- Addo, S., Klingel, S., Thaller, G., & Hinrichs, D. (2021). Genetic diversity and the application of runs of homozygosity-based methods for inbreeding estimation in German White-headed Mutton sheep. PLoS One, 16, e0250608. https://doi.org/10.1371/journal.pone.0250608
- Almamun, H. A., Clark, S. A., Kwan, P., & Gondro, C. (2015). Genome-wide linkage disequilibrium and genetic diversity in five populations of Australian domestic sheep. Genetic Selection Evolution, 47, 90. https://doi.org/10.1186/s12711-015-0169-6
- Cádiz, M. I., Tengstedt, A. N. B., Sørensen, I. H., Pedersen, E. S., Fox, A. D., & Hansen, M. M. (2024). Demographic history and inbreeding in two declining sea duck species inferred from whole-genome sequence data. Evolutionary Applications, 17(9), e70008. https://doi.org/10.1111/eva.70008
- Chen, X., Sun, X., Chimbaka, I. M., Qin, N., Xu, X., Liswaniso, S., Xu, R., & Gonzalez, J. M. (2021). Transcriptome analysis of ovarian follicles reveals potential pivotal genes associated with increased and decreased rates of chicken egg production. Frontiers in Genetics, 12, 622751. https://doi.org/10.3389/fgene.2021.622751
- Curik, I., Ferenčaković, M., & Sölkner, J. (2014). Inbreeding and runs of homozygosity: A possible solution to an old problem. Livestock Science, 166, 26-34. https://doi.org/10.1016/j.livsci.2014.05.034
- Eydivandi, S., Roudbar, M. A., Karimi, M. O., & Sahana, G. (2021). Genomic scans for selective sweeps through haplotype homozygosity and allelic fixation in 14 indigenous sheep breeds from Middle East and South Asia. Scientific Reports, 11(1), 2834. https://doi.org/10.1038/s41598-021-82625-2
- Gomez-Raya, L., Rodríguez, C., Barragán, C., & Silió, L. (2015). Genomic inbreeding coefficients based on the distribution of the length of runs of homozygosity in a closed line of Iberian pigs. Genetic Selection Evolution, 47,81. https://doi.org/10.1186/s12711-015-0153- 1
- Kroger, C. A., Lee, W., Fraley, G. S., Brito, L. F., & Karcher, D. (2024). Genetic parameters for egg quality traits in Pekin ducks. Poulty Science, 103(12), 104264. https://doi.org/10.1016/j.psj.2024.104264 . Epub ahead of print.
- Li, T., Wang, Y., Zhang, Z., Ji, C., Zheng, N., & Huang, Y. (2024). A comparative analysis reveals the genomic diversity among 8 Muscovy duck populations. G3 (Bethesda), 14(7), jkae112. https://doi.org/10.1093/g3journal/jkae112
- Lin, R., Li, J., Yang, Y., Yang, Y., Chen, J., Zhao, F., & Xiao, T. (2022). Genome-wide population structure analysis and genetic diversity detection of four Chinese indigenous duck breeds from Fujian province. Animals (Basel), 12(17), 2302. https://doi.org/10.3390/ani12172302
- Lin, R., Li, H., Lin, W., Yang, F., Bao, X., Pan, C., Lai, L., & Lin, W. (2024). Whole-genome selection signature differences between Chaohu and Ji'an red ducks. BMC Genomics, 25(1), 522. https://doi.org/10.1186/s12864-024-10339-6
- Liu, H., Wang, L., Guo, Z., Xu, Q., Fan, W., Xu, Y., Hu, J., Zhang, Y., Tang, J., Xie, M., Zhou, Z., & Hou, S. (2021a). Genome-wide association and selective sweep analyses reveal genetic loci for FCR of egg production traits in ducks. Genetic Selection Evolution, 53(1), 98. https://doi.org/10.1186/s12711-021-00684-5
- Liu, J., Shi, L., Li, Y., Chen, L., Garrick, D., Wang, L., & Zhao, F. (2021b). Estimates of genomic inbreeding and identification of candidate regions that differ between Chinese indigenous sheep breeds. Journal of Animal Science and Biotechnology, 12(1), 95. https://doi.org/10.1186/s40104-021-00608-9
- Machová, K., Marina, H., Arranz, J. J., Pelayo, R., Rychtářová, J., Milerski, M., Vostrý, L., & Suárez-Vega, A. (2023). Genetic diversity of two native sheep breeds by genome-wide analysis of single nucleotide polymorphisms. Animal, 17(1), 100690. https://doi.org/10.1016/j.animal.2022.100690 . Epub 2022 Dec 1
- McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., & Daly, M. (2010). The genome analysis toolkit: A MapReduce framework for analyzin next-generation DNA sequencing data. Genome Research, 20, 1297–1303. https://doi.org/10.1101/gr.107524.110 . Epub 2010 Jul 19
- Oluwagbenga, E. M., Tetel, V., Schober, J., & Fraley, G. S. (2022). Chronic heat stress part 1: Decrease in egg quality, increase in cortisol levels in egg albumen, and reduction in fertility of breeder Pekin ducks. Frontiers in Physiology, 13, 1019741. https://doi.org/10.3389/fphys.2022.1019741
- Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., Maller, J., Sklar, P., de Bakker, P. I., & Daly, M. J. (2007). PLINK: A tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics, 81, 559–575. https://doi.org/10.1086/519795
- Shen, Z., Zhang, T., Twumasi, G., Zhang, J., Wang, J., Xi, Y., Wang, R., Wang, J., Zhang, R., & Liu, H. (2024). Genetic analysis of a Kaijiang duck conservation population through genome-wide scan. British Poultry Science, 65(4), 378-386. https://doi.org/10.1080/00071668.2024.2335937
- Sun, Y., Li, Y., Jiang, X., Wu, Q., Lin, R., Chen, H., Zhang, M., Zeng, T., Tian, Y., Xu, E., Zhang, Y., & Lu, L. (2024). Genome-wide association study identified candidate genes for egg production traits in the Longyan Shan-ma duck. Poultry Science, 103(9), 104032. https://doi.org/10.1016/j.psj.2024.104032 . Epub 2024 Jun 27
- Tian, S., Tang, W., Zhong, Z., Wang, Z., Xie, X., Liu, H., Chen, F., Liu, J., Han, Y., Qin, Y., Tan, Z., & Xiao, Q. (2023). Identification of runs of homozygosity islands and functional variants in Wenchang chicken. Animals (Basel), 13(10), 1645. https://doi.org/10.3390/ani13101645
- Walugembe, M., Bertolini, F., & Dematawewa, C. M. B. (2019). Detection of selection signatures among Brazilian, Sri Lankan, and Egyptian chicken populations under different environmental conditions. Frontiers in Genetics, 9, 737. https://doi.org/10.3389/fgene.2018.00737
- Xu, W., Wang, Z., Qu, Y., Li, Q., Tian, Y., Chen, L., Tang, J., Li, C., Li, G., Shen, J., Tao, Z., Cao, Y., Zeng, T., & Lu, L. (2022). Genome-wide association studies and haplotype-sharing analysis targeting the egg production traits in Shaoxing duck. Frontiers in Genetics, 13, 828884. https://doi.org/10.3389/fgene.2022.828884
- Yang, Z., Xi, Y., Qi, J., Li, L., Bai, L., Zhang, J., Lv, J., Li, B., & Liu, H. (2024). Genome-wide association studies reveal the genetic basis of growth and carcass traits in Sichuan Shelduck. Poultry Science, 103(11), 104211. https://doi.org/10.1016/j.psj.2024.104211 . Epub 2024 Aug 14
- Yu, J. Z., Zhou, J., Yang, F. X., Hao, J. P., Hou, Z. C., & Zhu, F. (2024). Genome-wide association analysis identifies important haplotypes and candidate gene XKR4for body size traits in Pekin ducks. Animals (Basel), 14(16), 2349. https://doi.org/10.3390/ani14162349
- Yurchenko, A. A., Daetwyler, H. D., & Yudin, N. (2018). Scans for signatures of selection in Russian cattle breed genomes reveal new candidate genes for environmental adaptation and acclimation. Scientific Reports, 8, 12984. https://doi.org/10.1038/s41598-018-31304-w
- Zhang, Q., Guldbrandtsen, B., Bosse, M., Lund, M. S., & Sahana, G. (2015). Runs of homozygosity and distribution of functional variants in the cattle genome. BMC Genomics, 16(1), 542. https://doi.org/10.1186/s12864-015-1715-x
- Zheng, S., Ouyang, J., Liu, S., Tang, H., Xiong, Y., Yan, X., & Chen, H. (2023). Genomic signatures reveal selection in Lingxian white goose. Poultry Science, 102(1), 102269. https://doi.org/10.1016/j.psj.2022.102269 . Epub 2022 Oct 21
- Zhou, J., Yu, J. Z., Zhu, M. Y., Yang, F. X., Hao, J. P., He, Y., Zhu, X. L., Hou, Z. C., & Zhu, F. (2024). Genome-wide association analysis and genetic parameters for egg production traits in Peking ducks. Animals (Basel), 14(13), 1891. https://doi.org/10.3390/ani14131891
- Zhou, Z., Li, M., Cheng, H., Fan, W., Yuan, Z., & Gao, Q. (2018). An intercross population study reveals genes associated with body size and plumage color in ducks. Nature Communications, 9, 2648. https://doi.org/10.1038/s41467-018-04868-4
- Zhou, S., Ma, Y., Zhao, D., Mi, Y., & Zhang, C. (2020). Transcriptome profiling analysis of underlying regulation of growing follicle development in the chicken. Poultry Science, 99(6), 2861-2872. https://doi.org/10.1016/j.psj.2019.12.067 . Epub 2020 Mar 19
- Zhu, F., Cui, Q. Q., Yang, Y. Z., Hao, J. P., Yang, F. X., & Hou, Z. C. (2020). Genome-wide association study of the level of blood components in Pekin ducks. Genomics, 112(1), 379-387. https://doi.org/10.1016/j.ygeno.2019.02.017
|