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Abstract

A class of accurate high-order ENO-like schemes for the model of fluid flows
in a nozzle with variable cross-section is presented. The model contains a
nonconservative source term, which causes unsatisfactory results to stan-
dard numerical schemes, even for low-order ones. The proposed schemes
rely on exact Riemann solvers and the reconstructed piecewise polynomials
which are nonoscillatory. These schemes inherit the high-order precision
of the ENO schemes like many existing ENO-type schemes, and possess
a good accuracy. The ENO-like scheme corresponding to k = 3 can get
the precision as good as van Leer-type schemes, and is numerically stable.
Moreover, the ENO-like schemes for larger k may suffer from oscillations.
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1 Introduction

Essentially nonoscillatory (ENO) schemes for hyperbolic conservation laws
were first constructed by Harten et al. [24] in 1987. These high-resolution
schemes have been developed by many authors for nonconservative systems,
most use approximate Riemann solvers. In this paper, we aim to construct
an ENO-like scheme relying on exact Riemann solvers for the following non-
conservative system of balance laws, which models fluid flows in a nozzle with
variable cross-section:

∂t(aρ) + ∂x(aρu) = 0,

∂t(aρu) + ∂x(a(ρu
2 + p)) = p∂xa, x ∈ R, t > 0,

(1)

where ρ = ρ(x, t), u = u(x, t), p = p(x, t) denote the density, particle velocity,
and pressure of the fluid, respectively, and a = a(x) denotes the cross-section
area of the nozzle.

The term p∂xa on the right-hand side of the system (1) makes it non-
conservative. Recall that the formulation of weak solutions of nonconserva-
tive systems of balance laws was introduced in [18]. Often, nonconservative
terms cause unsatisfactory results for standard schemes. Therefore, numer-
ical approximations of solutions of nonconservative systems of balance laws
are one of the most challenging problems. Recently, we built a Godunov-
type scheme for the model (1) in [15]. Our aim in this paper is to construct
a high-resolution ENO-like scheme for (1). We will also demonstrate by nu-
merical tests that the ENO-like scheme corresponding to k = 3 can provide
us with a second order accurate approximation to a smooth stationary wave
and a much better accuracy than the Godunov-type scheme. However, the
ENO-like schemes for larger k may not be convergent, since oscillations can
be observed.
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3 Accurate ENO-like schemes for the model of fluid flows in a nozzle ...

For simplicity, we assume throughout that the fluid is isentropic and ideal,
so that an equation of state is given by

p = κργ , (2)

where κ > 0 and 1 < γ < 5/3 are constants.
Observe that there are many works in the literature about the study of

nonconservative hyperbolic systems of balance laws. Basic theory of Riemann
problem for models of fluid flows in a nozzle with discontinuous cross-section
was considered in [25, 26, 32, 29, 38, 21]. In recent years, a related traffic
flow model was formulated in [20], and a related model of shallow water flows
over movable bottom with suspended and bedload transport was proposed in
[8]. We refer the reader to the book [31] for the Riemann problem for various
models in continuum physics. Regarding numerical methods, many results
and schemes for models of fluid flows in a nozzle with variable cross-section
were studied in [28, 27, 14, 5]. Recently, a second-order scheme based on
the first-order Price-T scheme and the MUSCL-Hancock strategy for arterial
blood flow models with viscoelasticity was constructed in [10]. Numerical
schemes for the model of shallow water equations were studied in [22, 11,
30, 41]. Well-balanced finite difference WENO schemes using approximate
solvers for the Ripa model were constructed in [23]. A set of arbitrarily
high-order ENO-type schemes is constructed in a recent work [42] using a
typical five-point smoothness measurement as the shock-detector, which are
able to detect discontinuities before spatial reconstructions. Furthermore,
ENO schemes with adaptive order which select a polynomial from several
candidates that are reconstructed on stencils of unequal sizes are designed in
[36]. A review on ENO schemes was given in [37]. Well-balanced numerical
schemes for a single conservation law with source term were presented in

[6, 7, 3]. Numerical schemes for two-phase flow models were built in
[4, 13, 12, 19, 1, 9, 33, 40, 39, 17]. The reader is referred to

[2, 34, 35] for Godunov-type schemes for hyperbolic systems of balance
laws in nonconservative forms. See also the references therein.

The organization of this paper is as follows. Section 2 provides us with the
background of the model (1). Section 3 is devoted to constructing an ENO-
like scheme to calculate the approximate solution of the Cauchy problem for
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(1). Numerical tests and discussions for all types of initial data are presented
in Section 4. Finally, in section 5, we draw several conclusions.

2 Backgrounds

Let us set
c =

√
dp/dρ.

Then the system (1) with supplementing a trivial equation

∂ta = 0, (3)

can be rewritten in the nonconservative form as

∂tU + A(U)∂xU = 0, (4)

where

U =


ρ

u

a

 , A(U) =


u ρ ρu/a

c2/ρ u 0

0 0 0

 .

The matrix A(U) has three eigenvalues

λ1 = u− c, λ2 = u+ c, λ3 = 0. (5)

The corresponding eigenvectors can be chosen as

r1 =


ρ

−c

0

 , r2 =


ρ

c

0

 , r3 =


−ρu2

uc2

a(u2 − c2)
)
 .

The first and the third characteristic speeds coincide on the upper sonic
surface

C+ = {U|λ1(U) = λ3(U)}. (6)

The second and the third characteristic speeds coincide on the lower sonic
surface

C− = {U|λ2(U) = λ3(U)}. (7)

Therefore, the system (4) is strictly hyperbolic on following regions:
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5 Accurate ENO-like schemes for the model of fluid flows in a nozzle ...

G1 = {U|λ1(U) > λ3(U)},

G2 = {U|λ1(U) < λ3(U) < λ2(U)},

G3 = {U|λ2(U) < λ3(U)}.

The set G1∪G3 is called the supersonic region, while G2 is called the subsonic
region. The third characteristic field is linearly degenerate, since

∇λ3 · r3 = 0.

The first and the second characteristic fields are genuinely nonlinear, since

−∇λ1 · r1 = ∇λ2 · r2 =
(γ + 1)c

2
> 0.

2.1 Shock wave curves

Recall that a discontinuity wave of (4) connecting a left-hand state U− to a
right-hand state U+ is a weak solution of the form

U(x, t) =

U−, if x < σt,

U+, if x > σt,
(8)

where the speed of discontinuity wave σ must satisfy the Rankine–Hugoniot
relations. The Rankine–Hugoniot relation associated with (3) takes the form

−σ[a] = 0, (9)

where [a] = a+ − a− denotes the jump of the quantity a. As discussed in
[29], across a discontinuity wave there are two possibilities:

(i) either [a] = 0,

(ii) or σ = 0.

For the first case (i), a discontinuity wave (8) is called a shock wave. It called
an i-Lax shock, if the shock speed σ = σi(U−,U+) satisfies the Lax shock
inequalities,

λi(U+) < σi(U−,U+) < λi(U−), i = 1, 2.
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Given a state U0 = [ρ0, u0, a0]
T , the set of all right-hand states U =

[ρ, u, a]T that can be connected to U0 by a 1-Lax shock is given by

S1(U0) =
{

U|u = u0 −
√
−(p− p0)

(1
ρ
− 1

ρ0

)
, ρ > ρ0, a = a0

}
, (10)

and, in the backward way, the set of all left-hand states U = [ρ, u, a]T that
can be connected to U0 by a 2-Lax shock is given by

S2B(U0) =
{

U|u = u0 +

√
−(p− p0)

(1
ρ
− 1

ρ0

)
, ρ > ρ0, a = a0

}
. (11)

We call these set the forward curve of 1-shock waves and the backward curve
of 1-shock waves, respectively.

Furthermore, we have the following result about the sign of the 1-shock
speeds along the wave curve S1(U0), which is shown in [29].

Lemma 1. If U0 ∈ G2 ∪G3, then σ1(U0,U) remains negative, that is,

σ1(U0,U) < 0, U ∈ S1(U0).

If U0 ∈ G1, then there is exactly one state, denoted by U#
0 = [ρ#

0 , u
#
0 , a0]

T ∈
S1(U0), such that

U#
0 ∈ G2, u#

0 > 0,

σ1(U0,U#
0 ) = 0,

σ1(U0,U) > 0, ρ0 < ρ < ρ#
0 ,

σ1(U0,U) < 0, ρ > ρ#
0 .

2.2 Stationary waves

For the case (ii), a discontinuity wave (8) is called a stationary wave, and the
two states U± are called the two equilibrium states. As shown in [29], two
equilibrium states U± must satisfy the jump relations

[aρu] = 0,[
u2

2
+

c2

γ − 1

]
= 0.

(12)
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7 Accurate ENO-like schemes for the model of fluid flows in a nozzle ...

Given the state U0 = [ρ0, u0, a0]
T and the cross-section level a 6= a0.

As discussed in [29], a stationary wave connecting from U0 to some state
U = [ρ, u, a]T exists if and only if a ≥ amin, where

amin =
a0ρ0|u0|

√
κγ(ρmax)

γ+1
2

, ρmax =

(
γ − 1

κγ(γ + 1)

(
u2
0 + µργ−1

0

)) 1
γ−1

. (13)

Moreover, if a > amin, then there are exactly two states Us
0, Ub

0 that can be
connected to U0 by a stationary wave,

Us
0 =

[
ρs0,

a0ρ0u0

aρs0
, a
]T

,

Ub
0 =

[
ρb0,

a0ρ0u0

aρb0
, a
]T

,

(14)

where ρs0 < ρmax < ρb0 are two roots of the nonlinear equation

− 2κγ

γ − 1
µργ+1 + (u2

0 +
2κγ

γ − 1
ργ−1
0 )ρ2 − (a0u0ρ0/a)

2 = 0. (15)

Precisely, we have the following lemma about stationary waves.

Lemma 2. [29, Lem. 2.3] The following conclusions hold:
a)

ρmax > ρ0, U0 ∈ G1 ∪G3,

ρmax < ρ0, U0 ∈ G2,

ρmax = ρ0, U0 ∈ C±.

b) The state Us
0 belongs to G1 if u0 > 0, and belongs to G3 if u0 < 0, while

the state Ub
0 always belongs to G2. In addition, it holds that

(i) If a > a0, then
ρs0 < ρ0 < ρb0.

(ii) If a < a0, then

ρ0 < ρs0 < ρb0 for U0 ∈ G1 ∪G3,

ρs0 < ρb0 < ρ0 for U0 ∈ G2.

It follows from Lemma 2 that there are two possible stationary waves
from a given state U0 to a state with a new level cross-section a. Thus, it

Iran. J. Numer. Anal. Optim., Vol. ??, No. ??, ??, pp ??



Cuong and Thanh 8

is necessary to impose some condition to select a unique physical stationary
state as follows.

(MC) Any stationary jump must not cross the sonic curve in the (ρ, u)-plane.

2.3 Rarefaction wave curves

Recall that the i-rarefaction wave (i = 1, 2) of (4) connecting a left-hand
state U− to a right-hand state U+ is a weak solution of the form

U(x, t) =


U−, if x < λi(U−)t,

Vi(x/t), if λi(U−)t ≤ x ≤ λi(U−)t,

U+, if x > λi(U+)t,

where Vi(·) is the solution of following problem:

dVi(ξ)

dξ
=

1

∇λi(V(ξ)) · ri(V(ξ))
ri(V(ξ)), λi(U−) < ξ < λi(U+),

Vi(λi(U−)) = U−, Vi(λi(U+)) = U+.

Given a state U0 = [ρ0, u0, a0]
T , the set of all right-hand states U =

[ρ, u, a]T that can be connected to U0 by a 1-rarefaction wave forms the
forward curve of 1-rarefaction waves, denoted by R1(U0). In a backward
way, the set of all left-hand states U = [ρ, u, a]T that can be connected to
U0 by a 2-rarefaction wave forms the backward curve of 2-rarefaction wave,
denoted by R2B(U0). These curves are given by

R1(U0) =
{

U|u = u0 −
2
√
κγ

γ − 1
(ρ(γ−1)/2 − ρ

(γ−1)/2
0 ), ρ ≤ ρ0, a = a0

}
,

R2B(U0) =
{

U|u = u0 +
2
√
κγ

γ − 1
(ρ(γ−1)/2 − ρ

(γ−1)/2
0 ), ρ ≤ ρ0, a = a0

}
.

(16)
From (10), (11), and (16), we have the forward and backward wave curves in
the nonlinear characteristic fields as follows:

W1(U0) = R1(U0) ∪ S1(U0),

W2B(U0) = R2B(U0) ∪ S2B(U0).
(17)
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9 Accurate ENO-like schemes for the model of fluid flows in a nozzle ...

2.4 Computing the Riemann solution

Observe that by the transformation x 7→ −x, u 7→ −u, a left-hand (right-
hand) state U = [ρ, u, a]T in G2 (in G3) will be transformed to the right-
hand (left-hand, respectively) state V = [ρ,−u, a]T in G2 (in G1, respec-
tively). Therefore, the construction of the Riemann solutions for Riemann
data around C− can be obtained from the one for Riemann data around C+.
Thus, without loss of generality, we consider only the case where Riemann
data are in G1 ∪G2. We call construction A if UL belongs to G1, and con-
struction B if UL belongs to G2. In each construction, we divide it into 3
cases depending on the relative position of the backward curve W2B(UR)

compared to the composite wave curves established in each construction.
In this subsection, we use some following notations:

(i) Wk(U−,U+) (Sk(U−,U+), Rk(U−,U+)) denotes the k-wave (k-shock,
k-rarefaction wave, respectively) connecting the left-hand state U− to
the right-hand state U+, for k = 1, 2, 3.

(ii) U#
0 denotes the state on the forward curve of 1-shock waves S1(U0)

such that σ1(U0, U
#
0 ) = 0; see Lemma 1.

(iii) Us
0,Ub

0 denote the states resulted by stationary contact wave from U0;
see (14) and Lemma 2.

(iv) U±
0 = W1(U0) ∩ C±, where W1(U0) is defined by (17) and C± are

defined by (6), (7).

(v) URie(x/t;UL,UR) is the exact solution of (4) with the Riemann initial
data

U(x, 0) =

UL, if x < 0,

UR, if x > 0.
(18)

2.4.1 Construction A1

Given a left-hand state UL ∈ G1. If UR is a state such that the backward
curve W2B(UR) intersects the composite wave curve W3 ◦ W1(UL, aR), see
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Cuong and Thanh 10

Figure 1: The composite wave curves W3 ◦ W1(UL, aR), W3 ◦ S1 ◦ W3(UL, aR), S1 ◦
W3(UL, aR), and the backward curve of 2-wave W2B(UR)
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11 Accurate ENO-like schemes for the model of fluid flows in a nozzle ...

Figure 1, then the Riemann solution of (4) with initial data (18) is

URie(x/t;UL,UR) (19)

=



UL, if x/t < 0,

Us
L, if 0 < x/t < min{λ1(Us

L), λ1(U∗)},

W1(Us
L,U∗), if min{λ1(Us

L), λ1(U∗)} < x/t < min{λ2(U∗), λ2(UR)},

W2(U∗,UR), if x/t > min{λ2(U∗), λ2(UR)},

where U∗ is found by

W2B(UR) ∩W3 ◦W1(UL, aR) = {U∗},

with W2B(UR) is defined by (17), and W3 ◦W1(UL, aR) is defined by

W3 ◦W1(UL, aR) =
{

U|U ∈ W1(Us
L) and U is located above Us#

L

}
. (20)

The set W3 ◦W1(UL, aR) is called the curve of composite 3-wave and 1-wave,
where Us

L =
[
ρsL,

aLρLuL

aRρsL
, aR

]T
is defined by Lemma 2, W1(Us

L) is defined

by (17), and Us#
L =

(
Us

L

)#
is defined by Lemma 1.

2.4.2 Construction A2

Given UL ∈ G1. Whenever the backward curve W2B(UR) intersects the
composite wave curve W3 ◦ S1 ◦ W3(UL, aR), see Figure 1, the Riemann
solution of (4) with initial data (18) is

URie(x/t;UL,UR) =


UL, if x/t < 0,

U∗, if 0 < x/t < min{λ2(U∗), λ2(UR)},

W2(U∗,UR), if x/t > min{λ2(U∗), λ2(UR)},
(21)

where U∗ is computed by

W2B(UR) ∩W3 ◦ S1 ◦W3(UL, aR) = {U∗},

with W2B(UR) is defined by (17), and W3 ◦ S1 ◦W3(UL, aR) is defined by

Iran. J. Numer. Anal. Optim., Vol. ??, No. ??, ??, pp ??



Cuong and Thanh 12

W3 ◦ S1 ◦W3(UL, aR) =
{

Us#b
L |aM is between aL and aR,

Us
L =

[
ρsL,

aLρLuL

aMρsL
, aM

]T
, Us#

L =
(

Us
L

)#
,

Us#b
L =

[
(ρs#

L )b,
aMρs#

L us#
L

aR(ρ
s#
L )b

, aR

]T}
.

(22)
We call the set W3 ◦S1 ◦W3(UL, aR) the curve of composite 3-wave, 1-shock,
and 3-wave.

2.4.3 Construction A3

Given UL ∈ G1. If UR is a state such that the backward curve W2B(UR)

intersects the composite wave curve S1 ◦ W3(UL, aR) defined as below, see
Figure 1, then the Riemann solution of (4) with initial data (18) is

URie(x/t;UL,UR) =



UL, if x/t < σ1(UL,U∗),

U∗, if σ1(UL,U∗) < x/t < 0,

Ub
∗, if 0 < x/t < min{λ2(Ub

∗), λ2(UR)},

W2(Ub
∗,UR), if x/t > min{λ2(Ub

∗), λ2(UR)},
(23)

where U∗ and Ub
∗ are found by

W2B(UR) ∩ S1 ◦W3(UL, aR) = {Ub
∗},

with W2B(UR) is defined by (17), and S1 ◦W3(UL, aR) is defined by

S1 ◦W3(UL, aR) =
{

Ub
∗|U∗ ∈ S1(UL),U∗ is located between U#

L and U−
L ,

Ub
∗ =

[
ρb∗,

aLρ∗u∗

aRρb∗
, aR

]T}
.

(24)
The set S1 ◦ W3(UL, aR) is called the curve of composite 1-shock and 3-
wave, where S1(UL) is defined by (10), U#

L is defined by Lemma 1, and
U−

L = S1(UL) ∩ C−.
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13 Accurate ENO-like schemes for the model of fluid flows in a nozzle ...

Figure 2: The composite wave curves R1 ◦W3 ◦W1(UL, aR), R1 ◦W3 ◦S1 ◦W3(UL, aR),
W1 ◦W3(UL, aR), and the backward curve of 2-wave W2B(UR)

2.4.4 Construction B1

Given a left-hand state UL ∈ G2. If a right-hand state UR satisfies that
the backward curve W2B(UR) intersects the composite wave curve R1 ◦W3 ◦
W1(UL, aR) defined as below, see Figure 2, then the Riemann solution of (4)
with initial data (18) is

URie(x/t;UL,UR) (25)

=



R1(UL,U+
L), if x/t < 0,

U+s
L , if 0 < x/t < min{λ1(U+s

L ), λ1(U∗)},

W1(U+s
L ,U∗), if min{λ1(U+s

L ), λ1(U∗)} < x/t < min{λ2(U∗), λ2(UR)},

W2(U∗,UR), if x/t > min{λ2(U∗), λ2(UR)},

Iran. J. Numer. Anal. Optim., Vol. ??, No. ??, ??, pp ??



Cuong and Thanh 14

where U∗ is found by

W2B(UR) ∩R1 ◦W3 ◦W1(UL, aR) = {U∗},

with W2B(UR) is defined by (17), and R1 ◦W3 ◦W1(UL, aR) is defined by

R1 ◦W3 ◦W1(UL, aR) =
{

U|U ∈ W1(U+s
L ) and U is located above U+s#

L

}
.

(26)
The set R1 ◦W3 ◦W1(UL, aR) is called the curve of composite 1-rarefaction
wave, 3-wave, and 1-wave, where U+

L = R1(UL) ∩ C+, U+s
L =

[
(ρ+L)

s,

aLρ
+
Lu

+
L

aR(ρ
+
L)

s
, aR

]T
is defined by Lemma 2, R1(UL) and W1(U+s

L ) are defined

by (16), (17), and U+s#
L =

(
U+s

L

)#
is defined by Lemma 1.

2.4.5 Construction B2

Given a left-hand state UL ∈ G2. Whenever the backward curve W2B(UR)

intersects the composite wave curve R1 ◦ W3 ◦ S1 ◦ W3(UL, aR), see Figure
2, the Riemann solution of (4) with initial data (18) will be

URie(x/t;UL,UR) =


R1(UL,U+

L), if x/t < 0,

U∗, if 0 < x/t < min{λ2(U∗), λ2(UR)},

W2(U∗,UR), if x/t > min{λ2(U∗), λ2(UR)},
(27)

where U∗ is calculated by

W2B(UR) ∩R1 ◦W3 ◦ S1 ◦W3(UL, aR) = {U∗},

with W2B(UR) is defined by (17), and R1 ◦W3 ◦ S1 ◦W3(UL, aR) is defined
by
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15 Accurate ENO-like schemes for the model of fluid flows in a nozzle ...

R1 ◦W3 ◦ S1 ◦W3(UL, aR) =
{

U+s#b
L |aM is between aL and aR,

U+s
L =

[
(ρ+L)

s,
aLρ

+
Lu

+
L

aM (ρ+L)
s
, aM

]T
,

U+s#
L =

(
U+s

L

)#
,

U+s#b
L =

[
(ρ+s#

L )b,
aMρ+s#

L u+s#
L

aR(ρ
+s#
L )b

, aR

]T}
.

(28)
We refer the set R1 ◦ W3 ◦ S1 ◦ W3(UL, aR) as the curve of composite 1-
rarefaction wave, 3-wave, 1-shock, and 3-wave, where U+

L = R1(UL) ∩ C+.

2.4.6 Construction B3

Given a left-hand state UL ∈ G2. If UR is a right-hand state such that
the backward curve W2B(UR) intersects the composite wave curve W1 ◦
W3(UL, aR), see Figure 2, then the Riemann solution of (4) with initial data
(18) is

URie(x/t;UL,UR) =


W1(UL,U∗), if x/t < 0,

Ub
∗, if 0 < x/t < min{λ2(Ub

∗), λ2(UR)},

W2(Ub
∗,UR), if x/t > min{λ2(Ub

∗), λ2(UR)},
(29)

where U∗ and Ub
∗ are found by

W2B(UR) ∩W1 ◦W3(UL, aR) = {Ub
∗},

with W2B(UR) is defined by (17), and W1 ◦W3(UL, aR) is defined by

W1 ◦W3(UL, aR) =
{

Ub
∗|U∗ ∈ W1(UL),U∗ is located between U+

L and U−
L ,

Ub
∗ =

[
ρb∗,

aLρ∗u∗

aRρb∗
, aR

]T}
.

(30)
The set W1 ◦W3(UL, aR) is called the curve of composite 1-wave and 3-wave,
where W1(UL) is defined by (17), and U±

L = W1(UL) ∩ C±.

Iran. J. Numer. Anal. Optim., Vol. ??, No. ??, ??, pp ??



Cuong and Thanh 16

Figure 3: The piecewise polynomial Up.pol(x)

3 Building an ENO-type scheme

Relying on the constructions of Riemann solutions in the previous section,
we are now in a position to construct an ENO-type scheme for (4). Let us
set

U =


aρ

aρu

a

 , F(U) =


aρu

a(ρu2 + p)

0

 , H(U) =


0

p

0

 . (31)

Then, the system (4) can be written in form

∂tU + ∂xF(U) = H(U)∂xa, x ∈ R, t > 0. (32)

Given the initial condition

U(x, 0) = U0(x), x ∈ R, (33)

we define the discrete initial values {U0
j}j∈Z are given by

U0
j =

1

∆x

∫ xj+1/2

xj−1/2

U0(x)dx, j ∈ Z. (34)

Suppose that the approximation {Un
j }j∈Z of U at the time tn is known.

Recently, the Godunov-type scheme is built in [15] as

Un+1
j = Un

j −
∆t

∆x

(
F(URie(0−;Un

j ,Un
j+1))−F(URie(0+;Un

j−1,Un
j ))

)
, (35)

where ∆t must satisfy the C.F.L condition
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17 Accurate ENO-like schemes for the model of fluid flows in a nozzle ...

∆t

∆x
max{|λi(Un

j )| : j ∈ Z, i = 1, 2} ≤ CFL. (36)

Then, the van Leer-type scheme is built in [16] as

Un+1
j =Un

j − ∆t

∆x

(
F(URie(0−;Un+1/2

j+1/2,−,U
n+1/2
j+1/2,+)) (37)

− F(URie(0+;Un+1/2
j−1/2,−,U

n+1/2
j−1/2,+))

)
, (38)

where

Un+1/2
j+1/2,− = Un

j+1/2,− − ∆t

2∆x
(F(Un

j+1/2,−)− F(Un
j−1/2,+)),

Un+1/2
j−1/2,+ = Un

j−1/2,+ − ∆t

2∆x
(F(Un

j+1/2,−)− F(Un
j−1/2,+)),

Un
j+1/2,− = Un

j +
1

2
Sn
j ,

Un
j−1/2,+ = Un

j − 1

2
Sn
j ,

Sn
j = (Un

j+1 − Un
j )Φ(θ

n
j ),

θnj =
Un

j − Un
j−1

Un
j+1 − Un

j

,

Φ(θ) =
|θ|+ θ

1 + |θ|
.

Now, in this paper, we construct an ENO-type scheme as follows:

(1) From the sequence Un, we construct a piecewise polynomial Up.pol(·)
as follows:

Up.pol(x) = Pj(x) =


ρj(x)

uj(x)

aj(x)

 , xj−1/2 < x < xj+1/2, j ∈ Z, (39)

where for each j, Pj(x) is a polynomial of degree at most k − 1, and
there exist r, s ∈ N (depending on j) such that

1

∆x

∫ xi+1/2

xi−1/2

Pj(x)dx = Un
i , i ∈ {j − r, . . . , j, . . . , j + s},

s+ r + 1 = k;

(40)

see Figure 3. For each j, to achieve the polynomial Pj(x) satisfying
(40), we first look for the primitive function Qj(x) of Pj(x), that is,
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Qj(x) =

∫ x

−∞
Pj(x)dx,

in the following way:

(i) We start with the two node stencil for Qj(x)

{xj−1/2, xj+1/2},

and compute the first order divided difference

Qj [xj−1/2, xj+1/2] =
Qj(xj+1/2)− Qj(xj−1/2)

∆x
,

where

Qj(xj+1/2) =

j∑
l=−∞

Un
l ∆x,

Qj(xj−1/2) =

j−1∑
l=−∞

Un
l ∆x.

(ii) Assume that l-node stencil for Qj(x) (l = 2, 3, . . . , k)

{xi+1/2, . . . , xi+l−1/2}

is known. To add one of two neighboring nodes, xi−1/2 or xi+l+1/2,
to the stencil, we use the following ENO procedure:

∗ If ∣∣∣Qj [xi−1/2, xi+1/2, . . . , xi+l−1/2]
∣∣∣

<
∣∣∣Qj [xi+1/2, . . . , xi+l−1/2, xi+l+1/2]

∣∣∣,
then we add xi−1/2 to the stencil, where the lth order divided
differences are defined recursively by

Qj [xi+1/2, . . . , xi+l+1/2]

=
Qj [xi+3/2, . . . , xi+l+1/2]− Qj [xi+1/2, . . . , xi+l−1/2]

l∆x
;

∗ Otherwise, we add xi+l+1/2 to the stencil.

(iii) After the (k + 1)-node stencil
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{xj−r−1/2, xj−r+1/2, . . . , xj−1/2, xj+1/2, . . . , xj+s−1/2, xj+s+1/2},

is found, where s + r + 1 = k, we use Newton interpolation for-
mula to obtain Qj(x), which is a polynomial of degree at most k,
satisfying

Qj(xi+1/2) =

i∑
l=−∞

Un
l ∆x, i = j − r − 1, . . . , j + s.

Then, we obtain
Pj(x) =

d

dx
Qj(x),

which is a polynomial of degree at most k − 1 satisfying (40).

(2) We solve the Cauchy problem for (32) with the initial condition

U(x, 0) = Up.pol(x), x ∈ R, (41)

to find the solution U(·,∆t).

(3) We project U(·,∆t) onto the piecewise constant functions, that is, we
set

Un+1
j =

1

∆x

∫ xj+1/2

xj−1/2

U(x,∆t)dx, j ∈ Z. (42)

In order to obtain an explicit scheme, we integrate the equation (32) over
the rectangle (xj−1/2, xj+1/2)× (0,∆t), we obtain∫ xj+1/2

xj−1/2

(U(x,∆t)− U(x, 0))dx

+

∫ ∆t

0

(
F(U(xj+1/2 − 0, t))− F(U(xj−1/2 + 0, t))

)
dt

=

∫ xj+1/2

xj−1/2

∫ ∆t

0

H(U)∂xadtdx.

(43)

Using (40), (39), (41) and (42), we get

∆x(Un+1
j − Un

j ) +

∫ ∆t

0

(
F(U(xj+1/2 − 0, t))− F(U(xj−1/2 + 0, t))

)
dt

=

∫ xj+1/2

xj−1/2

∫ ∆t

0

H(U(x, t))∂xaj(x)dtdx.

(44)
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Approximating (44) by using the Midpoint Rule, we obtain

∆x(Un+1
j − Un

j ) + ∆t
(

F(U(xj+1/2 − 0,∆t/2))− F(U(xj−1/2 + 0,∆t/2))
)
dt

= ∆x∆tH(U(xj ,∆t/2)) · ∂xaj(x)
∣∣∣
x=xj

.

(45)
To approximate F(U(xj+1/2 − 0,∆t/2)), F(U(xj−1/2 + 0,∆t/2)),
and H(U(xj ,∆t/2)), we use a predictor-corrector method as follows:

(i) We compute the updated values Un+1/2
j+1/2,± by

Un+1/2
j+1/2,−

= Un
j+1/2,− − ∆t

2∆x
(F(Un

j+1/2,−)− F(Un
j−1/2,+))

+
∆t

2
H(Un

j+1/2,−) · ∂xaj(x)
∣∣∣
x=xj+1/2−

,

Un+1/2
j−1/2,+

= Un
j−1/2,+ − ∆t

2∆x
(F(Un

j+1/2,−)− F(Un
j−1/2,+))

+
∆t

2
H(Un

j−1/2,+) · ∂xaj(x)
∣∣∣
x=xj−1/2+

,

(46)

where
Un

j+1/2,− = Pj(xj+1/2),

Un
j−1/2,+ = Pj(xj−1/2).

(47)

(ii) We solve the Riemann problem of (32) with initial data

U(x, 0) =

Un+1/2
j+1/2,−, if x < xj+1/2,

Un+1/2
j+1/2,+, if x > xj+1/2,

xj < x < xj+1, j ∈ Z, (48)

to obtain the exact solution

U(x, t) = URie
(x− xj+1/2

t
;Un+1/2

j+1/2,−,U
n+1/2
j+1/2,+

)
, xj < x < xj+1, j ∈ Z.

(49)

(iii) We approximate

Iran. J. Numer. Anal. Optim., Vol. ??, No. ??, ??, pp ??



21 Accurate ENO-like schemes for the model of fluid flows in a nozzle ...

F(U(xj+1/2 − 0,∆t/2)) ≈F(URie(0−;Un+1/2
j+1/2,−,U

n+1/2
j+1/2,+)),

F(U(xj−1/2 + 0,∆t/2)) ≈F(URie(0+;Un+1/2
j−1/2,−,U

n+1/2
j−1/2,+)),

H(U(xj ,∆t/2)) ≈1

2

(
H(URie(0−;Un+1/2

j+1/2,−,U
n+1/2
j+1/2,+))

+ H(URie(0+;Un+1/2
j−1/2,−,U

n+1/2
j−1/2,+))

)
.

Thus, the scheme (45) becomes

Un+1
j =Un

j − ∆t

∆x

(
F(URie(0−;Un+1/2

j+1/2,−,U
n+1/2
j+1/2,+))

− F(URie(0+;Un+1/2
j−1/2,−,U

n+1/2
j−1/2,+))

)
+

∆t

2

(
H(URie(0−;Un+1/2

j+1/2,−,U
n+1/2
j+1/2,+))

+ H(URie(0+;Un+1/2
j−1/2,−,U

n+1/2
j−1/2,+))

)
· ∂xaj(x)

∣∣∣
x=xj

.

(50)

To complete the ENO-type scheme (50), we must visit the Riemann problem
for (1) to define the values URie(0±;UL,UR) as follows:

• For construction A1 (19): URie(0−;UL,UR) = UL, and URie(0+;UL,UR) =

Us
L, where Us

L =
[
ρsL,

aLρLuL

aRρsL
, aR

]T
is defined by Lemma 2.

• For construction A2 (21): URie(0−;UL,UR) = UL, and URie(0+;UL,UR) =

U∗, where U∗ is the intersection point of W2B(UR) defined by (17),
and W3 ◦ S1 ◦W3(UL, aR) defined by (22).

• For construction A3 (23): URie(0−;UL,UR) = U∗, and URie(0+;UL,UR) =

Ub
∗, where U∗ belongs to S1(UL) defined by (10), and Ub

∗ is the inter-
section point of W2B(UR) defined by (17), and S1◦W3(UL, aR) defined
by (24).

• For construction B1 (25): URie(0−;UL,UR) = U+
L , and URie(0+;UL,UR) =

U+s
L , where U+

L = R1(UL)∩ C+, and U+s
L =

[
(ρ+L)

s,
aLρ

+
Lu

+
L

aR(ρ
+
L)

s
, aR

]T
is

defined by Lemma 2.

• For construction B2 (27): URie(0−;UL,UR) = U+
L , and URie(0+;UL,UR) =

U∗, where U∗ is the intersection point of W2B(UR) defined by (17),
and R1 ◦W3 ◦ S1 ◦W3(UL, aR) defined by (28).
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• For construction B3 (29): URie(0−;UL,UR) = U∗, and URie(0+;UL,UR) =

Ub
∗, where U∗ belongs to W1(UL) defined by (17), and Ub

∗ is the in-
tersection point of W2B(UR) defined by (17), and W1 ◦ W3(UL, aR)

defined by (30).

4 Numerical experiments with discussions

This section is aimed to demonstrate the accuracy of our scheme (50) with
some numerical tests with MATLAB. For each test, we find the numerical
solutions Uh by our scheme (50) with taking

κ = 1.0, γ = 1.6,

and we then compare Uh with the corresponding exact solution U.

4.1 Test for well-balanced property

Test 1. In this test, we aim to demonstrate that the ENO-like scheme (50)
can capture a smooth stationary wave with second order accuracy. Let us
consider the Cauchy problem for system (4) with the initial smooth data
given by

U(x, 0) =
[
ρ(x), u(x), a(x)

]T
, x ≥ 0, (51)

where a(x) = 1+
1

2
x3, and

(
ρ(·), u(·)

)
is the solution of the following problem:

d

dx
(aρu) = 0,

d

dx

(u2

2
+

κγργ−1

γ − 1

)
= 0,

(ρ, u)
∣∣∣
x=0

= (0.5, 1.5),

λ1(ρ, u) = u−
√
κγργ−1 > 0, x ≥ 0. (52)

The exact solution of this problem is just a smooth stationary wave

U(x, t) =
[
ρ(x), u(x), a(x)

]T
, x ≥ 0, t ≥ 0.
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Figure 4 displays the exact solution and the approximate solution by the
ENO-like scheme (50) with k = 3 for the mesh size h = 1/80 at time t = 0.1

and on spatial domain x ∈ [0, 1]. The errors, orders of convergence are
reported by Table 1.

Figure 4: Exact solution and approximate solution by the ENO-like scheme (50) with
k = 3 for the mesh size h = 1/80 at time t = 0.1 and on spatial domain x ∈ [0, 1] of Test
1

4.2 Test for a complete Riemann solution when initial
data belongs to same region

Test 2. In this test, we approximate the Riemann solution of the problem
(4) with initial data
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Table 1: Errors and orders of convergence for Test 1

h L1-error Order
1/10 0.20912× 10−3 −
1/20 0.05769× 10−3 1.86

1/40 0.013918× 10−3 2.05

1/80 0.003443× 10−3 2.02

1/160 0.000917× 10−3 1.91

UL UR

ρ 0.5 0.7

u 1.5 2.0

a 2.0 2.5

(53)

where UL,UR are in the same supersonic region G1. According to the Con-
struction A1, the Riemann solution is

U(x, t) =



UL, if x/t < 0,

Us
L, if 0 < x/t < σ1(Us

L,U∗),

U∗, if σ1(Us
L,U∗) < x/t < λ2(U∗),

R2(U∗,UR), if x/t > λ2(U∗),

where
Us

L U∗

ρ 0.350918 0.436769

u 1.709803 1.50012

a 2.5 2.5

Figure 5 displays the exact solution and its approximate solutions by the
ENO-like scheme (50) with k = 3 and k = 7 for the mesh size h = 1/320

at time t = 0.1 and on spatial domain x ∈ [−1, 1]. The errors, orders of
convergence are reported in Table 2. This table shows that the errors of
the ENO-like scheme (50) are much smaller than the ones of the Godunov-
type scheme (35), and the orders of convergence of the ENO-like scheme
(50) are higher than the ones of the Godunov-type scheme (35) for all k =
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2, 3, 4, 5, 6, 7. Specially, the errors of the ENO-like scheme (50) with k = 3

are smaller than the ones of the van Leer-type scheme (38), although very
small.

Figure 5: Exact solution and its approximate solutions by the ENO-like scheme (50)
with k = 3 and k = 7 for the mesh size h = 1/320 at time t = 0.1 of Test 2

4.3 Test for a complete Riemann solution when initial
data belongs to different regions

Test 3. Consider the Riemann data

UL UR

ρ 0.9 0.5

u 1.0 1.2

a 2.0 2.5

(54)
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Table 2: Errors and orders of convergence for Test 2

Godunov-type van Leer-type ENO-like k = 2 ENO-like k = 3

h L1-error Order L1-error Order L1-error Order L1-error Order
1/10 0.147210 − 0.133470 − 0.137800 − 0.136490 −
1/20 0.092721 0.67 0.071526 0.90 0.075273 0.87 0.070917 0.94

1/40 0.056977 0.70 0.037260 0.94 0.039782 0.92 0.035419 1.00

1/80 0.036229 0.65 0.017500 1.09 0.020400 0.96 0.016978 1.06

1/160 0.023050 0.65 0.008817 0.99 0.010675 0.93 0.008495 1.00

1/320 0.014581 0.66 0.004534 0.96 0.005647 0.92 0.004427 0.94

ENO-like k = 4 ENO-like k = 5 ENO-like k = 6 ENO-like k = 7

h L1-error Order L1-error Order L1-error Order L1-error Order
1/10 0.138800 − 0.141660 − 0.144350 − 0.135280 −
1/20 0.072094 0.95 0.074614 0.92 0.076848 0.91 0.072276 0.90

1/40 0.034414 1.07 0.035282 1.08 0.036509 1.07 0.036410 0.99

1/80 0.016349 1.07 0.016685 1.08 0.017567 1.06 0.019454 0.90

1/160 0.008891 0.88 0.009398 0.83 0.011317 0.63 0.012965 0.59

1/320 0.004822 0.88 0.005238 0.84 0.006964 0.70 0.007721 0.75

where UL ∈ G2, and UR ∈ G1. According to the Construction B1, the exact
solution is

U(x, t) =



R1(UL,U+
L), if x/t < 0,

U+s
L , if 0 < x/t < σ1(U+s

L ,U∗),

U∗, if σ1(U+s
L ,U∗) < x/t < σ2(U∗,UR),

UR, if x/t > σ2(U∗,UR),

where
U+

L U+s
L U∗

ρ 0.778780 0.446692 0.582528

u 1.173504 1.636746 1.360876

a 2.0 2.5 2.5

Figure 6 displays the exact solution and its approximate solutions by the
ENO-like scheme (50) with k = 3 and k = 6 for the mesh size h = 1/320

at time t = 0.1 and on spatial domain x ∈ [−1, 1]. The errors, orders of
convergence are reported in Table 3. This test indicates that the errors of
the ENO-like scheme (50) are smaller than those of the Godunov-type scheme
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Figure 6: Exact solution and approximate solutions by the ENO-like scheme (50) with
k = 3 and k = 6 for the mesh size h = 1/320 at time t = 0.1 of Test 3

(35) only for k = 2, 3, 4. Specially, the errors, orders of convergence of the
ENO-like scheme (50) with k = 3 are approximate to the ones of the van
Leer-type scheme (38).

Table 3: Errors and orders of convergence for Test 3

Godunov-type van Leer-type ENO-like k = 2 ENO-like k = 3

h L1-error Order L1-error Order L1-error Order L1-error Order
1/10 0.145170 − 0.140000 − 0.143600 − 0.141710 −
1/20 0.088237 0.72 0.083727 0.74 0.085501 0.75 0.085796 0.72

1/40 0.045084 0.97 0.038502 1.12 0.038707 1.14 0.039072 1.13

1/80 0.026477 0.77 0.019911 0.95 0.020432 0.92 0.020352 0.94

1/160 0.015181 0.80 0.009689 1.04 0.010287 0.99 0.009670 1.07

1/320 0.009123 0.73 0.005674 0.77 0.005962 0.79 0.005467 0.82

ENO-like k = 4 ENO-like k = 5 ENO-like k = 6 ENO-like k = 7

h L1-error Order L1-error Order L1-error Order L1-error Order
1/10 0.141280 − 0.141260 − 0.141420 − 0.141640 −
1/20 0.086031 0.72 0.086124 0.71 0.086201 0.71 0.086289 0.71

1/40 0.040304 1.09 0.041208 1.06 0.041770 1.05 0.042117 1.03

1/80 0.023236 0.79 0.025029 0.72 0.026564 0.65 0.027639 0.61

1/160 0.011882 0.97 0.015186 0.72 0.017823 0.58 0.019678 0.49

1/320 0.006408 0.89 0.009008 0.75 0.010765 0.73 0.013075 0.59
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4.4 Test for a resonant phenomenon case

Test 4. This test is conducted to show that the scheme (50) can work well in
regions of resonance, where three waves propagate at same speed. Consider
the Riemann initial data

UL UR

ρ 0.5 1.2

u 1.5 0.9

a 2.0 2.5

(55)

where UL ∈ G1, and UR ∈ G2. According to the Construction A2, the exact
solution is

U(x, t) =


UL if x/t < 0,

Us#b
L , if 0 < x/t < λ2(Us#b

L ),

R2(Us#b
L ,UR), if x/t > λ2(Us#b

L ),

(56)

where
Us

L Us#
L Us#b

L

ρ 0.458944 0.886495 0.966873

u 1.557664 0.806412 0.620557

a 2.098252 2.098252 2.5

In this Riemann solution (56), we can see that it contains three waves propa-
gating at zero speed, that is,W3(UL,Us

L), S1(Us
L,U

s#
L ), andW3(Us#

L ,Us#b
L ).

Figure 7 shows the exact solution and its approximate solutions by the
ENO-like scheme (50) with k = 3 and k = 5 for the mesh size h = 1/320

at time t = 0.1 and on spatial domain x ∈ [−1, 1]. This figure demonstrates
the convergence of the approximate solutions by the ENO-like scheme (50)
when the Riemann data belongs to regions of resonance. The errors, orders
of convergence are reported in Table 4. We can see from this table that the
ENO-like scheme (50) with k = 2, 3, 4, 5, 6 has a better accuracy than the
Godunov-type scheme (35). Again, we also see that the errors, orders of
convergence of the ENO-like scheme (50) with k = 3 are the same as those
of the van Leer-type scheme (38).
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Figure 7: Exact solution and approximate solutions by the ENO-like scheme (50) with
k = 3 and k = 5 for the mesh size h = 1/320 at the time t = 0.1 of Test 4

Table 4: Errors and orders of convergence for Test 4

Godunov-type van Leer-type ENO-like k = 2 ENO-like k = 3

h L1-error Order L1-error Order L1-error Order L1-error Order
1/10 0.156310 − 0.149430 − 0.146500 − 0.147310 −
1/20 0.089646 0.80 0.078463 0.93 0.078737 0.90 0.076385 0.95

1/40 0.053216 0.75 0.042118 0.90 0.043172 0.87 0.042851 0.83

1/80 0.030277 0.81 0.021359 0.98 0.022269 0.96 0.021173 1.02

1/160 0.017451 0.79 0.010617 1.01 0.011415 0.96 0.010297 1.04

1/320 0.010445 0.74 0.005360 0.99 0.005884 0.96 0.005193 0.99

ENO-like k = 4 ENO-like k = 5 ENO-like k = 6 ENO-like k = 7

h L1-error Order L1-error Order L1-error Order L1-error Order
1/10 0.147400 − 0.147240 − 0.147090 − 0.147890 −
1/20 0.076007 0.96 0.076504 0.94 0.076737 0.94 0.080435 0.88

1/40 0.044977 0.76 0.046037 0.73 0.046879 0.71 0.049658 0.70

1/80 0.023064 0.96 0.024237 0.93 0.025491 0.88 0.030240 0.72

1/160 0.011652 0.99 0.012472 0.96 0.013368 0.93 0.025279 0.26

1/320 0.006026 0.95 0.006472 0.95 0.007058 0.92 0.018523 0.45

4.5 Test for interaction of waves

Test 5. In this test, we approximate a Cauchy problem with initial condition:
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U(x, 0) =


UL = [0.8, 2.0, 2.0]T , if x < 0,

UM = [0.5, 1.5, 2.5]T , if 0 < x < 1,

UR = [0.372067, 1.679806, 3.0]T , if x > 1,

(57)

where UL,UM ,UR ∈ G1, and UR = Us
M . At time t = 0.4, we can check that

the Riemann solution at x = 0 interacts with the one at x = 1. Therefore,
the exact solution at t = 0.4 is

U(x, t) =



UL, if x/t < 0,

U1, if 0 < x/t < σ1(U1,U2),

U2, if σ1(U1,U2) < x/t and (x− 1)/t < 0,

U3, if 0 < (x− 1)/t < σ1(U3,U4),

U4, if σ1(U3,U4) < (x− 1)/t < σ2(U4,UR),

UR, if (x− 1)/t > σ2(U4,UR),

where
U1 U2 U3 U4

ρ 0.584096 0.738236 0.567757 0.562968

u 2.191420 1.929233 2.090433 2.099463

a 2.5 2.5 3.0 3.0

Figure 8 displays the exact solution and its approximate solutions by the
ENO-like scheme (50) with k = 3 and k = 5 for the mesh size h = 1/320

at time t = 0.4 and on spatial domain x ∈ [−2, 2]. The errors, orders of
convergence are reported in Table 5. Like all tests above, this test also
indicates that the errors of the ENO-like scheme (50) with k = 2, 3, 4, 5 are
much smaller than the ones of the Godunov-type scheme (35), and the orders
of convergence of the ENO-like scheme (50) with k = 2, 3, 4, 5 are higher than
the ones of the Godunov-type scheme (35). We also see that the accuracy of
the ENO-like scheme (50) is less than the van Leer-type scheme (38) for all
k = 2, 3, 4, 5, 6, 7.
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Figure 8: Exact solution and approximate solutions by the ENO-like scheme (50) with
k = 3 and k = 5 for the mesh size h = 1/160 at time t = 0.4 of Test 5

Table 5: Errors and orders of convergence for Test 5

Godunov-type van Leer-type ENO-like k = 2 ENO-like k = 3

h L1-error Order L1-error Order L1-error Order L1-error Order
1/5 0.218000 − 0.164300 − 0.180440 − 0.170460 −
1/10 0.161200 0.44 0.095635 0.78 0.112080 0.69 0.102300 0.74

1/20 0.107390 0.59 0.045529 1.07 0.057382 0.97 0.052002 0.98

1/40 0.067436 0.67 0.024359 0.90 0.029569 0.96 0.026578 0.97

1/80 0.041364 0.71 0.011765 1.05 0.015053 0.97 0.012180 1.13

1/160 0.023396 0.82 0.005772 1.03 0.007526 1.00 0.006322 0.95

ENO-like k = 4 ENO-like k = 5 ENO-like k = 6 ENO-like k = 7

h L1-error Order L1-error Order L1-error Order L1-error Order
1/5 0.187650 − 0.169700 − 0.200110 − 0.191990 −
1/10 0.111190 0.76 0.115720 0.55 0.121310 0.72 0.121630 0.66

1/20 0.056829 0.97 0.073652 0.65 0.086137 0.49 0.091910 0.40

1/40 0.028911 0.98 0.045233 0.70 0.059927 0.52 0.067928 0.44

1/80 0.012443 1.22 0.023754 0.93 0.035052 0.77 0.047736 0.51

1/160 0.006982 0.83 0.015361 0.63 0.028422 0.30 0.036563 0.38

5 Conclusions and discussion

The high-resolution ENO-like schemes for the model (1) constructed in this
work can approximate exact solutions very well for all kinds of data: super-
sonic, subsonic, or both. The ENO-like scheme corresponding to k = 3 still
works well even in the resonant regime, where the exact solution containing
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multiple waves associated with different characteristic fields propagates with
the same shock speed. This scheme still maintains some valuable properties
of the original one for hyperbolic systems of conservation laws: it is oscil-
latory and has high order accuracy. Numerical tests show that the scheme
has a much better accuracy than the Godunov-type scheme and can approx-
imate smooth stationary waves with a second-order accuracy. The ENO-like
scheme corresponding to k = 3 works as good as the van Leer-type scheme.
However, the ENO-like schemes for larger k may suffer oscillations.
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