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Mathematical modeling of COVID-19
spread with media coverage and optimal

control analysis
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Abstract

The COVID-19 pandemic, initiated by the SARS-CoV-2 virus, first emerged
in Wuhan, China and quickly propagated worldwide. In India, lacking im-
mediate access to effective vaccines and antiviral drugs, the response pri-
marily relied on nonpharmaceutical interventions. These strategies, exten-
sively covered by the media, were vital in promoting preventive behaviors
to limit viral transmission. This research introduces a new mathematical
model, SAEIaIRUM , to analyze COVID-19’s transmission dynamics. It
includes a saturation functional response to depict the media’s role in in-
fluencing public behavior. The control reproduction number (Rc) is deter-
mined, and both local and global stability of the disease-free equilibrium
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are analyzed. Using the least-squares method, the model fits daily case
data from India from March 30, 2020, to January 24, 2021. We evaluate
the impact of various control parameters on disease progression through
numerical simulations and employ normalized forward sensitivity analysis
to identify critical parameters affecting Rc. The study advances by for-
mulating an optimal control problem, incorporating the cost of preventive
actions as control variables. Findings indicate that an early optimal control
strategy could lessen the severity of epidemic peaks by distributing their
effects over a longer duration. Simulations demonstrate that combining
four control measures outperforms a single or no control.

AMS subject classifications (2020): Primary 92D30; Secondary 92C60.

Keywords: COVID-19; Environmental transmission; Saturated awareness;
Optimal control.

1 Introduction

Coronaviruses are a group of single-stranded, positive-sense RNA viruses
classified under the Coronaviridae family [14]. They were first classified in
1960, with the name “corona” inspired by their distinctive crown-like struc-
ture observed under a microscope [29]. Over time, these viruses have been
responsible for three significant outbreaks: The Severe Acute Respiratory
Syndrome (SARS) outbreak in China (2003), the Middle East Respiratory
Syndrome (MERS) outbreak in Saudi Arabia (2012) [30], and its resurgence
in South Korea (2015) [60].

The World Health Organization (WHO) formally named the illness re-
sulting from the novel coronavirus SARS-Cov-2 as Coronavirus Disease 2019
(COVID-19) [36, 17, 33]. Widely acknowledged as one of the most severe
public health crises of the 21st century, the COVID-19 pandemic has exerted
profound and widespread effects across the globe. Coronaviruses are RNA-
based enveloped viruses known to infect both mammals and birds, frequently
causing respiratory infections [51, 59]. Recognizable symptoms such as fever,
dry cough, and fatigue became widely acknowledged early in the pandemic
[26]. COVID-19 has exhibited a rapid transmission rate and high mortal-
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ity, surpassing the severity of SARS and MERS. Beyond its physical impact,
the pandemic has inflicted profound psychological distress, contributing to
heightened anxiety, loneliness, and reduced resilience. The economic losses
attributed to infectious diseases during this period are estimated to have ex-
ceeded those incurred in all historical wars [52]. Global tracking initiatives,
including platforms like Worldometers and the Center for Systems Science
and Engineering (CSSE) at Johns Hopkins University, have played a piv-
otal role in monitoring the virus’s spread [27]. As COVID-19 swiftly spread
worldwide, India experienced its impact as well. The nation confirmed its
first locally transmitted case on January 30, 2020, in Kerala’s Thrissur dis-
trict, where a student returning from Wuhan University tested positive [22].
Concerns regarding insufficient testing rates raised alarms about potential
widespread infections [9]. With a transmission rate of 1.7 [54], India’s spread
was comparatively lower than other global hotspots, though its estimated
basic reproduction number (Rc) ranged from 2 to 3.5 [4, 63]. The high vi-
ral loads in the upper respiratory tract of symptomatic and asymptomatic
individuals facilitated silent transmission, akin to influenza [63].

During the early phases of a pandemic, when healthcare resources and
biomedical interventions are insufficient, public education on preventive mea-
sures becomes the most effective strategy for controlling disease spread. Non-
pharmaceutical interventions (NPIs) such as social distancing, mask man-
dates, and quarantine protocols have been widely disseminated through social
media, television, radio, and the internet [49, 48]. Modern research under-
scores the power of media coverage as a behavioral influence mechanism,
capable of shaping public responses without direct economic investment [21].
Several studies have explored the role of media in mitigating infectious dis-
ease outbreaks [40, 12, 2, 42, 58, 15, 44]. Misra, Sharma, and Shukla [40]
analyzed a nonlinear SIS model demonstrating that media-driven awareness
campaigns can significantly reduce transmission by encouraging individuals
to self-isolate. Chang et al. [12] examined the impact of media coverage
during the COVID-19 outbreak in Hubei, China, finding that reduced me-
dia attention delayed the infection peak but ultimately increased overall case
numbers. Aldila [2] approached media and rapid testing interventions as an
optimal control problem, demonstrating their effectiveness in minimizing in-
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fections and economic disruptions in East Java, Indonesia. In India, Rai et
al. [42] assessed the influence of social media advertisements on COVID-19
transmission. Wang et al. [58] and Chen, Li, and Zhang [15] conducted
sensitivity analyses showing that intensified media campaigns can reduce the
adequate reproduction number and curb infection rates. The findings empha-
size the necessity of NPIs in reducing the basic reproduction number below
one. Regular public health campaigns and digital outreach efforts are es-
sential in encouraging symptomatic individuals to seek hospitalization and
asymptomatic carriers to enter quarantine, thereby mitigating viral spread.
Media coverage significantly influences human behavior, prompting adher-
ence to precautionary measures such as lockdowns [19, 31], social distancing
[13, 18], mask usage [7, 37, 8], quarantine enforcement [7, 34, 1], and hos-
pitalization protocols [47, 25]. Studies have demonstrated the effectiveness
of NPIs in controlling COVID-19 transmission. Sardar et al. [45] evaluated
lockdown measures across Indian states, revealing a decline in virus transmis-
sion. Aldila et al. [3] employed mathematical modeling to assess the impact
of social distancing and rapid assessments in Jakarta, Indonesia. Memon,
Qureshi, and Memon [39] examined the efficacy of quarantine and isolation
in mitigating outbreaks. Srivastav et al. [50] analyzed the effects of face
masks, hospitalization, and asymptomatic quarantine on disease transmis-
sion in India, concluding that these strategies significantly reduce infection
rates. Additionally, Wang and Ruan [57] introduced an epidemic model incor-
porating constant removal of infectives through treatment, revealing complex
transmission dynamics. Yuan et al. [61] proposed an SEIIaHR model in-
vestigating the impact of asymptomatic carriers and isolation measures on
global COVID-19 transmission.

While most studies focus on human-to-human transmission, SARS-CoV-2
also spreads through contaminated environments. Infected individuals intro-
duce the virus into their surroundings via respiratory secretions from cough-
ing or sneezing [23], and the virus can persist on surfaces for several days
[56]. Several mathematical models have explored the role of environmental
contamination in disease spread [53, 46, 5]. For instance, Sarkar, Mondal,
and Khajanchi [46] assessed COVID-19 transmission in India, demonstrating
that higher environmental contamination correlates with increased infection
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rates. Asamoah et al. [5] conducted a similar study in Ghana, emphasizing
the need for sanitation measures. These findings highlight the critical role of
hygiene and disinfection practices in controlling the virus.

Motivated by the work of Asamoah et al. [5], this study develops a novel
mathematical model to analyze COVID-19 transmission dynamics and evalu-
ate intervention strategies in India. Rai et al. [42] illustrated how individuals
adjust their behavior based on perceived susceptibility to infection. This re-
search incorporates a saturation-type incidence function [41] to account for
adaptive responses such as mask-wearing, hand hygiene, and social distanc-
ing. Using dynamical systems theory, numerical simulations, and sensitivity
analyses, the study provides critical insights into the effectiveness of various
control strategies. Model parameters are estimated using data from India
collected between March 2020 and January 2021 [27]. Optimal control the-
ory offers a robust mathematical framework for identifying the most effective
strategies to manage infectious disease outbreaks. This approach has been
widely utilized to design public health policies aimed at minimizing transmis-
sion [7, 5, 32, 62, 16, 20]. The present study applies optimal control theory to
refine and evaluate the proposed model, ensuring its practical applicability
in pandemic management.

The article is structured as follows: Section 2 presents the mathemati-
cal model describing COVID-19 transmission dynamics. In Section 3, the
model’s well-posedness is demonstrated, followed by an analysis of equilib-
rium points, stability assessment, and the control reproduction number evalu-
ation. Section 4 is dedicated to numerical investigations, including parameter
estimation based on empirical data, normalized sensitivity analysis, and sim-
ulations that examine the effects of NPIs and environmental contamination
on the spread of the disease. Section 5 addresses the formulation and solution
of the optimal control problem. Lastly, Section 6 concludes the study and
outlines possible directions for future research.

2 Mathematical model

In this section, we introduce a novel mathematical model for COVID-19.
The human population is categorized into eight groups: Susceptible indi-
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viduals (S), exposed individuals (E), symptomatic infected individuals (I),
asymptomatic infected individuals (Ia), aware individuals (A), and recovered
individuals (R). Additionally, U represents the density of the coronavirus in
the environment, while M denotes the media coverage of COVID-19, encom-
passing social media, print, electronic media, radio, and similar platforms.
The model is based on the following assumptions:

1. The population’s composition stays unchanged, as new individuals en-
ter the region at a constant rate Λ and are immediately added to the
susceptible group upon arrival.

2. Disease transmission occurs when a susceptible individual comes into
contact with an infected individual, transitioning into the exposed cat-
egory at a rate represented by β.

3. 1/σ represents the latent period. The exposed individuals who do not
exhibit clinical symptoms join the asymptomatic infected class at a rate
of (1− σ)k2. In contrast, those who exhibit clinical symptoms join the
symptomatic infected class at a rate of σk1.

4. During an endemic outbreak, health authorities and media outlets lever-
age social media platforms such as Facebook, Twitter, and WhatsApp
to share information with the public. The spread of information is in-
fluenced by both the frequency of its dissemination and the severity
of the outbreak it pertains to. This suggests that the pace at which
information campaigns grow is closely tied to the scale of the affected
population [40].

5. Media coverage has a limited impact on how the disease spreads among
susceptible individuals. As a result, the rate at which susceptible peo-
ple become aware is modeled by λMS

c+M , where c represents the half-
saturation constant indicating the media exposure level at which aware-
ness reaches half its maximum effect. When the level of media coverage
reaches c, it reaches half its maximum value λS as in [41]. Even those
in the aware class can lose their awareness and return to the suscepti-
ble class at the rate λ0. Additionally, the region consistently receives a
minimum level of media attention.
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6. A proportion α of people in public places consistently and correctly
wear face masks. When face masks are worn properly, they reduce the
spread of disease [28].

7. Individuals showing symptoms move into the recovered class at the rate
γ3. Over time, immunity in the recovered group wanes, causing them
to re-enter the susceptible group at a rate of ξ. Moreover, symptomatic
infected individuals die due to the disease at a rate given by δ.

8. In the model, a fixed proportion ϕ of newly asymptomatic infections
is assumed to progress to the symptomatic class, whereas the comple-
mentary fraction 1 − ϕ recovers without ever developing symptoms.
Individuals in the ϕ-branch leave the asymptomatic compartment Ia

at rate γ1 (mean waiting time 1/γ1) and join the symptomatic class I;
strictly asymptomatic cases exit Ia at rate γ2 (mean infectious period
1/γ2) and enter the recovered class R [5].

Asymptomatic individuals who do not display symptoms join the re-
covered class at the rate γ2.

9. A person infected with COVID-19 releases the virus into the surround-
ings by sneezing or coughing. The emission rates of the virus by asymp-
tomatic and symptomatic individuals are represented by θ1 and θ2,
respectively. However, the virus does not persist indefinitely in the en-
vironment; it is gradually removed through natural decay and human
efforts such as cleaning and disinfection. The rate at which the virus is
eliminated from the surroundings is denoted by ϵ.

10. The rate of information growth, symbolized as r1, is assumed to be
directly linked to the number of infected individuals. The growth rate
decreases by a factor of

f(A) =
r1θA

ω +A
.

Consequently, the net growth rate of TV and social media advertise-
ments aimed at raising awareness within the population is expressed
as

r1

(
1− θA

ω +A

)
.
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Here, θ represents the rate of decline in advertisement effectiveness as
the number of aware individuals increases. The parameter ω denotes
the half-saturation point, where f(A) achieves half of its maximum
value r1θ, occurring when the aware population reaches ω. For the
model to remain valid, the value of θ must lie between 0 and 1. Mean-
while, the rate of information decay, indicated by r0, quantifies how
quickly memories of the information naturally diminish over time.

Figure 1: Flow diagram of model (1)

The spread of COVID-19, based on the stated assumptions, can be mod-
eled using the following system of nonlinear ordinary differential equations:

dS
dt

= Λ− β(1− α)(I + ηIa)S − β1(1− α)SU + λ0A+ ξR− λMS
c+M

− µS,

dA
dt

= λMS
c+M

− λ0A− µA,

dE
dt

= β(1− α)(I + ηIa)S + β1(1− α)SU − k2(1− σ)E − k1σE − µE,

dIa
dt

= k2(1− σ)E − γ1ϕIa − γ2(1− ϕ)Ia − µIa,

dI
dt

= k1σE + γ1ϕIa − γ3I − δI − µI,

dR
dt

= γ2(1− ϕ)Ia + γ3I − ξR− µR,

dU
dt

= θ1Ia + θ2I − ϵU,

dM
dt

= r1(1− θA
ω+A

)I − r0(M −m0).

(1)
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A flow diagram of the model (1) is depicted in Figure 1. The initial cir-
cumstances of model (1) are regarded as follows:
S(0) = S0 > 0, E(0) ≥ 0, Ia(0) ≥ 0, I(0) ≥ 0, A(0) = A0 ≥
0, R(0) ≥ 0, U(0) ≥ 0, M(0) ≥ m0.

Let us use the notations: χ0 = (1 − α), χ1 = k2(1 − σ) + k1σ + µ, χ2 =

γ1ϕ+ γ2(1− ϕ) + µ, χ3 = γ3 + δ + µ, χ4 = λ0 + µ, χ5 = ξ + µ.

Consequently, the above model (1) can be expressed as

dS
dt = Λ− βχ0(I + ηIa)S − β1χ0SU + λ0A+ ξR− λMS

c+M − µS,

dA
dt = λMS

c+M − χ4A,

dE
dt = βχ0(I + ηIa)S + β1χ0SU − χ1E,

dIa
dt = k2(1− σ)E − χ2Ia,

dI
dt = k1σE + γ1ϕIa − χ3I,

dR
dt = γ2(1− ϕ)Ia + γ3I − χ5R,

dU
dt = θ1Ia + θ2I − ϵU,

dM
dt = r1(1− θA

ω+A )I − r0(M −m0).

(2)

A description of all parameters is given in Table 1.

3 Mathematical analysis

In this section, we provide essential analytical findings for model (1), demon-
strating that its solutions remain positive and bounded. We also identify
disease-free and endemic equilibrium states and examine their stability. In
addition, we derive a theoretical expression for the critical biological param-
eter known as the control reproduction number.
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Table 1: Parameters and their interpretation for models (1)

Parameters Description
η Modification Parameter for asymptomatic class
β Human-to-human transmission rate
β1 Maximum transmission rate due to environmental

contamination
k1 Progression rate from exposed to the symptomatic

class
k2 Progression rate from exposed to the asymptomatic

class
γ3 Recovery rate for symptomatic infected individuals
λ The rate at which awareness spreads among suscep-

tible individuals
c, ω Half saturation constants
γ1 Rate of transition from asymptomatic to symp-

tomatic class
γ2 Rate of transition from asymptomatic to recovered

class
δ Disease-induced mortality rate for symptomatic in-

dividuals
ϕ The fraction of asymptomatic patients who sub-

sequently develop symptoms and transition to the
symptomatic infected class

Λ Recruitment rate
r1 Development rate of information dissemination
r0 Reduction rate of advertisements due to inefficacy

and psychological barriers
µ Natural death rate
m0 Baseline number of media coverage
λ0 Rate of transition of aware individuals to the suscep-

tible class
α The proportion of the population wearing face masks
θ1 The speed at which asymptomatic individuals emit

the virus into their surroundings
θ2 The rate at which symptomatic individuals emit the

virus into their surroundings
ϵ Natural decay rate of virus from the environment
θ Represent the decline in the effectiveness of adver-

tisements as the number of individuals who are al-
ready aware increases

1/ξ Average time it takes for immunity to wear off
σ Fraction of exposed individuals joint to I class

Iran. J. Numer. Anal. Optim., Vol. 15, No. 3, 2025, pp 952–992
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3.1 Positivity and boundedness

In this section, we demonstrate that the solutions of the model (1) are posi-
tive and bounded.

dS

dt

∣∣∣∣
S=0

= Λ+ λ0A+ ξR > 0,
dA

dt

∣∣∣∣
A=0

=
λMS

c+M
≥ 0,

dIa
dt

∣∣∣∣
Ia=0

= k2(1− σ)E ≥ 0,
dI

dt

∣∣∣∣
I=0

= k1σE + γ1ϕIa ≥ 0,

dE

dt

∣∣∣∣
E=0

= βχ0(I + ηIa)S + β1χ0SU ≥ 0,
dR

dt

∣∣∣∣
R=0

= γ3I + γ2(1− ϕ)Ia > 0,

dU

dt

∣∣∣∣
U=0

= θ2I + θ1Ia ≥ 0,
dM

dt

∣∣∣∣
M=0

= r1I + r0m0 > 0.

As all rates are nonnegative in this scenario, any solution starting within
the interior of the nonnegative bounding cone R8

+ will remain confined to
this cone, as the vector field consistently points inward along all bounding
planes. As a result, it is assured that none of the model (1) solutions are
negative. We add equations of the model (1) to demonstrate the boundedness
of its solutions, which results in dN

dt = Λ − µN − δI. Then, dN
dt < Λ − µN ,

Applying Birkhoff’s and Rota’s theorems on differential inequality [10], as
t → ∞, we have 0 ≤ N(t) ≤ Λ

µ (= N0). As I(t), Ia(t) ≤ N(t) at any time,
so I(t), Ia(t) ≤ Λ

µ . Now, from the density of the virus in the environment,
dU
dt = θ2I + θ1Ia − ϵU ≤ (θ2 + θ1)

Λ
µ − ϵU . For the initial conditions, when

applying the Gronwall inequality, we get 0 ≤ U(0) ≤ (θ2+θ1)Λ
ϵµ . Additionally,

from the eighth equation of model (1), we obtain dM
dt + r0M ≤ r0m0 +

r1Λ
µ .

Using differential inequality theory, we can derive

lim supM(t) ≤ m0 +
r1Λ

r0µ
,

when applying the Gronwall inequality 0 ≤ M(0) ≤ m0 +
r1Λ
r0µ

. Hence, the
feasible region for the model (1) is

Θ =

{
(S,A,E, Ia, I, R, U,M) ∈ R8

+ :

0 ≤ S,A,E, Ia, I, R,N ≤ Λ

µ
;
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0 ≤ U ≤ (θ2 + θ1) Λ

ϵµ
; 0 < M ≤ m0 +

r1Λ

r0µ

}
. (3)

Therefore, Θ defines the region enclosing the model’s solutions.

Theorem 1. Solutions of the model under the given initial conditions con-
tinue to be nonnegative as time goes on. Furthermore, the closed region
remains unchanged and preserved under the dynamics of the model (1).

3.2 Disease-free equilibrium (DFE) and basic
reproduction number

The disease-free equilibrium (DFE) of the model (1) is given by
ζ0 = (S0, A0, 0, 0, 0, 0, 0,m0), where S0 = (c+m0)Λ(λ0+µ)

µ(m0λ+cλ0+m0λ0+cµ+m0µ)
and

A0 = m0Λλ
µ(m0λ+cλ0+m0λ0+cµ+m0µ)

.

The control reproduction number for model (2) is determined using the
following generation matrix approach [55]. By defining the state vector
as x = (E, Ia, I, U), the system in model (2) can be reformulated as
dx
dt = F(x)− V(x), where F represents the nonnegative matrix of new infec-
tion terms, and the matrix V of the remaining terms are given by

F =


βχ0(I + ηIa)S + β1χ0SU

0

0

0

 ,V =


χ1E

−k2(1− σ)E + χ2Ia

−k1σE − γ1ϕIa + χ3I

−θ1Ia − θ2I + ϵU

.
The corresponding linearized matrices evaluated at the DFE ζ0 are

F1 =


0 S0χ0βη S0χ0β S0χ0β1

0 0 0 0

0 0 0 0

0 0 0 0

, V1 =


χ1 0 0 0

−k2(1− σ) χ2 0 0

−k1σ −γ1ϕ χ3 0

0 −θ1 −θ2 ϵ

.
We get control reproduction number Rc = ρ

(
F1V

−1
1

)
, where ρ is the

spectral radius.
Rc =

S0χ0(k1(βϵ+β1θ2)ϕχ2+k2(1−ϕ)(βϵ(ηχ3+γ1ϕ)+β1(θ1χ3+γ1θ2ϕ)))
ϵχ1χ2χ3

.
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In the absence of any intervention and behavioral awareness,
α = 0, λ = 0, λ0 = 0, m0 = 0, implies A0 = 0, S0 = Λ

µ = N0. Hence, the
basic reproduction number R0 of the model (2) is given by

R0 =
N0

[
k1

(
βϵ+β1θ2

)
ϕχ2 + k2(1−ϕ)

(
βϵ
(
ηχ3+γ1ϕ

)
+β1

(
θ1χ3+γ1θ2ϕ

))]
ϵ χ1χ2χ3

. It is clear
that Rc =

S0χ0R0

N0
. Since S0

N0
≤ 1 and 0 ≤ χ0 ≤ 1, this implies that Rc ≤ R0.

Theorem 2. The equilibrium state ζ0, representing the absence of disease in
the model (2), remains locally asymptotically stable provided that the control
reproduction number Rc is less than one. Conversely, it loses stability when
Rc exceeds one.

3.3 Global stability

This section examines the global stability of the disease-free steady state for
a specific case.

Theorem 3. The DFE ζ0 in model (2) is globally asymptotically stable when
Rc ≤ 1; however, it becomes unstable if Rc > 1.

Proof. We construct a suitably defined Lyapunov function to establish the
global stability of the DFE ζ0. Specifically, we consider a continuously dif-
ferentiable, positive definite function G such that

G = d1E + d2Ia + d3I + d4U. (4)

The constants dj ≥ 0 for j = 1, 2, . . . , 4 will be determined later. Further-
more, by utilizing the equations from model (1) and differentiating equa-
tion (4), we obtain

G′ =d1E
′ + d2I

′
a + d3I

′ + d4U
′

=d1(βχ0(I + ηIa)S + β1χ0SU − χ1E) + d2(k2(1− σ)E − χ2Ia)

+ d4(θ1Ia + θ2I − ϵU) + d3(k1σE + γ1ϕIa − χ3I)

≤d1(βχ0(I + ηIa)S0 + β1χ0S0U − χ1E) + d2(k2(1− σ)E − χ2Ia)

+ d4(θ1Ia + θ2I − ϵU) + d3(k1σE + γ1ϕIa − χ3I)

= (−χ1d1 + d2k2(1− σ) + d3k1σ)E + (d1βηχ0S0 − d2χ2 + d3γ1ϕ+ d4θ1) Ia

Iran. J. Numer. Anal. Optim., Vol. 15, No. 3, 2025, pp 952–992
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+ (d1βχ0S0 − d3χ3 + d4θ2) I + (d1χ0β1S0 − d4ϵ)U. (5)

Let us choose the constant values as follows: d4 = 1, d3 = (βϵ+β1θ2)
β1χ3

, d1 =
ϵ

χ0S0β1
, d2 = βϵηχ3+β1θ1χ3+βγ1ϵϕ+β1γ1θ2ϕ

β1χ2χ3
, using the aforementioned inequality

(5), we obtain the following:

G′ ≤ (Rc − 1)χ1ϵE

S0β1χ0
. (6)

Clearly, G′ ≤ 0 whenever Rc ≤ 1, and G′ = 0 if and only if either E = 0

or Rc = 1, at DFE. Therefore, by LaSalle’s invariance principle [35], the
equilibrium point ζ0 is globally asymptotically stable.

3.4 Presence and persistence of endemic equilibria

To determine the possible endemic equilibrium points of the proposed model,
the system of nonlinear equations derived from the model (2) is solved by
setting all derivatives to zero. The endemic equilibrium ζ∗ =

{S∗, A∗, E∗, I∗a , I
∗, R∗, U∗,M∗}, of the model (2) is given by

E∗ = b1I
∗
a , I

∗ = b2I
∗
a , A

∗ =
b5M

∗λ

(M∗ + c)χ4
, R∗ = b3I

∗
a , U

∗ = b4I
∗
a ,

M∗ = b1I
∗ +m0, S

∗ = b5.

Putting the values of {S∗, A∗, E∗, I∗, R∗, U∗} in the first, second, and eighth
equation of system of equations (1), we have

Λ + b3ξI
∗
a + b5

(
−µ− (b4β1 + β(b2 + η))χ0I

∗
a +

λ(λ0 − χ4)M
∗

(M∗ + c)χ4

)
= 0, (7)

m0r0 + b2r1I
∗
a =

(
r0 +

b2b5r1θλI
∗
a

b5λM∗ + (M∗ + c)χ4ω

)
M∗, (8)

where

b1 =
χ2

k2(1− ϕ)
, b2 =

b1k1ϕ+ γ1ϕ

χ3
, b3 =

γ2(1− ϕ) + b2γ3
χ5

,
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b4 =
θ1 + b2θ2

ϵ
, b5 =

b1χ1

χ0(b4β1 + β(b2 + η))
.

Equations (7) and (8) represent two isoclines in I∗a and M∗. Analyzing the
behavior of these isoclines through mathematical methods is challenging. Let
(I∗a ,M

∗) denote the unique point where these isoclines intersect.

We have seen that at least one endemic equilibrium always exists. Addi-
tionally, we investigate the occurrence of transcritical bifurcation through the
application of center manifold theory, as detailed in previous studies [11, 43].
To simplify the process, we modify the variables accordingly and employ a
similar approach described in those references [11]:
S = x1+S0, E = x2, Ia = x3, I = x4, A = x5+A0, R = x6, U =

x7, M = x8+m0. As a result, it is possible to rewrite model (1) compactly,
as follows:



dx1

dt = Λ− χ0β(x4 + ηx3)(x1 + S0)− β1χ0(x1 + S0)x7 + ξx6)

+λ0(x5 +A0 − λ(x8+m0)(x1+S0)
c+(x8+m0)

− µ(x1 + S0),

dx2

dt = βχ0(x4 + ηx3)(x1 + S0) + β1χ0(x1 + S0)x7 − χ1x2,

dx3

dt = k2(1− σ)x2 − χ2x3,

dx4

dt = k1σx2 + γ1ϕx3 − χ3x4,

dx5

dt = λ(x8+m0)(x1+S0)
c+(x8+m0)

− χ5(x5 +A0),

dx6

dt = γ2(1− ϕ)x3 + γ3x4 − χ6x6,

dx9

dt = θ1x3 + θ2x4 − ϵx7,

dx10

dt = r1

(
1− θ(x5+A0)

ω+(x5+A0)

)
x4 − r0x8.

(9)

The Jacobian matrix of model (9) at the corresponding DFE P 0 is given
by
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JP 0 =



−c2 0 −S0βcηχ0 −S0βcχ0 λ0 ξ −S0β1χ0 c4

0 −χ1 s0βcηχ0 S0βcχ0 0 0 s0β1χ0 0

0 k2(1− ϕ) −χ2 0 0 0 0 0

0 k1ϕ γ1ϕ −χ3 0 0 0 0

c1 0 0 0 −χ4 0 0 −c4

0 0 γ2(1− ϕ) γ3 0 −χ5 0 0

0 0 θ1 θ2 0 0 −ϵ 0

0 0 0 c3 0 0 0 −r0


,

where
c1 = λm0

c+m0 , c2 = µ+ c1, c3 = r1

(
1− θA0

ω+A0

)
, c4 = − cS0λ

(c+m0)2
, c5 = −c4.

At Rc = 1, the bifurcation parameter β gives a critical βc as

βc =
−k1S0β1θ2ϕχ0χ2 + ϵχ1χ2χ3 − k2S0β1(1− ϕ)χ0(θ1χ3 + γ1θ2ϕ)

S0ϵχ0(k1ϕχ2 + k2(1− ϕ)(ηχ3 + γ1ϕ))
.

Confirming that the Jacobian evaluated at β = βc possesses a right eigen-
vector associated with the zero eigenvalue is
W = (w1, w2, w3, w4, w5, w6, w7, w8)

T , where w2 = 1, w3 = a1, w4 = a2,

w7 = a4, w6 = a5, w8 = a3,

w1 = −−a3c4λ0+a3c4χ4+a5ξχ4−a4s0β1χ0χ4−a2s0βcχ0χ4−a1s0βcηχ0χ4

c1λ0−c2χ4
,

w5 = −−a3c1c4+a3c2c4−a5c1ξ+a4c1s0β1χ0+a2c1s0βcχ0+a1c1s0βcηχ0

−c1λ0+c2χ4
,

where a1 = k2(1−ϕ)
χ2

, a2 = k1ϕ+a1γ1ϕ
χ3

, a3 = a2c3
r0

, a4 = a1θ1+a3θ2
ϵ , a5 =

a1γ2(1−ϕ)+a3γ3

χ5
.

The elements of the left eigenvector, which correspond to the zero eigenval-
ues, are also V = (v1, v2, v3, v4, v5, v6, v7, v8) and must satisfy the equalities
V.J = 0 and V.W = 1, so that we obtain

v1 = 0, v5 = 0, v6 = 0, v8 = 0, v3 = k1S0v2βcϵϕχ0+k1S0v2β1θ2ϕχ0−v2ϵχ1χ3

k2ϵ(−1+ϕ)χ3
,

v4 = S0v2βcϵχ0+S0v2β1θ2χ0

ϵχ3
, v7 = s0v2β1χ0

ϵ ,

v2 = k2ϵ(−1+ϕ)χ3

a2k2S0(βcϵ+β1θ2)(−1+ϕ)χ0+a1k1S0(βcϵ+β1θ2)ϕχ0+k2(−1+ϕ)(ϵ+a4S0β1χ0)χ3−a1ϵχ1χ3
.

As outlined in [11, Theorem 4.1], the bifurcation coefficients a and b can
be determined using the following expressions, where fk represents the kth

component of the vector function f :
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a =

10∑
k,i,j=1

vkwiwj
∂2fk

∂xi∂xj
(0, 0)

= v2 (2w1w7β1χ0 + 2w1w4βcχ0 + 2w1w3βcηχ0) ,

b =

10∑
k,i,j=1

vkwi
∂2fk
∂xi∂β

(0, 0)

= S0w4χ0 + S0w3ηχ0. (10)

If a < 0 and b > 0 at β = βc, then according to [11, Theorem 4.1 and Remark
1], a transcritical bifurcation occurs at Rc = 1. Moreover, when Rc > 1, the
unique endemic equilibrium remains locally asymptotically stable.

4 Numerical simulation

4.1 Parameter estimation

In this section, the proposed model is calibrated against observed data to
evaluate its accuracy and predictive capabilities, offering valuable insights
into the pandemic’s progression and supporting effective response strate-
gies. Initially, baseline values for the model parameters are established using
COVID-19 data, relevant information, and published literature. Specifically,
data on the total number of COVID-19 cases in India from March 30, 2020,
to January 24, 2021, were considered [27]. The least squares method is used
to align the observed data points, Yi, with the estimated values, Xi, by min-
imizing the total squared differences between the observed values and the
predicted curve [38]. This process involves minimizing the sum of squared
errors (SSE), expressed as

SSE =

n∑
i=1

(Yi −Xi)
2

Table 2 and Figure 3 present the fitted model developed using MATLAB,
along with the estimated parameter values. In Figure 3, the curve represents
the fitted model, while the star points indicate the total number of daily
confirmed cases. The estimated reproduction number (Rc) is 1.94, suggesting
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a moderate transmission rate. The model simulation closely follows the actual
data, demonstrating its reliability. Table 2 provides a detailed summary of
the estimated and fitted parameters. Following this parameter estimation,
we explore hypothetical scenarios where individuals neither wear masks nor
are aware of COVID-19. A more in-depth discussion follows below.

Figure 2a illustrates the model’s evaluation of India’s response to COVID-
19. Many disregarded safety measures during the prolonged lockdown and
economic crisis, resulting in α = 0 in Figure 2a. However, public aware-
ness of COVID-19 remained high, leading to precautionary behaviors such
as wearing face masks and self-quarantining after traveling from high-risk
or red-alert zones. Figure 2b provides an alternative perspective, showing
that even in cases where individuals were unaware of COVID-19’s severity,
many still adhered to protective measures like mask-wearing (i.e., A = 0 in
2b within 1). As illustrated in Figure 3, the model’s predictions align closely
with the observed data on daily new cases, reinforcing its applicability in
understanding the pandemic’s progression.

(a) α = 0 only in (1) (b) A = 0 only in (1)

Figure 2: Fitted curve of confirmed cases in India and proposed model

4.2 Sensitivity analysis

Examining the sensitivity of parameters in the control reproduction number,
Rc, is essential for understanding the dynamics of infectious diseases. This
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Figure 3: Fitted curve of confirmed case in India and model (1)

process enables the rapid identification of critical factors that drive disease
transmission, which is pivotal for designing effective interventions. Modify-
ing these parameters allows for more efficient pandemic management. The
normalized forward sensitivity index of Rc with respect to a parameter p is
defined as Γp

Rc
= ∂Rc

∂p
p
Rc

[38, 24].

The sensitivity indices of Rc, derived using parameter values from Table
2, are presented in Table 3. It shows that Rc increases with increase in
the values of Λ, β, β1, σ, λ0, c, θ1, θ2, η, k1, γ1, and ϕ. Conversely, parameters
m0, λ, ϵ, δ, k2

, γ3, γ2, α, and µ, have negative impact on Rc. Figure 4 indicates that Λ (λ)
has the maximum positive (negative) impact on Rc. Lower Rc values are
preferred for disease control. Reducing Rc to control disease transmission
requires increasing control parameters with negative indices and decreasing
those with positive indices. Furthermore, it can be seen that Rc is not affected
by the model parameters ξ, r1, r0, ω, θ, that is,

Γξ
Rc

= Γr1
Rc

= Γr0
Rc

= Γω
Rc

= Γθ
Rc

= 0.

Figure 5a displays a two-dimensional contour plot, while Figure 5b dis-
plays a three-dimensional contour plot of Rc(λ, λ0). Figure 5 demonstrates
that as awareness rates increase over time, there is a substantial reduction in
the incidence of COVID-19.
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Table 2: Parameter values for the model (1)

Parameters Range Baseline Source
η (0.6281, 0.6366) day−1 0.6364 [5]
β

(
6.038 · 10−8, 6.988 · 10−8

)
day−1 6.933 · 10−8 Estimated

β1

(
3.00199 · 10−8, 4.10199 · 10−8

)
day−1 4.00199 · 10−8 [46]

k1 (0.0623, 0.0745) day−1 0.0723 Estimated
k2 (0.066, 0.08) day−1 0.068 Estimated
σ (0.065, 0.077) day−1 0.0749 Estimated
γ1 (0.15, 0.25) day−1 0.2 [5]
γ2 (0.159, 0.46) day−1 0.4599 Estimated
γ3 (0.018, 0.0668) day−1 0.066 Estimated
λ (0.0011, 0.0187) day−1 0.0186 [41]
λ0 (0.00001, 0.008) day−1 0.001 [41]
c (400, 2000) day−1 430 Estimated
δ (0.0066, 0.01) day−1 0.0099 [5]
ϕ (0.006999, 0.0099) day−1 0.00900005 Estimated
Λ (100, 3000) day−1 1319.294 [5]
r1 (0.001, 0.01) day−1 0.006 [41]
r0 (0.001, 0.01) day−1 0.005 [41]
µ (0.00001, 0.0001) day−1 0.0000425 [50]
m0 (100, 2000) day−1 500 [41]
θ1 (0.0158, 0.0178) day−1 0.0178 [5]
θ2 (0.1215, 9315) day−1 0.9215 [5]
ϵ (0.1, 0.2) day−1 0.333 [5]
θ (0.01, 0.034) day−1 0.0005 [41]
ξ (0.009, 0.01) day−1 0.008 Assumed
α (0.1, 0.2) day−1 0.3 Estimated
ω (0, 10000) day−1 6000 Estimated

4.3 Impact of control parameters

Figure 6a demonstrates that as awareness spreads more effectively, the num-
ber of symptomatic infections decreases, mainly because media coverage at-
tracts susceptible people’s attention. The rate at which people lose aware-
ness, represented by λ0, increases symptomatic infections, so efforts should
be made to prevent this loss of awareness (see Figure 6b). To keep infection
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Table 3: Normalized sensitivity index for each parameter for the COVID-19 model (1),
for parameters values given in 2

Parameter Sensitivity
indices

Parameter Sensitivity
indices

Parameter Sensitivity
indices

Λ 1 η 0.65 γ3 −0.26

β 0.76 σ 0.24 δ −0.03

β1 0.23 ϕ 0.07 α −0.20

k1 0.22 γ1 0.06 k2 −0.22

θ1 0.03 ϵ −0.23

θ2 0.19 λ −0.88

λ0 0.55 m0 −0.25 µ −0.55

c 0.25 γ2 −0.75

Figure 4: Normalized forward sensitivity indices of Rc

levels low, it is crucial to maintain a steady level of baseline awareness, m0.
Finally, to reduce the transmission rates β and β1, measures like wearing
masks, and so on (refer to Figure 7b) should be taken.
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(a) 2D plot of Rc(λ, λ0) (b) 3-D contour of Rc(λ, λ0)

Figure 5: contour plots of Rc

(a) Effect of λ on I (b) Effect of λ0 on I

(c) Effect of c on I

Figure 6: The effects of varying λ, λ0 and c on I.

Iran. J. Numer. Anal. Optim., Vol. 15, No. 3, 2025, pp 952–992



Sahu and Thakur 974

(a) Effect of θ on I (b) Effect of α on I

(c) Effect of ξ on I

Figure 7: The effects of varying θ, α and ξ on I.

4.4 Impact of environment contamination

Environmental contamination plays a significant role in the transmission of
COVID-19. Studies show that the virus can remain viable on copper surfaces
for up to four hours, on cardboard for as long as 24 hours, and on stainless
steel and plastic surfaces for up to 72 hours [56]. This study examines how
environmental contamination affects the dynamics of the proposed model,
specifically analyzing the model (1) to assess the impact of COVID-19 on
environmental contamination caused by infected individuals. The time series
presented in Figures 8a, 8b, and 8c demonstrate the effects of environmental
contamination parameters on infection levels.
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The number of infected individuals in the class I increases as the infection
rate β1, associated with the contaminated environment increases. Further-
more, as the rate of environmental contamination (θ1 and θ2) increases, the
populations in class I also grow, as shown in the time series Figures (8a and
8b). Consequently, an increase in the factors θ1 and θ2 results in a shorter
duration of the pandemic. If the contaminated environment is sanitized ef-
fectively (i.e., by increasing ϵ), the number of infected individuals in class Ia
and I remains relatively stable, as demonstrated in Figure 8c. Consequently,
eliminating the novel coronavirus from environments can help shorten the
pandemic’s duration and lower infection rates.

(a) Effect of θ1 on I (b) Effect of θ2 on I

(c) Effect of ϵ on I

Figure 8: The effects of varying θ1, θ2, ϵ on infected population I.
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5 Optimal Control

In this section, we develop and evaluate an optimal control problem that
integrates multiple strategies, including the proportion of individuals using
face masks, the level of awareness, treatment rates, and the natural decline of
the virus in the environment. These measures aim to mitigate the spread of
the disease while accounting for economic consequences, such as productivity
losses caused by both the disease and the interventions. The subsequent
discussion focuses on these control strategies:

1. Control variable u1(t): The susceptible population is continuously ex-
posed to a proportion of individuals wearing face masks, represented by
the rate α. Since implementing mask-wearing incurs costs, optimizing
these costs is essential for policymakers. To achieve this, the mask-
wearing rate α is treated as a control variable, u1(t), in the context of
model (1), to determine the optimal intervention strategy.

2. Control variable u2(t): As information about the virus disseminates,
susceptible individuals transition to an aware class, with the speed of
this transition being affected by the concentration of the infected pop-
ulation. Since promoting awareness incurs certain costs, policymakers
should aim to optimize these initiatives. Therefore, the awareness rate,
denoted by λ, is modeled as a control variable u2(t).

3. Control variable u3(t): The asymptomatic population transitions to
the symptomatic state at a rate denoted by γ1, where ϕ represents the
proportion of asymptomatic individuals who undergo this progression.
Since treatment and isolation measures involve financial costs, policy-
makers must strategically manage these expenditures. To facilitate this
optimization, the rate γ1 is modeled as a time-dependent control vari-
able, u3(t). In this context, u3 represents interventions such as medical
treatment or isolation efforts, which impact the progression from the
asymptomatic to symptomatic states, in the context of model (1).

4. Control variable u4(t): Natural decay rate of the virus, ϵ is treated as
a control variable u4(t).

Iran. J. Numer. Anal. Optim., Vol. 15, No. 3, 2025, pp 952–992



977 Mathematical modeling of COVID-19 spread with media coverage ...

The control variables u1(t), u2(t), u3(t), and u4(t) must be chosen from a
set of allowable control functions defined by
U = {(u1(t), u2(t), u3(t), u4(t) | 0 ≤ u1(t) ≤ u1max, 0 ≤ u2(t) ≤ u2max, 0 ≤
u3(t) ≤ u3max, 0 ≤ u4(t) ≤ u4max, t ∈ [t0, tf ]}[38]. Here, u1(t),u2(t), u3(t),
and u4(t) are measurable and bounded, and tf is the final time for the inter-
vention strategies. It is important to note that this final time tf may vary
for different diseases and applied interventions, depending on the goals of the
control policy. So the following objective function is to minimize both the
total number of infections and the related costs, which is expressed as

J (u) = min
∫ tf

t0

(
C +D1

u2
1

2
+D2

u2
2

2
+D3

u2
3

2
+D4

u2
4

2

)
dt, (11)

where C = C1E+C2Ia+C3I +C4U −C5A, u = (u1, u2, u3, u4) , and subject
to constraints

dS
dt = Λ− β(1− u1)(I + ηIa)S − β1(1− u1)SU + λ0A+ ξR− u2MS

c+M − µS

dA
dt = u2MS

c+M − λ0A− µA

dE
dt = β(1− u1)(I + ηIa)S + β1(1− u1)SU − (k2(1− σ) + k1σ + µ)E

dIa
dt = k2(1− σ)E − u3ϕIa − γ2(1− ϕ)Ia − µIa

dI
dt = k1σE + u3ϕIa − γ3I − δI − µI

dR
dt = γ2(1− ϕ)Ia + γ3I − ξR− µR

dU
dt = θ1Ia + θ2I − u4U

dM
dt = r1(1− θA

ω+A )I − r0(M −m0).

(12)

We presume the initial circumstances:
S(0) = S0 > 0, E(0) ≥ 0, Ia(0) ≥ 0, I(0) ≥ 0, A(0) = A0 >

0, R(0) ≥ 0, U(0) ≥ 0. In the objective function, the constants
C1, C2, C3, C4, and C5 denote the weighting factors assigned to the exposed
class, infected classes (Ia, I, and U), and the aware class, respectively. The
time-dependent control variables u1, u2, u3 and u4 are associated with the
quadratic costs D1u

2
1, D2u

2
2, D3u

2
3 and D4u

2
4, respectively, where the square

terms indicate the severity of the costs.
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The Filippov–Cesari Theorem [6] guarantees that the necessary conditions
for achieving an optimal solution to the formulated optimal control problem
are fulfilled. The Hessian matrix associated with the given cost functional
is expressed as D = diag(D1, D2, D3, D4). Since this Hessian matrix is posi-
tive definite at all points, the objective functional J(u1, u2, u3, u4) is strictly
convex. Consequently, there exists a constant D = minD1, D2, D3, D4 > 0

such that this lower bound applies to the integrand of the objective functional

C +D1
u2
1

2
+D2

u2
2

2
+D3

u2
3

2
+D4

u2
4

2

≥ D
(
u2
1 + u2

2 + u2
3 + u2

4

)
,

holds if E + Ia + I +A+ U ≥ 0. We apply Pontryagin’s maximum principle
with the state variables S = S∗, A = A∗, E = E∗, Ia = I∗a , I = I∗, R =

R∗, U = U∗,M = M∗. We get the Hamiltonian function:

H =C1E
∗ + C2I

∗
a + C3I

∗ + C4U
∗ − C5A

∗ +D1
u2
1

2
+D2

u2
2

2
+D3

u2
3

2
+D4

u2
4

2

+ λ1
dS

dt
+ λ2

dA

dt
+ λ3

dE

dt
+ λ4

dIa
dt

+ λ5
dI

dt
+ λ6

dR

dt
+ λ7

dU

dt
+ λ8

dM

dt
.

(13)

The corresponding adjoint functions λi, i = 1, 2, . . . , 8, satisfy the equations:


dλ1
dt

= − ∂H
∂S

= −
(
((1 − u1)β1U + (1 − u1)β(I + Iaη))(λ2 − λ1) +

u2(λ5−λ1)M
M+c

− λ1µ

)
;

dλ2
dt

= − ∂H
∂A

= −(−C4 + λ0λ1 − λ5(λ0 + µ) − r1θλ8ωI

(A+ω)2
);

dλ3
dt

= − ∂H
∂E

= −(C1 + k2(λ2 − λ3)(−1 + ϕ) + k1λ4ϕ − λ2(µ + k1ϕ));

dλ4
dt

= − ∂H
∂Ia

= −(C2 + (−1 + u1)βη(λ1 − λ2)S − λ3µ + γ2(λ3 − λ6)(−1 + ϕ))

−(θ1λ7 − u3(λ3 − λ4)ϕ);

dλ5
dt

= − ∂H
∂I

= − (C3 + (−1 + u1)β(λ1 − λ2)S + γ3(−λ4 + λ6) + θ2λ7 − λ4(δ + µ))

−
(
r1λ8

(
1 − Aθ

A+ω

))
;

dλ6
dt

= − ∂H
∂R

= −(λ1ξ + λ6(µ + ξ));

dλ7
dt

= − ∂H
∂U

= (1 − u1)β1(λ1 − λ2)S + u4λ7;

dλ9
dt

= − ∂H
∂M

= (
cu2S(λ1−λ5)

(M+c)2
+ r0λ8).
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Under the universality condition λi(tf ) = 0, and considering that for all
control inputs ui, where i = 1, . . . , 4, the following condition holds:

∂H

∂ui
= 0,

The optimal control strategy, according to the appropriate variational prin-
ciple, is determined as follows:
u∗
1 = min

{
max

(
0,− (βI+β1U+βηIa)(λ1−λ2)

D1

)
, u1 max

}
,

u∗
2 = min

{
max

(
0, (λ1−λ5)MS

D2(M+c)

)
, u2 max

}
,

u∗
3 = min

{
max

(
0, (λ3−λ4)ϕIa

D4

)
, u3 max

}
,

u∗
4 = min

{
max

(
0, λ7U

∗

D5

)
, u4 max

}
.

5.1 Numerical solution of the model with optimal
control

In this subsection, we conduct numerical simulations of the optimal control
model to investigate how different time-varying control strategies influence
the dynamics of disease spread. The simulations are based on the parameter
values listed in Table 2, with some parameters obtained through data fitting
using COVID-19 data from India. The analysis is conducted assuming a
total population of around 1.40 billion. An initial estimate for the control
functions is proposed for the specified period. Additionally, we apply the
forward-backward sweep method, as outlined in [6], to numerically simulate
the optimal control solution.

The trajectories shown in Figures 9a–9d reveal how each control variable
ui (for i = 1, 2, 3, 4) uniquely influences the state variables E, Ia, I, and U .
Solid lines represent the system’s behavior without control, whereas dotted
lines illustrate the impact of implementing control strategies. These inter-
ventions effectively reduce the number of infected individuals and the overall
viral load, highlighting their success in significantly lowering the rate of virus
introduction into the environment and limiting the progression into the in-
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fected class I. Figure 10 presents the optimal control levels for u1, u2, u3,
and u4 in the context of COVID-19 spread. In particular, Figure 10a shows
that u1 reaches its highest level between days 250 and 270, then gradually
declines until day 300. Similarly, Figure 10b illustrates that u2 peaks near
day 290 and then slowly decreases up to day 300. Meanwhile, Figure 10c
indicates that u3 peaks between days 200 and 250 before tapering off by day
300. Lastly, Figure 10d shows u4 reaching its maximum between days 270
and 290, then gradually declining until day 300.

(a) Effect on E (b) Effect on Ia

(c) Effect on I (d) Effect on U

Figure 9: Effect of control measures: u1, u2, u3, u4

To improve resource utilization and lower the costs associated with man-
aging COVID-19 dynamics, we adopt selective strategies that concentrate
on particular combinations of time-dependent control variables rather than
employing all five control parameters simultaneously. This method allows us
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(a) Control parameter u∗
1 (b) Control parameter u∗

2

(c) Control parameter u∗
3 (d) Control parameter u∗

4

Figure 10: Control profiles: u1, u2, u3 and u4

Table 4: Scenarios with their combination strategy

Scenario Strategies

A

S-1. (u1 ̸= 0, u2 = 0, u3 = 0, u4 = 0)

S-2. (u1 = 0, u2 ̸= 0, u3 = 0, u4 = 0)

S-3. (u1 = 0, u2 = 0, u3 ̸= 0, u4 = 0)

S-4. (u1 ̸= 0, u2 ̸= 0, u3 ̸= 0, u4 = 0)

B S-5. (u1 = 0, u2 = 0, u3 = 0, u4 ̸= 0)

C S-6. (u1 ̸= 0, u2 ̸= 0, u3 ̸= 0, u4 ̸= 0)

to evaluate the impact of different control combinations (see Table 4), pro-
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viding valuable insights into the trade-offs and cost-effectiveness of targeted
interventions.

We assess three scenarios, A, B, and C, according to the control strategies
outlined in Table 4 and illustrated in Figure 10. Scenario A explores the
influence of control variables u1, u2, and u3 while excluding u4 (refer to
Figures 11a–11d). Scenario B focuses on the effect of u4 in the absence of
u1, u2, and u3 (see Figure 11e). Lastly, Scenario C examines the combined
impact of all control variables u1, u2, u3, and u4 (Figure 11f).

Numerical simulations suggest that targeting infective groups (u1, u2, and
u3) in Scenario A is more effective in reducing disease transmission than im-
plementing environmental controls (u4) in Scenario B. Additionally, apply-
ing control measures to all infective groups simultaneously (Figures 11a–11d)
yields a more significant impact compared to implementing them individually
(Figures 11a–11c). Among the analyzed scenarios, Scenario C, which com-
bines all control strategies, emerges as the most effective in limiting disease
spread, as shown in Figure 11f.

Our analysis of optimal control indicates that successfully applying these
strategies can greatly reduce transmission among vulnerable populations,
leading to a marked decrease in the pandemic’s overall impact.

6 Discussion and conclusion

The COVID-19 pandemic has presented significant public health challenges
while exerting considerable economic pressure worldwide. With no pharma-
ceutical treatments initially available, nonpharmaceutical interventions like
wearing face masks have been essential in curbing the virus’s spread. More-
over, media coverage has played a key role in increasing public awareness
and distributing critical information on preventive measures. This study
examined the SAEIaIRUM model, which integrates nonlinear functional
responses to capture the effects of media coverage influence.

We theoretically analyzed the model within the dynamical systems frame-
work, ensuring the solutions remain positive and bounded. Furthermore, we
explored the biological significance of the control reproduction number, which
was derived using the next-generation matrix. The identified control repro-
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(a) S-1: control u1 only (b) S-2: control u2 only

(c) S-3: control u3 only (d) S-5: u1, u2, u3 only

(e) S-5: u4 only (f) S-6: u1, u2, u3 and u4

Figure 11: Effect of control u1, u2, u3, u4 and u5 on total number of infections

duction number (Rc) and model equilibrium points include disease-free and
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endemic states. Additionally, we examined the local stability of the DFE
under the assumption that Rc is less than one.

Section 4 presents the numerical simulations of the proposed model, uti-
lizing COVID-19 data from India, covering the period from March 30, 2020,
to January 24, 2021, as obtained from Johns Hopkins University [27]. As
depicted in Figure 3, our model demonstrates superior predictive accuracy
compared to the Asamoah et al. [5] model, reinforcing our assertion that
it provides the most precise forecasts. A numerical analysis examines the
impact of various control parameters on disease prevalence. The practical
implementation of nonpharmaceutical interventions (NPIs), such as wear-
ing face masks and self-administering treatment, contributes to reducing the
control reproduction number, as illustrated in Figure 7b. Figures 6a–6b
demonstrate that increasing the values of λ results in a decline in the num-
ber of infected individuals. Furthermore, the gradual waning of immunity
acquired through infection increases the risk of reinfection, underscoring the
importance of booster vaccinations in maintaining immunity and mitigating
disease transmission, as shown in Figure 7c. Conversely, Figures 8a–8b high-
light the effects of environmental contamination. Figure 8c illustrates how
variations in ϵ influence infection peaks, showing a decline as viral removal
efforts intensify.

The control reproduction number (Rc) determines whether the disease
persists or diminishes. A normalized sensitivity analysis (Figure 4) explores
the influence of different parameters on Rc. Normalized forward sensitiv-
ity analyses indicate that the recruitment rate (Λ) has the most significant
positive impact. In contrast, the proportion of susceptible individuals who
become aware (λ) exerts the most substantial negative effect on Rc.

We enhanced the SAEIaIRUM model by embedding it within an opti-
mal control framework, incorporating key interventions such as face masks,
public awareness campaigns, medical treatment or isolation, and disinfection
efforts. The impact of these measures was evaluated through simulations us-
ing the forward-backward sweep method. To assess the effectiveness and cost-
efficiency of different strategies, we explored three distinct scenarios: Scenario
A prioritizes managing infected individuals, Scenario B focuses on minimiz-
ing environmental contamination, and Scenario C combines both strategies.
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Numerical simulations, illustrated in Figure 11, indicate that while Scenario
A significantly reduces disease transmission compared to Scenario B, Sce-
nario C, by combining all control measures, emerges as the most effective
and cost-efficient strategy for controlling the spread of the disease.

Time delays significantly impact system dynamics, including delays in
reporting confirmed cases caused by incubation periods and other influencing
factors. Expanding this method could reveal more intricate dynamics in
future research.
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