(p,q)′
s∗ .

0: Compute acceptance probability A2 and generate ν ∼U (0,1).
0: if A2 ≥ ν then
0: Generate ξ(p,q)′

s∗ by ARS algorithm.
0: Save E′ := (ξ(p,q)′,α2′,k′,ε′) and set i← i+1.
0: else
0: Go back to remove εs∗ .
0: end if
0: end if
0: end while
0: WM movement- use the data within each segment to generate the updates ξ(p,q)′ and

α2′.
0: Select one of the change points, εs∗ , and propose a new location for it.
0: Update ε with the new value for εs∗ .
0: Calculate acceptance probability A3 and generate ν ∼U (0,1).
0: if A3 ≥ ν then
0: Update α2 via the Gibbs sampler.
0: Update the coefficients ξ(p,q) using ARS.
0: Save E := (ξ(p,q)′,α2′,k′,ε′).
0: else
0: Go back to select a new change point.
0: end if
0: end for=0
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Figure 2: A realization for the dataset 2 in 1.
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Figure 3: Panel (a) and Panel (b) display the empirical posterior relative frequency (EPRF) of
the number of change points, considering kmax = 4 and nmin = 20, for datasets without and with
change points, respectively. Panel (c) illustrates the posterior densities for the location of the
change point, where the actual change point and the detected change point are represented by
solid and dashed lines, respectively.
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(a) EPRF of K in (7) (b) EPRF of K in (8)

(c) Detected change points (d) Detected change points for (8)

(e) EPRF of K for (8) with constant change points
(f) Posterior change points of (8) with constant change
points

Figure 4: Panels (a), (b), and (e): The estimated posterior frequencies of the number of segments
for models (7) and (8), and the fixed change point, respectively. Panels (c), (d), and (f): The
posterior densities for the location of the change points regarding to model (7), model (8) with
random change points and constant change points, respectively.
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(a) Iran total cases (b) Iran total deaths

(c) Spain total cases (d) Spain total deaths

Figure 5: The estimated change point locations, based on the Poisson time series model, indicate
changes in the confirmed cases and deaths for the total cases in Iran (see Figure a), total deaths
in Iran (see Figure b), confirmed cases in Spain (see Figure c), and total deaths in Spain (see
Figure d) from April 10, 2020, to October 30, 2021. The points and dates identified in each plot
were determined using parameters kmax = 20 and nmin = 20.
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(a) Total vaccination doses administered (b) Total number of deaths

Figure 6: Panel a: Total number of vaccine doses administered in the United States from April
1, 2021, to November 30, 2021. Panel b: Cumulative number of mortality cases during this
period, with labels indicating the detected change points based on the parameters kmax = 5 and
nmin = 20.

(a) Total vaccination doses administered (b) Total number of deaths

Figure 7: Panel a: Total deaths in Japan from April 1, 2020, to July 15, 2020, and detected
change points. Panel b: Actual (solid points) and forecasted (hollow points) COVID-19 deaths
data in Japan from May 1, 2020, to May 30, 2020.
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tim

e
series

m
odelapplied

to
the

C
O

V
ID

-19
deaths

dataset
in

Iran.
T

his
analysis

utilizes
the

logarithm
ofthe

totaladm
inistered

tests
and

the
totalconfirm

ed
cases

as
covariates.

T
he

dataset
spans

from
A

pril10,2020,to
O

ctober
30,2021,and

is
divided

into
17

segm
ents,w

ith
five

param
eters

estim
ated

for
each

segm
ent.

Segm
ent

a
b

c
1

c
2

d

1
-1.0807

(0.5437)
0.7473

(0.2543)
-0.0011

(0.6207)
0.0015

(0.8405)
0.7703

(0.7890)
2

-0.3087
(0.0746)

1.9667
(0.3354)

0.0034
(0.0470)

0.0014
(0.1890)

0.3283
(1.0526)

3
1.1003

(0.3456)
0.6947

(0.7543)
0.0051

(0.9012)
-0.0070

(0.4001)
-1.3630

(0.2342)
4

-1.4946
(1.0276)

2.1091
(0.6002)

-0.0095
(0.3451)

-0.0162(0.0050)
0.4031

(0.0703)
5

0.4769
(0.9205)

1.1886
(1.020)

0.0011
(0.02)

0.0009
(0.4409)

0.3078
(0.5802)

6
-1.4659

(0.2708)
2.3436

(0.0214)
-0.0046

(0.3882)
0.0010

(0.6634)
-0.5215

(1.03)
7

-1.602
(0.3945)

1.0993
(0.8002)

-0.0079
(0.2500)

0.0012
(0.5432)

1.1756
(0.7365)

8
1.3020

(0.3500)
0.3862

(0.2901)
0.0051

(0.6345)
0.0009

(0.0550)
0.3757

(0.9102)
9

0.2840
(0.3756)

1.4862
(1.0452)

0.0019
(0.1987)

0.00103
(0.7432)

-1.3106
(1.0210)

10
0.00109

(0.0324)
0.6483

(0.5278)
0.0099

(0.7000)
0.0009

(0.0264)
-0.0809

(0.4932)
11

0.0777
(0.8008)

1.0347
(0.6543)

0.0032
(0.8765)

0.013
(0.0902)

-1.8303
(0.1456)

12
0.5987

(0.1267)
1.32054

(0.4534)
0.0025

(0.0278)
0.01390

(0.5789)
-1.8617

(0.0334)
13

-0.4265
(0.0524)

0.5533
(0.7500)

-0.8977
(0.3845)

0.0175
(0.8342)

-0.1452
(0.6500)

14
-0.5959

(0.2109)
0.8422

(0.8300)
-0.0076

(0.7654)
0.0120

(0.3098)
1.3942

(0.6457)
15

-1.1527
(0.0950)

2.6188
(0.9987)

-0.0019
(0.4251)

0.0168
(0.1005)

0.4474
(0.2056)

16
1.7230

(0.4789)
0.8007

(0.2505)
0.0014

(0.5987)
0.0084

(0.3054)
-1.4603

(0.6843)
17

-0.4094
(0.02)

2.1373
(0.02)

-0.0021
(0.02)

0.0079
(0.02)

-0.8996
(0.02)
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