- Adl, S.M., Acosta-Mercado, D., Anderson, T.R., & Lynn, D.H. (2006). Protozoa, supplementary material. Soil Sampling and Methods of Analysis, 2(1), 455-470. https://doi.org/10.1201/9781420005271.ch36
- Alef, K., & Nannipieri, P. (1995). Methods in applied soil microbiology and biochemistry (Issue 631.46 M592ma). Academic Press.
- Allison, L.E. (1975). Organic carbon. In: Black CA. Methods of soil analysis. American Society of Agronomy, Part, 2.
- Anderson, T.H., & Domsch, K.H. (1990). Application of eco-physiological quotients (qCO2 and qD) on microbial biomasses from soils of different cropping histories. Soil Biology and Biochemistry, 22(2), 251-255. https://doi.org/10.1016/0038-0717(90)90094-G
- Babur, E., Uslu, Ö.S., Battaglia, M.L., Diatta, A., Fahad, S., Datta, R., & Danish, S. (2021). Studying soil erosion by evaluating changes in physico-chemical properties of soils under different land-use types. Journal of the Saudi Society of Agricultural Sciences, 20(3), 190-197. https://doi.org/10.1016/j.jssas.2021.01.005
- Bayranvand, M., & Kooch, Y. (2016). The effect of broad-leaved tree species on abundance and diversity of earthworms in the flat forest ecosystem. Journal of Soil Biology, 4(1), 15-26.
- Bélanger, N., & Chaput-Richard, C. (2023). Experimental warming of typically acidic and nutrient-poor boreal soils does not affect leaf-litter decomposition of temperate deciduous tree species. Soil Systems, 7(1), 14. https://doi.org/10.3390/soilsystems7010014
- Bhattacharyya, S.S., & Furtak, K. (2022). Soil–Plant–Microbe interactions determine soil biological fertility by altering rhizospheric nutrient cycling and biocrust formation. Sustainability, 15(1), 625. https://doi.org/10.3390/su15010625
- Blake, G.R., & Hartge, K.H. (1986). Particle density. In: Klute, A. (Ed.), Methods of soil analysis. Part 1. Physical and mineralogical methods, 2nd ed. SSSA Book Ser. 5. ASA and SSSA, Madison, WI, 377–382. https://doi.org/10.2136/sssabookser5.1.2ed.c14
- Bower, C.A., Reitemeier, R.F., & Fireman, M. (1952). Exchangeable cation analysis of saline and alkali soils. Soil Science, 73, 251-261. https://doi.org/10.1097/00010694-195204000-00001
- Bremner, J.M., & Mulvaney, C.S. (1982). Nitrogen-total total. In ‘Methods of Soil Analyses. Part 2: Chemical and Microbiological Properties. American Society of Agronomy, Madison, 595-624. https://doi.org/10.2134/ agronmonogr9.2.2ed.c31
- Brookes, P.C., Landman, A., Pruden, G., & Jenkinson, D.S. (1985). Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 17(6), 837–842. https://doi.org/10.1016/0038-0717(85)90144-0
- Chapman, H.D., & Pratt, P.F. (1962). Methods of analysis for soils, plants and waters. Soil Science, 93(1), 68. https://doi.org/10.1097/00010694-196201000-00015
- Coonan, E.C., Kirkby, C.A., Kirkegaard, J.A., Amidy, M.R., Strong, C.L., & Richardson, A.E. (2020). Microorganisms and nutrient stoichiometry as mediators of soil organic matter dynamics. Nutrient Cycling in Agroecosystems, 117(3), 273-298. https://doi.org/10.1007/s10705-020-10076-8
- Długosz, J., Dębska, B., & Piotrowska-Długosz, A. (2024). The effect of soil tillage systems on the soil microbial and enzymatic properties under soybean (Glycine max Merrill) cultivation—implications for sustainable soil management. Sustainability, 16(24), 11140. https://doi.org/10.3390/su162411140
- Dolezal, J., Dvorsky, M., Kopecky, M., Liancourt, P., Hiiesalu, I., Macek, M., & Schweingruber, F. (2016). Vegetation dynamics at the upper elevational limit of vascular plants in Himalaya. Scientific Reports, 6(1), 24881. https://doi.org/10.1038/srep24881.
- Edmondson, J.L., Stott, I., Davies, Z.G., Gaston, K.J., & Leake, J.R. (2016). Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs. Scientific Reports, 6(1), 33708. https://doi.org/10.1038/srep33708
- Elliott, E.T., & Cambardella, C.A. (1991). Physical separation of soil organic matter. Agriculture, Ecosystems & Environment, 34(1-4), 407-419. https://doi.org/10.1016/0167-8809(91)90124-G
- Eslaminejad, P., Heydari, M., Kakhki, F.V., Mirab-Balou, M., Omidipour, R., Muñoz-Rojas, M., & Lucas-Borja, M.E. (2020). Plant species and season influence soil physicochemical properties and microbial function in a semi-arid woodland ecosystem. Plant and Soil, 456, 43-59. https://doi.org/10.1007/s11104-020-04691-1.
- Feng, Q., Yang, H., Liu, Y., Liu, Z., Xia, S., Wu, Z., & Zhang, Y. (2024). Interdisciplinary perspectives on forest ecosystems and climate interplay: a review. Environmental Reviews, 33, 1-21. https://doi.org/10.1139/er-2024-0010
- Gerke, J. (2022). The central role of soil organic matter in soil fertility and carbon storage. Soil Systems, 6(2), 33. https://doi.org/10.3390/soilsystems6020033
- Gilhen-Baker, M., Roviello, V., Beresford-Kroeger, D., & Roviello, G.N. (2022). Old growth forests and large old trees as critical organisms connecting ecosystems and human health. A review. Environmental Chemistry Letters, 20(2), 1529-1538. https://doi.org/10.1007/s10311-021-01372-y
- Harman, G., Khadka, R., Doni, F., & Uphoff, N. (2021). Benefits to plant health and productivity from enhancing plant microbial symbionts. Frontiers in Plant Science, 11, 610065. https://doi.org/10.3389/fpls.2020.610065
- Jordan, D., Ponder, F., Jr., & Hubbard, V.C. (2003). Effects of soil compaction, forest leaf litter and nitrogen fertilizer on two oak species and microbial activity. Applied Soil Ecology, 23(1), 33–41. https://doi.org/10.1016/S0929-1393(03)00003-9
- Kemper, W.D., & Rosenau, R.C. (1986). Aggregate stability and size distribution. Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods, 5, 425–442. https://doi.org/10.2136/sssabookser5.1.2ed.c17
- Kim, J.S. (2007). Litter decomposition and nitrogen release in three quercus species at temperate broad‐leaved forest. Forest Science and Technology, 3(2), 123-131. https://doi.org/10.1080/21580103.2007.9656328
- Kooch, Y., & Noghre, N. (2020). Nutrient cycling and soil-related processes under different land covers of semi-arid rangeland ecosystems in northern Iran. Catena, 193, 104621. https://doi.org/10.1016/j.catena.2020.104621
- Kooch, Y., Heidari, F., Haghverdi, K., Gómez-Brandón, M., & Kartalaei, Z.M. (2024). The type of land cover and management affect differently soil functional indicators in a semi-arid ecosystem. Applied Soil Ecology, 202, 105553. https://doi.org/10.1016/j.apsoil.2024.105553
- Kooch, Y., Samadzadeh, B., & Hosseini, S.M. (2017). The effects of broad-leaved tree species on litter quality and soil properties in a plain forest stand. Catena, 150(3), 223-229. https://doi.org/10.1016/j.catena.2016.11.023
- Li, Z., Liang, D., Peng, Q., Cui, Z., Huang, J., & Lin, Z. (2017). Interaction between selenium and soil organic matter and its impact on soil selenium bioavailability: A review. Geoderma, 295, 69-79. https://doi.org/10.1016/j.geoderma.2017.02.019
- Liu, D., Huang, Y., An, S., Sun, H., Bhople, P., & Chen, Z. (2018). Soil physicochemical and microbial characteristics of contrasting land-use types along soil depth gradients. Catena, 162, 345-353. https://doi.org/ 10.1016/j.catena.2017.10.028
- Mendoza, O., De Neve, S., Deroo, H., Li, H., Françoys, A., & Sleutel, S. (2025). Soil organic carbon mineralization is controlled by the application dose of exogenous organic matter. Soil, 11(1), 105-119. https://doi.org/10.5194/soil-11-105-2025
- Mohamed, H. I., Sofy, M.R., Almoneafy, A.A., Abdelhamid, M.T., Basit, A., Sofy, A.R., & Abou-El-Enain, M.M. (2021). Role of microorganisms in managing soil fertility and plant nutrition in sustainable agriculture. Plant Growth-promoting Microbes for Sustainable Biotic and Abiotic Stress Management, 93-114. https://doi.org/10.1007/978-3-030-66587-6_4
- Mohammad, A.G., & Adam, M.A. (2010). The impact of vegetative cover type on runoff and soil erosion under different land uses. Catena, 81(2), 97-103. https://doi.org/10.1016/j.catena.2010.01.008
- Moscatelli, M.C., Marabottini, R., Massaccesi, L., & Marinari, S. (2022). Soil properties changes after seven years of ground mounted photovoltaic panels in Central Italy coastal area. Geoderma Regional, 29, e00500. https://doi.org/10.1016/j.geodrs.2022.e00500
- Neatrour, M.A., Jones, R.H., & Golladay, S.W. (2005). Correlations between soil nutrient availability and fine-root biomass at two spatial scales in forested wetlands with contrasting hydrological regimes. Canadian Journal of Forest Research, 35(12), 2934–2941. https://doi.org/10.1139/x05-217
- Nelson, D.W.A, & Sommers, L. (1983). Total carbon, organic carbon, and organic matter. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 9, 539–579. https://doi.org/10.2134/agronmonogr9.2.2ed.c29
- Nilsson, M.-C., Wardle, D.A., & Dahlberg, A. (1999). Effects of plant litter species composition and diversity on the boreal forest plant-soil system. Oikos, 16–26. https://doi.org/10.2307/3546566
- Osman, K.T., & Osman, K.T. (2013). Physical properties of forest soils. Forest Soils: Properties and Management, 19-44. https://doi.org/10.1007/978-3-319-02541-4_2
- Poirier, V., Roumet, C., & Munson, A.D. (2018). The root of the matter: Linking root traits and soil organic matter stabilization processes. Soil Biology and Biochemistry, 120, 246-259. https://doi.org/10.1016/j.soilbio.2018.02.016
- Pourbabaei, H., Salehi, A., Ebrahimi, S.S., & Khodaparasrt, F. (2020). Variations of soil physicochemical properties and vegetation cover under different altitudinal gradient, western Hyrcanean forest, north of Iran.https://doi.org/10.17221/136/2019-JFS
- Qu, L., Huang, Y., Ma, K., Zhang, Y., & Biere, A. (2016). Effects of plant cover on properties of rhizosphere and inter-plant soil in a semiarid valley, SW China. Soil Biology and Biochemistry, 94, 1-9. https://doi.org/10.1016/ j.soilbio.2015.11.004
- Robertson, G.P., Coleman, D.C., Sollins, P., & Bledsoe, C.S. (1999). Standard soil methods for long-term ecological research (Vol. 2). Oxford University Press on Demand. https://doi.org/10.1093/oso/9780195120837. 001.0001
- Sardans, J., & Peñuelas, J. (2021). Potassium control of plant functions: Ecological and agricultural implications. Plants, 10(2), 419. https://doi.org/10.3390/plants10020419
- Seddighi Chafjiri, A.N., Hasan Zad Navroudi, I., Taheri Abkenar, K., & Pourbabaei, H. (2021). Effect of protection on quantity and quality characteristics of Persian oak (Quercus macranthera A. Mey) in Roudbar forests of Guilan province. Journal of Environmental Science and Technology, 22(11), 263-275.
- Sharma, M., Setia, R., Rishi, M., Kumar, V., Singh, R., & Pateriya, B. (2025). Short-term carbon mineralization from soils under different land uses in northwest India. Soil Advances, 3, 100038. https://doi.org/ 10.1016/j.soilad.2025.100038
- Singh, J.S., Singh, D.P., & Kashyap, A.K. (2009). A comparative account of the microbial biomass-N and N-mineralization of soils under natural forest, grassland and crop field from dry tropical region, India. Plant Soil Environ, 55(6), 223-230. https://doi.org/10.17221/1021-PSE
- Six, J., Callewaert, P., Lenders, S., De Gryze, S., Morris, S.J., Gregorich, E.G., Paul, E.A., & Paustian, K. (2002). Measuring and understanding carbon storage in afforested soils by physical fractionation. Soil Science Society of America Journal, 66(6), 1981-1987. https://doi.org/10.2136/sssaj2002.1981
- Tavakoli, M., Kooch, Y., & Akbarinia, M. (2018). Frequency and diversity of worms in topsoil of degraded and reclaimed forest habitats of the Caspian region. Iranian Journal of Forest, 10(3), 293–306. (In Persian)
- Timmis, K., & Ramos, J.L. (2021). The soil crisis: the need to treat as a global health problem and the pivotal role of microbes in prophylaxis and therapy. Microbial Biotechnology, 14(3), 769-797. https://doi.org/10.1111/1751-7915.13771
- Toca, L., Morrison, K., Artz, R., Gimona, A., & Quaife, T. (2022). High resolution C-band SAR backscatter response to peatland water table depth and soil moisture: a laboratory experiment. International Journal of Remote Sensing, 43(14), 5231-5251. https://doi.org/10.1080/01431161.2022.2131478
- Tufa, M., Melese, A., & Tena, W. (2019). Effects of land use types on selected soil physical and chemical properties: The case of Kuyu District, Ethiopia. Eurasian Journal of Soil Science, 8(2), 94-109. https://doi.org/10.18393/ejss.510744
- Ulusu, F., & Darıcı, C. (2023). The influence of tannins purified from Eastern Mediterranean Region plants (Pinus brutia and Quercus coccifera L.) on carbon mineralization: Antimicrobial and antimutagenic evaluation. Anatolian Journal of Botany, 7(1), 60-69. https://doi.org/10.30616/ajb.1259084
- Wang, Q., & Wang, S. (2006). Microbial biomass in subtropical forest soils: effect of conversion of natural secondary broad-leaved forest to Cunninghamia lanceolata Journal of Forestry Research, 17(3), 197–200. https://doi.org/10.1007/s11676-006-0046-9
- Wang, W., Jia, T., Qi, T., Li, S., Degen, A.A., Han, J., & Shang, Z. (2022). Root exudates enhanced rhizobacteria complexity and microbial carbon metabolism of toxic plants. Iscience, 25(10). https://doi.org/10.1016/j.isci. 2022.105243
- Wollum, A.G. (1982). Cultural methods for soil microorganisms. Methods of Soil Analysis: part 2 Chemical and Microbiological Properties, 9, 781-802. https://doi.org/10.2134/agronmonogr9.2.2ed.c37
- Xiang, T., Qiang, F., Liu, G., Liu, C., Liu, Y., Ai, N., & Ma, H. (2023). Soil quality evaluation of typical vegetation and their response to precipitation in Loess Hilly and Gully Areas. Forests, 14(9), 1909. https://doi.org/ 10.3390/f14091909.
- Yengwe, J., Gebremikael, M.T., Buchan, D., Lungu, O., & De Neve, S. (2018). Effects of Faidherbia albida canopy and leaf litter on soil microbial communities and nitrogen mineralization in selected Zambian soils. Agroforestry Systems, 92, 349-363. https://doi.org/10.1007/s10457-016-0063-4
- Zancan, S., Trevisan, R., & Paoletti, M.G. (2006). Soil algae composition under different agro-ecosystems in North-Eastern Italy. Agric Ecosyst Environ, 112(1), 1–12. https://doi.org/10.1016/j.agee.2005.06.018
- Zhao, S., & Riaz, M. (2024). Plant–soil interactions and nutrient cycling dynamics in tropical rainforests. In Environment, Climate, Plant and Vegetation Growth, 229-264. https://doi.org/10.1007/978-3-031-69417-2_8
- Zhou, P., Luukkanen, O., Tokola, T., & Nieminen, J. (2008). Effect of vegetation cover on soil erosion in a mountainous watershed. Catena, 75(3), 319-325. https://doi.org/10.1016/j.catena.2008.07.010
|