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Abstract--This paper presents a general-purpose hardware 

implementation of the digital visual interface (DVI) protocol on 

the Xilinx Virtex-6 ML605 FPGA platform for real-time display 

of digital processing results. The design enables direct output of 

processed data from the FPGA to an external monitor without 

relying on external processors or software-based rendering tools. 

It addresses key challenges in timing synchronization, pixel 
formatting, and interfacing with the onboard Chrontel CH7301C 

encoder to support resolutions up to 1920×1080 at 60 Hz. A 

lightweight processing pipeline is developed in Verilog to convert 

multidimensional outputs into a sequential stream of pixel data 

conforming to the DVI protocol. As a case study, a lightweight 
convolutional neural network trained on the CIFAR-10 dataset is 

implemented on the FPGA, and its classification probabilities are 

displayed as a probability map on an LCD. Experimental results 

confirm low resource utilization and real-time performance, 

validating the system’s applicability in embedded applications 

such as machine learning inference, image processing, and real- 

time monitoring. This work demonstrates the feasibility of FPGA- 

based platforms for efficiently displaying digital video output in 

intelligent edge systems. 

 
Index Terms-- Digital visual interface, field programmable gate 

array, image processing, real-time, video processing, Xilinx 

Virtex-6.  

I.  INTRODUCTION 

HE integration of neural networks with real-time image 

processing on FPGA platforms is vital for applications that 

require low latency and efficient computation. While neural 

networks are effective at interpreting visual data, displaying 

their classification results in real time directly from an FPGA 

presents practical challenges. In software environments such as 

Python or MATLAB, classification results can be easily shown 

using high-level functions like plot(). However, FPGA-based 

systems lack such abstractions; displaying outputs requires 

manual control over video signal generation and transmission 

to an external monitor. This makes even basic output display—

such as showing the predicted class on an LCD screen—a 

nontrivial hardware task. 

The DVI is a widely accepted standard for transmitting 

digital video signals, enabling seamless connections between 

computers and display devices [1], [2]. It requires careful 

synchronization of pixel data, clock signals, and timing signals 

to ensure the correct display of visual outputs. Misalignment of 
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these signals can result in distorted or invisible outputs. 

Therefore, a precise and accurate implementation of the DVI 

protocol is crucial for verifying the functionality of FPGA- 

based neural network systems. As the demand for high- quality 

digital video transmission increases, bridging the gap between 

legacy interfaces—such as the video graphics array (VGA) and 

modern digital standards has become essential. Field-

programmable gate arrays (FPGAs) provide a flexible and 

customizable platform for implementing such interface 

conversions. 

In modern image processing and deep learning applications, 

it is often necessary to display the output of computations on a 

monitor [3], [4]. This requirement becomes particularly 

important when processing is carried out on FPGA boards, as 

the FPGA functions as a specialized integrated circuit (IC) that 

performs intensive computational tasks. The results must be 

presented clearly and efficiently to ensure that the system 

operates as intended. In recent years, implementing deep 

learning algorithms on FPGA boards has gained significant 

attention, as these platforms offer high performance, low power 

consumption, and customizability compared to traditional 

processors [5], [6], [7]. Many embedded and edge applications 

now utilize specialized ICs, rather than general-purpose 

processors, to per- form neural network inference. These 

specialized ICs optimize power, memory usage, and transistor 

count, making them well- suited for real-time processing. 

However, to verify the accuracy and effectiveness of neural 

networks, the processed outputs must be displayed to the user 

in a comprehensible manner, necessitating the implementation 

of a video display protocol.  

A key limitation in FPGA-based video systems arises from 

the interface between multidimensional data structures used in 

AI models and the strictly sequential data format required by 

video output hardware. While the Chrontel (CH7301C) [8] DVI 

encoder integrated on the ML605 board handles the encoding 

of pixel data into the transition minimized differential signaling 

(TMDS) format for robust transmission over DVI cables, it 

requires a continuous, precisely timed stream of pixel values 

along with horizontal and vertical synchronization signals. In 

contrast, neural networks and image processing algorithms 

typically operate on two- or three-dimensional data arrays—

such as feature maps or RGB images—rather than linear pixel 
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sequences. This structural mismatch demands custom logic to 

convert high-level, array-based outputs into tightly timed, 

flattened pixel streams that comply with the DVI protocol. The 

lack of built-in hardware for this conversion makes it necessary 

to implement a fully synchronized pipeline capable of feeding 

the Chrontel encoder accurately and in real time. Addressing 

this challenge is essential for achieving smooth and coherent 

display of neural network results in embedded artificial 

intelligence (AI) applications. This paper presents an efficient 

hardware-software co-design approach for real-time display of 

neural network classification results using the DVI protocol on 

an FPGA. A lightweight neural network, trained on the CIFAR-

10 dataset, is implemented within the FPGA, with its weights 

manually embedded in Verilog. The network processes input 

images and produces classification probabilities, from which 

the seven most probable classes are selected for display. These 

results are formatted as RGB data, which is then converted into 

a DVI-compatible signal for output to an external monitor. To 

achieve this, we generate synchronization signals, overlay the 

classification results on the display, and transmit the output to 

the onboard Chrontel DVI encoder of the Xilinx ML605 board. 

This enables real- time rendering of the classification output 

directly on an LCD screen, alongside the processed input 

image. By eliminating the need for external CPUs or GPUs, this 

approach enhances resource efficiency and provides a scalable 

solution for embedded AI applications. The proposed system 

demonstrates how FPGA-based deep learning architectures can 

be directly integrated with standard video output protocols, 

making them well-suited for edge computing and real-time 

classification tasks. This paper discusses the process of 

implementing the DVI protocol on the ML605 FPGA, including 

the challenges of signal synchronization, the integration of 

neural network output, and the successful testing of the system 

for real-time image processing applications. By utilizing the 

power of the Xilinx Virtex-6 architecture, we aim to showcase 

the potential of FPGA platforms in the efficient and accurate 

display of neural network and image processing outputs. 

One of the significant challenges in the integration of neural 

network outputs and real-time image processing in FPGA 

systems is the precise synchronization of timing signals for 

video display, especially in legacy-to-modern interface 

conversions. Existing solutions often focus on individual 

aspects, such as processing efficiency or display fidelity, 

without addressing the combined demand for real-time 

performance and high- quality visualization. Our work 

introduces a novel approach by integrating DVI protocol on the 

ML605 FPGA to achieve seamless and accurate displaying of 

neural network outputs. The system leverages the capabilities 

of the Xilinx Virtex-6 architecture, ensuring synchronization of 

pixel, clock, and timing signals with resolutions up to 

1920×1080 at 60 Hz. This dual capability of high-resolution 

rendering and real-time processing represents a significant step 

forward in the design of embedded systems, particularly for 

edge AI applications like medical imaging and smart 

monitoring. In this work, the ML605 FPGA development 

board, built on the Xilinx Virtex-6 architecture, is employed to 

prototype and implement complex digital systems. The design 

is developed using the Xilinx ISE 14.7 toolchain, which fully 

supports hardware synthesis and configuration for this 

platform. With its high-capacity FPGA, ample memory, and 

versatile I/O interfaces, the ML605 is well-suited for system-

on-chip (SoC) development and the implementation of 

advanced video interfaces. 

The primary contribution of this work is the real-time 

implementation of the DVI protocol on the Xilinx Virtex-6 

ML605 FPGA platform. This implementation enables direct 

displaying of neural network outputs and image processing 

results by addressing key challenges in signal synchronization 

and high-resolution rendering. Key innovative aspects of the 

implementation include: 

• Real-time DVI protocol implementation on FPGA: This 

work presents the complete implementation of the DVI protocol 

on the Xilinx ML605 FPGA board, enabling direct display of 

neural network outputs on external monitors without requiring 

a host CPU or GPU. 

• Direct integration of neural inference with display 

pipeline: A novel hardware-software co-design is developed 

that links a lightweight convolutional neural network (CNN), 

manually implemented in Verilog, with a real-time pixel stream 

generator. The system converts multidimensional classification 

outputs into sequential RGB pixel values for video rendering. 

• Custom hardware pipeline for TMDS-compatible output: 

The system addresses the structural mismatch between array-

based AI outputs and the linearly timed pixel streams required 

by the DVI encoder. A synchronized pipeline is implemented 

to format and transmit the CNN output via the on-board 

Chrontel CH7301C encoder using the TMDS standard. 

• Legacy-to-modern interface conversion: The design 

enables legacy VGA-style embedded systems to connect with 

modern digital displays via the DVI protocol, effectively 

bridging analog and digital video standards using 

programmable logic. 

• Efficient FPGA resource utilization: The architecture 

demonstrates minimal consumption of FPGA resources (less 

than 1% of slice registers and LUTs), allowing significant 

headroom for additional logic, such as more complex networks 

or preprocessing units. 

• Hardware-based rendering of neural outputs: 

Classification probabilities are displayed as visual indicators—

such as variable-width bars—directly on the LCD without 

software-based rendering. This hardware-centric approach 

facilitates real-time feedback in embedded systems. 

• Scalability for edge AI applications: The system is well-

suited for embedded AI scenarios, such as medical diagnostics, 

smart surveillance, and industrial monitoring, where low 

latency, power efficiency, and real-time result visualization are 

critical. 

This novel implementation not only confirms the feasibility 

of video protocol integration on FPGA platforms but also 

provides a scalable framework for real-time display in 

advanced embedded systems. 

The structure of this paper is organized as follows: Section 

II introduces relevant studies addressing the topic. Section III 

presents a detailed comparison of commonly used display 
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interfaces, including VGA, DVI, and high-definition 

multimedia interface (HDMI), highlighting their features, 

limitations, and use cases. The proposed method architecture is 

outlined in Section IV. The experimental results are provided in 

Section V. Finally, the conclusion is presented in Section VI. 

II.  RELATED WORK 

Integrating neural networks and real-time image processing 

outputs on FPGA platforms has garnered significant attention 

in recent years [9], [5]. Various studies have explored FPGA- 

based solutions for implementing video display protocols, 

focusing on DVI and related technologies [10], [9]. These 

efforts highlight the versatility of FPGAs in bridging legacy and 

modern systems while ensuring high-performance real- time 

processing. Recent advancements in AI have driven significant 

progress in intelligent flexible sensing systems capable of 

highly efficient data acquisition, analysis, and perception. 

These innovations enable more sophisticated communication 

between neural processing units and external sensors, 

improving real-time monitoring and display capabilities for 

applications such as flexible sensory systems, humanoid 

robotics, and human activity monitoring [4]. Similarly, the 

development of systems-on-chip such as TinyVers, which 

incorporates state- retentive design for machine learning (ML) 

inference at the extreme edge, demonstrates the significance of 

energy-efficient and versatile hardware platforms in supporting 

real-time AI applications [5]. Recent advancements have 

showcased the implementation of FPGA-based real-time image 

processing systems, emphasizing the integration of DVI-

compatible video interfaces for effective visualization and 

synchronization [9]. Optimization techniques for deploying 

CNNs on FPGA plat- forms have further enhanced the 

efficiency of hardware- software co-design, enabling seamless 

display of neural net- work output [10]. High-speed video 

processing and display integration have also been 

demonstrated, particularly through FPGA-accelerated object 

detection systems utilizing edge in- formation, achieving real-

time potential in applications [11]. 

Moreover, digital oscillatory neural network frameworks 

have been implemented on FPGAs for edge AI applications, 

highlighting the relevance of video signal generation 

capabilities in DVI-based visualization systems [12]. The 

development of real-time systems for processing neuronal 

network activity on FPGA platforms has further established the 

critical role of DVI in rendering real-time outputs for high-

speed visual feedback [13]. Additionally, FPGA 

implementations of hyperchaotic neural network systems have 

illustrated the adaptability of these platforms for complex 

computations and their corresponding outputs [14].  

Efforts have also focused on privacy-preserving 

authentication protocols for IoT devices, leveraging FPGA 

capabilities with DVI for secure and efficient visualization [3]. 

Finally, real-time video enhancement algorithms implemented 

on FP- GAs have underscored their ability to handle 

computationally intensive tasks while adhering to DVI 

standards for high- quality visualization [15].  

Another important area of exploration has been the evolution 

of GPU hardware, which offers significant parallel processing 

capabilities for neural networks and AI workloads. Peddie [6] 

provides an in-depth review of the GPU environment and its 

impact on hardware, highlighting advancements in graphics 

processing technology and its integration into AI and ML 

workflows.  

These insights are particularly relevant as GPUs and FPGAs 

continue to coexist as complementary technologies in real-time 

AI processing. These studies collectively demonstrate the 

flexibility and efficiency of FPGA platforms in integrating 

neural networks, real-time image processing, and video display 

protocols such as DVI. They provide a solid foundation for 

developing FPGA-based systems that deliver high-speed, 

accurate visual outputs—crucial for applications in AI, edge 

computing, and embedded systems.  

Wang and Luo [16] emphasize the benefits of FPGA 

accelerators in optimizing custom hardware architectures for 

real-time applications. Their review highlights the importance 

of precision reduction techniques in minimizing latency and 

enhancing performance—approaches that directly support our 

objective of achieving high-speed and accurate displaying of 

neural network outputs.  

Recent investigations into FPGA-based visualization 

systems have also explored optimization strategies aimed at 

reducing latency and power consumption. In particular, hybrid 

systems that combine FPGAs with processors or GPUs have 

received attention for their ability to offload specific tasks, such 

as preprocessing or feature extraction, to dedicated hardware 

blocks. This co-design approach is instrumental in meeting the 

strict timing constraints required for real-time video out- puts 

[17].  

Overall, these studies underscore the potential of FPGA 

platforms for efficient video protocol integration and real- time 

visualization, thereby paving the way for advancements in 

embedded display systems across applications like medical 

imaging, edge AI, and smart monitoring. Furthermore, the 

adaptation of FPGAs for AI-driven video analytics has shown 

remarkable results. Thyagarajan et al. [18] and Park et al. [15] 

demonstrated the integration of neural network models with 

smart cameras, achieving real-time performance in applications 

like sports analytics and video enhancement. These findings 

align with the growing need for low-latency, high-throughput 

FPGA solutions for video-based AI applications. Przesmycki 

and Nowosielski [19] explored the security implications of 

compromising emanations in VGA and DVI interfaces, 

providing insights into the design of secure and reliable FPGA-

based visualization systems.  

Moreover, Bailey [7] elaborated on the fundamentals of 

embedded image processing systems on FPGAs, detailing the 

integration of advanced display protocols like DVI and HDMI 

for multimedia applications. Hoang et al. [20] presented a 

pulse-coupled neural network (PCNN) framework 

implemented on FPGAs for real-time object recognition, 



 

 

showcasing DVI compatibility for visual outputs. Similarly, 

Fang et al. [21] proposed systematic optimization of spiking 

neural networks (SNNs) on FPGAs, emphasizing their ability 

to handle cognitive tasks in real-time scenarios. Farabet et al. 

[22] developed FPGA- based stream processors for 

convolutional neural networks, enabling real-time vision tasks 

with standard DVI connections for video display. These 

systems demonstrate the capacity of FPGA-based platforms to 

manage complex visual processing pipelines while ensuring 

low latency. Additionally, Yildiz et al. [23] and Kayaer et al. 

[24] explored FPGA implementations of cellular neural 

networks for preprocessing blocks in high-definition video 

applications. Their systems utilize DVI interfaces to process 

and visualize outputs in real time. Abernot [25] investigated the 

use of oscillatory neural networks on FPGA platforms, 

highlighting their utility in edge AI systems requiring real-time 

video processing. This study underscores the adaptability of 

FPGA designs in integrating learning models with real-time 

video outputs. Yildiz et al. [26] presented the implementation 

of preprocessing blocks for cellular neural network-based 

systems on FPGAs, utilizing DVI for real-time output 

visualization. This research high- lighted the efficiency of 

FPGA designs for low-latency video applications. Antonik [27] 

explored FPGA implementations for hardware reservoir 

computing and real-time machine learning, emphasizing 

applications in edge AI. Similarly, Ahilan and James [28] 

focused on the design and implementation of a real-time car 

theft detection system, which leveraged FPGA processing and 

DVI visualization to achieve high-speed image analysis. 

Davutoğlu et al. [29] designed a real-time frame buffer 

implementation using external memory on FPGAs. Their study 

demonstrated how FPGAs can efficiently manage frame data 

while supporting DVI interfaces for video display. Fasih et al. 

[30] examined FPGA-based systems for video enhancement in 

advanced driver assistance systems (ADAS), incorporating 

convolutional neural networks and DVI outputs to improve 

video clarity. 

III.  COMPARISON OF VGA, DVI, AND HDMI IN FPGA-BASED 

SYSTEMS 

Video interfaces play a crucial role in FPGA-based image 

processing and displaying the neural network output. Among 

the widely used standards, VGA, DVI, and HDMI offer 

different trade-offs in terms of signal quality, bandwidth, and 

implementation complexity. Table I summarizes their key 

differences, focusing on their impact on FPGA implementation. 

DVI strikes a balance between complexity and quality, making 

it a suitable choice for FPGA-based real-time visualization of 

neural network outputs. Unlike VGA, it provides lossless 

digital transmission, and compared to HDMI, it avoids the 

additional complexity of audio and high-bandwidth digital 

content protection (HDCP) encryption, which are unnecessary 

for many FPGA applications.  

 

 

 

 

 

 
TABLE I 

DETAILED CoMPARIson of VGA, DVI, AnD HDMI DIsPLAY InTERfAcEs 

 
Feature VGA DVI HDMI 

Year of 

Introduction 

1987 1999 2003 

Signal Type Analog Analog & Digital 
(DVI-A, DVI-D, DVI-I) 

Digital 

Maximum 

Resolution 

Up to 1080p 1920x1200 (Single-
Link), 2560x1600 
(Dual-Link) 

8K at 60Hz or 4K at 
120Hz (HDMI 2.1) 

Color Depth Limited by analog 
quality 

24-bit (Single-Link) or 
higher for Dual-Link 

Up to 48-bit (HDR 
supported) 

Audio Support No No Yes, with multichannel 
audio support 

Cable Length Up to 15m with 
quality loss 

Up to 5m for digital, 
longer for analog 

Up to 15m for 4K, 
shorter for 8K 

Compatibility Legacy monitors 
and projectors 

Transitional systems Modern displays, TVs, 
and projectors 

Connector Type 15-pin D-Sub Multi-pin (varied) Compact (Type-A, 
Mini, Micro) 

Video Signal 
Quality 

Prone to 
interference 

Better than VGA; pure 
digital avoids noise 

Excellent; supports 
HDR and high refresh 
rates 

Multi-Monitor 

Support 

Not supported Not supported Supported via splitters 

Data Bandwidth Not standardized 4.95 Gbps (Single-
Link), 9.9 Gbps (Dual-
Link) 

Up to 48 Gbps (HDMI 
2.1) 

Use Cases Legacy monitors 
and projectors 

PC monitors and 
transitional setups 

TVs, gaming systems, 
multimedia devices 

Adapter 
Availability 

VGA to 
HDMI/DVI with 
converters 

DVI to VGA/HDMI 
with converters 

HDMI to VGA/DVI 
with converters 

Cost Low Moderate Higher (for high-speed 
cables) 

IV.  PROPOSED METHOD 

Figure 1 illustrates the high-level design of the proposed 

hardware-based image classification pipeline. This system con- 

sists of six sequential stages that transform raw image data into 

classified and visualized output, ultimately displayed in 

real time on a digital monitor. The process begins with image 

processing, where the input image—typically in 𝑊 × 𝐻 × 3 

RGB format—is resized, normalized, and optionally filtered to 

enhance its features and ensure consistency for the 

classification model. Next, the AI processing stage applies a 

lightweight classification algorithm, which may be based on 

neural networks or simpler machine learning methods. This 

stage extracts relevant features and produces a classification 

output in the form of a probability map or class index. 

The third stage, probability map visualization, converts the 

AI output into a visual format by mapping probabilities or class 

indicators into color-coded RGB values. This makes the 

classification interpretable when displayed on a screen. In stage 

four, the system generates essential synchronization signals 

such as horizontal sync (HSYNC), vertical sync (VSYNC), and 

data enable (DE), along with precise pixel timing to prepare the 

image stream for display output. These signals ensure that the 

display device receives video data in a valid scanline order. 

Once the pixel data and control signals are properly 

formatted, the fifth stage interfaces with the Chrontel 

(CH7301C) DVI encoder chip. This stage handles the 

conversion of parallel RGB data into TMDS (Transition 

Minimized Differential Signaling) format, which is the standard 

for DVI transmission. The sixth and final stage handles the 

actual DVI output, transmitting the TMDS signals to an 
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external monitor where the classified image is rendered in real 

time, enabling immediate feedback and visualization. 

Figure 2 provides a detailed RTL schematic that corresponds 

specifically to the first four stages of the pipeline. These stages 

are fully implemented in Verilog and deployed on an FPGA 

platform. The image processing logic is handled by the 

image_processing module, which receives and formats the 

incoming image data. This is followed by the ai_processing 

module, which performs classification using MAC operations 

and feature extraction based on preloaded filters. The output of 

this stage is passed to the probability_map_visualizing module, 

which trans- forms the classification results into pixel-level 

RGB values based on scan positions. 

To prepare for external video transmission, synchronization 

signals and timing control are generated by the display_clock 

and display_timing modules. These provide the pixel clock, 

scan coordinates, and sync signals required by the downstream 

encoder. While the RTL diagram concludes at this point, the 

outputs from Stage 4 are structured specifically for interfacing 

with the Chrontel encoder in Stage 5, and eventually, real-time 

rendering on a monitor via Stage 6. 

Fig. 1.  Overview of the hardware-based image classification pipeline 

implemented in Verilog. The process is divided into six main stages, from 

image input to real-time DVI display. 

A.  Image Processing Stage 

The Image Processing stage serves as the initial component 

of our FPGA-based classification pipeline, tasked primarily 

with preparing raw image data for subsequent analysis by the 

AI Processing module. This stage plays a fundamental role, 

ensuring compatibility and quality enhancement of image data, 

thus directly influencing inference accuracy and computational 

efficiency. 

In the present design, we adopt the widely recognized 

CIFAR-10 dataset as the primary source of training and 

evaluation images. CIFAR-10 provides 60,000 images (32×32 

pixels, RGB) split into 50,000 training images and 10,000 test 

images. These images span 10 distinct classes, each containing 

6,000 samples. While CIFAR-10 images are natively in 

color (3 channels). 

Initially, input image data arrives in standard RGB for- mat, 

represented as three separate channels (Red, Green and Blue) 

with each pixel typically stored at 8-bit color depth. Given the 

resource constraints and processing requirements of FPGA  

Fig. 2.  Register transfer level (RTL) schematic of the Verilog-based image 

classification system. This diagram focuses on the implementation of Stages 1 

through 4 within the FPGA, showing signal flow, control logic, and 
synchronization modules. 

 

hardware, these images undergo several preprocessing steps to 

enable efficient inference and maintain acceptable accuracy. 

First, input images are resized to a fixed, uniform resolution 

compatible with the downstream inference engine 

(e.g., 32×32 or 64×64 pixels). This resizing, implemented in 

Verilog, utilizes hardware-optimized interpolation algorithms 

(e.g., bilinear interpolation) to maintain image quality while 

reducing computational overhead. The choice of a relatively 

small, standardized resolution aligns well with the limited 

memory and computational bandwidth on FPGAs, ensuring 

predictable timing and efficient parallelization. 

Subsequently, normalization of pixel values scales the image 

data into a suitable numerical range (such as 0–1 in floating- 

point or Qm.n in fixed-point) to ensure stable arithmetic 

operations during neural network inference. For this project, an 

8-bit RGB input is often transformed into a fixed-point 

representation (e.g., Q8.8) or scaled floating-point format that 

fits the FPGA’s DSP slices and LUTs. This consistent input 

magnitude fosters stable training convergence (if on-FPGA 

training or partial re-training is used) and more accurate 

inference under resource constraints. 

Depending on deployment needs, noise reduction filtering, 

such as median filtering or Gaussian smoothing, can be added 

to enhance the signal-to-noise ratio of raw images. In an FPGA 

context, these filters can be efficiently realized via parallelized 

convolution modules or simplified averaging techniques. The 

hardware-level parallelism offered by FPGAs significantly 

reduces latency for such operations, crucial for real-time 



 

 

applications. 

Finally, the processed and normalized image data is buffered 

in on-chip block RAM or external memory, ready for rapid 

retrieval during inference. This buffering ensures a smooth 

pipeline from raw data ingestion to the AI Processing stage, 

mitigating bandwidth bottlenecks and guaranteeing real-time 

performance. By streamlining the raw images into a predictable 

format, the Image Processing stage lays the ground- work for 

the subsequent hardware-accelerated CNN inference. 

B.  AI Processing Stage 

The AI processing stage is the core of our FPGA-based 

image classification pipeline, where a CNN is implemented 

directly in Verilog HDL to achieve efficient real-time inference. 

Leveraging the intrinsic parallel processing capabilities of 

FPGAs, this design tackles the computationally intensive nature 

of CNNs while working under the logic, DSP, and memory 

constraints of devices like the ML605 board. 

In our approach, we adopt a six-layer CNN architecture 

inspired by the work in [31]. The model comprises: 

1) Sliding Window Convolution (for feature extraction), 

2) ReLU Activation (introducing non-linearity), 

3) Max Pooling (down sampling to reduce spatial 

dimension), 

4) Flattening (restructuring 2D features into a 1D vector), 

5) Fully Connected (learning global relationships among 

features), 

6) Softmax Activation (producing a probability distribution 

over the 10 CIFAR-10 classes). 

Each layer is coded as a separate Verilog module, allowing 

straightforward testing and debugging. For instance, the con- 

volution layer involves efficient hardware-based matrix multi- 

plication to convolve filters over the input feature maps, while 

the ReLU module employs a simple conditional operation to 

clamp negative values to zero. The Max Pooling module further 

reduces data dimensionality by selecting the maximum value 

within local neighborhoods of a feature map, improving 

robustness to minor shifts. Flattening modules then reshape the 

2D feature maps into 1D vectors for fully connected processing, 

and a final Softmax step converts outputs to class probabilities. 

Figure 3 illustrates the internal organization of the inference 

module. A dedicated memory controller retrieves pretrained 

weights and biases from off-chip memory (e.g., DDR3 on the 

FPGA), while the computation engine executes multiply- and-

accumulate (MAC) operations in parallel. By instantiating 

multiple DSP slices for simultaneous MAC operations, the 

inference pipeline substantially reduces latency compared to 

software-based implementations. 

To achieve consistent performance and accuracy, we pre- 

trained the CNN offline, using standard frameworks (e.g., Ten- 

sorFlow or PyTorch) with the CIFAR-10 dataset. During this 

training phase, high-level floating-point arithmetic was used. 

Post-training, model parameters were quantized or scaled to fit 

the fixed-point precision supported by the Verilog modules on 

the FPGA. This quantization can be as coarse as Q4.12 or Q8.8, 

depending on resource availability and desired accuracy. An 

activation function module applies nonlinearities such as ReLU. 

Compared to sigmoid or tanh, ReLU is both simpler to implement 

and less prone to saturating at extremes. The AI inference 

controller, operating in concert with these modules, handles 

synchronization, data flow, and final classification result 

generation. Once classification is complete, the output is 

forwarded to subsequent logic interfaces for digital video 

output or further processing steps. 

By consolidating these hardware modules, we demonstrate a 

feasible CNN pipeline capable of real-time classification, even 

on mid-range FPGA platforms. This tightly integrated design 

exemplifies how FPGAs can address demanding edge inference 

tasks, combining low-power consumption with competitive 

throughput for resource-constrained environments. Future 

enhancements may explore deeper CNN architectures or color- 

image pipelines once resource usage is further optimized. 

Nonetheless, the current 6-layer CNN exhibits strong proof- of-

concept for FPGA-based deep learning inference on the 

CIFAR-10 dataset. 

 

    
Fig. 3.  AI processing stage (inference) module organization. 

 

C.  Probability Map Visualization Stage 

The probability map visualization stage serves as a critical 

intermediary within the FPGA-based classification pipeline, 

connecting AI-generated outputs to the digital video display 

subsystem. In this stage, the numeric classification results 

produced by the AI inference engine are systematically 

converted into clearly distinguishable visual representations 

suitable for subsequent DVI output. Specifically, classification 

labels or inference results—initially represented as numeric 

vectors or encoded class identifiers—are mapped into a 

predefined color- coding scheme. In our implementation, this 

involves associating each classified category with a unique 

color, employing a fixed set of up to ten distinct colors, each 

corresponding directly to a specific classification result. Such 

mapping is efficiently realized using lookup tables (LUTs) 

implemented directly within Verilog code. 

The Verilog implementation of the probability map 

visualization module involves defining a lookup table that 

associates each of the classification outputs with a preselected 

RGB color value. This enables immediate, visual differentiation 

of predicted classes on screen, enhancing interpretability and 

facilitating rapid decision-making. The hardware module 

utilizes internal FPGA resources, typically block RAM or 

distributed LUTs, to perform this quick mapping operation. For 

instance, an inference result labeled as “Class 1” might 

correspond to red, while “Class 2” might be displayed as green, 

and so forth. If the AI inference identifies more than a limited 

number of classes, a hierarchical encoding strategy can be 
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employed to group classes into broader categories, preserving 

FPGA resources while maintaining visual clarity. 

Additionally, the module handles synchronization tasks 

necessary for digital video interfaces. It ensures that the 

converted RGB data stream matches the timing requirements of 

the DVI protocol, performing frame buffering and pixel 

synchronization. Precise control of pixel timing, horizontal and 

vertical synchronization signals, and other required digital 

video parameters guarantees a stable, high-quality visual output 

free from artifacts or latency issues. 

Moreover, for scenarios involving uncertainty or 

unidentified classes, an additional category (often represented 

by a neutral color or grayscale) can be assigned. Implementing 

these visual encoding schemes directly through hardware de- 

scription language allows for seamless, real-time visualization 

of classification results without latency overhead, which is 

critical for applications requiring immediate feedback, such as 

real-time image classification and monitoring systems. 

D.  Generating Synchronization Signals 

Stage 4 of the system comprises several essential mod- ules 

that work in tandem to generate synchronization signals and 

drive display output. These modules include dis- play_clock, 

display_timing, and RGB color channel multiplexers 

(mux_dvi_red, mux_dvi_green, mux_dvi_blue). Together, they 

handle the timing, pixel positioning, and output format- ting 

necessary for DVI video transmission, as shown in figure 2. 

The display_clock module is responsible for producing the 

required video clocks using a mixed-mode clock manager 

(MMCM). It generates a stable pixel clock (o_clk_1×) for the 

entire display pipeline and asserts a o_locked signal once clock 

stabilization is achieved. By manipulating multiplication and 

division factors, the module ensures that clock frequencies align 

precisely with resolution-specific requirements, facilitating 

smooth video playback. 

 
TABLE II 

CLocK SETTIngs foR DIffEREnT REsoLUTIons 

 
Parameter 640×480 800×600 1280×720 1920×1080 

MULT_MASTER 31.5 10.0 37.125 37.125 

DIV_MASTER 5 1 5 5 

DIV_5× 5.0 5.0 2.0 1.0 

DIV_1× 25 25 10 5 

 

As shown in Table II, the clock parameters are resolution 

dependent. The MULT_MASTER parameter sets the base 

frequency multiplier, while DIV_MASTER, DIV_5×, and 

DIV_1× divide the result to generate the final pixel clock. 

For high-definition formats like 1920×1080, smaller division 

values (e.g., DIV_1×, × = 5) ensure the required high- 

frequency clocks are achieved for dense pixel grids. 

The display_timing module generates horizontal and vertical 

sync signals (o_hs, o_vs), display enable (o_de), and current 

pixel coordinates (o_sx, o_sy) based on the incoming pixel 

clock (i_pix_clk). These signals are fundamental for precise 

raster scanning and timing alignment with modern DVI dis- 

plays. 

Table III presents the horizontal and vertical timing 

parameters. These include the active resolution (H_RES, 

V_RES) as well as blanking intervals (H_FP, H_SYNC, H_BP, 

and their vertical counterparts). At higher resolutions like 

1920×1080, longer back porch values (e.g., H_BP = 148) 

allow more time for processing and synchronization. Sync 

polarities (H_POL, V_POL) also adapt to modern display 

requirements—switching to active-high signals for resolutions 

800x600 and above. 

The output of the display_timing module directly drives the 

RGB multiplexers: mux_dvi_red, mux_dvi_green, 

mux_dvi_blue. These modules select between raw image data 

and AI-generated overlay visuals (received from upstream 

modules like probability_map_visualizing) using select signals. 

The chosen color values are then output to the DVI lines: 

DVI_RED, DVI_GREEN, and DVI_BLUE.  

 
TABLE III 

DIsPLAY TIMIngs foR DIffEREnT REsoLUTIons 

 

Parameter 640×480 800×600 1280×720 1920×1080 

H_RES 640 800 1280 1920 

V_RES 480 600 720 1080 

H_FP 16 40 110 88 

H_SYNC 96 128 40 44 

H_BP 48 88 220 148 

V_FP 10 1 5 4 

V_SYNC 2 4 5 5 

V_BP 33 23 20 36 

H_POL 0 1 1 1 

V_POL 0 1 1 1 

 

E.  Chrontel Encoder Chip (CH7301C) and DVI Output Stage 

The final and crucial step in the FPGA-based image 

classification pipeline involves the Chrontel (CH7301C) DVI 

Transmitter chip. This integrated circuit, utilized specifically on 

the ML605 FPGA development board, is designed for 

converting digital image data from the FPGA’s internal 

processing units into standardized DVI signals, suitable for 

high-quality video output. 

The Chrontel (CH7301C) is a specialized semiconductor 

device that accepts parallel digital data (typically in RGB 

format) from the FPGA and converts it into a serialized digital 

signal conforming to DVI standards. This chip facilitates the 

transition from internal FPGA processing outputs into a 

standard video signal suitable for displays. To achieve this, the 

(CH7301C) device internally incorporates encoding logic, 

parallel-to-serial conversion circuits, and synchronization 

logic. It receives 24-bit parallel RGB data signals along with 

synchronization signals (horizontal sync, vertical sync, and 

pixel clock signals) directly from the FPGA output pins. The 

device then performs parallel-to-serial data conversion, 

encoding the video data using the TMDS protocol, which is 

fundamental to the DVI standard. 



 

 

In practice, once the AI inference results have been con- 

verted into color-coded pixel data by the probability map 

visualization module within the FPGA, these parallel pixel data 

streams are passed directly into the (CH7301C). This chip 

organizes the incoming RGB digital signals, applies necessary 

timing and synchronization adjustments, and serializes the data 

into TMDS-compliant signals. TMDS encoding ensures 

minimal electromagnetic interference (EMI), high-speed data 

transmission, and robust signal integrity, allowing reliable 

delivery of digital video signals across standard DVI cables to 

display devices. 

The Chrontel chip manages critical video signal timing, 

including pixel clock generation, horizontal synchronization 

(HSYNC), vertical synchronization (VSYNC), and data enable 

(DE) signals. Correct synchronization of these signals ensures 

stable and flicker-free images. The chip typically supports a 

wide range of resolutions, accommodating various resolutions 

defined by FPGA configurations. Internally, the (CH7301C) 

also integrates modules for color space management and signal 

integrity control, ensuring consistent output quality and 

compatibility with digital displays. 

The DVI standard itself is a high-speed digital interface 

widely used for video transmission between source devices 

(such as FPGA boards or graphics cards) and display monitors. 

DVI leverages the TMDS standard, effectively minimizing 

electromagnetic interference and maintaining signal integrity, 

making it well-suited for high-resolution, high-bandwidth 

digital video streams. On the ML605 FPGA board, the Chrontel 

(CH7301C) precisely encodes and transmits the FPGA- 

generated video signals, ensuring that the classification output 

images are clearly, accurately, and promptly displayed without 

data loss or distortion. 

Key Components of the DVI Signal: 

• Pixel Data (RGB Values): Represents pixel colors as 8- 

or 10-bit RGB values. In the provided Verilog code, a 

1-bit RGB representation uses the MSB for output, 

simplifying color processing. 

• Synchronization Signals: 

- HSYNC (Horizontal Sync): Marks the start of a new 

pixel row. 

- VSYNC (Vertical Sync): Indicates the start of a new 

frame, resetting the display for the next frame. 

• Clock Signal (DVI_CLK): Synchronizes pixel data and 

timing signals with the display’s refresh rate for smooth 

video output. 

Timing and Display Processing: The Verilog code manages 

timing through modules that generate pixel positions (sx, sy), 

frame signals, and synchronization outputs (h_sync, v_sync). 

These signals ensure pixel data aligns with the LCD’s grid 

structure. 

LCD Display Conversion: The LCD controller processes 

incoming RGB data to adjust liquid crystal cells, determining 

pixel color and intensity. HSYNC, VSYNC, and DVI_CLK 

ensure data is applied in the correct sequence, maintaining 

image integrity and frame synchronization. 

 

 

F.  Displaying the Output of the Trained Neural Network on 

Monitor using DVI 

Using the DVI to analyze trained neural network results, a 

system was implemented to display outputs on a monitor. This 

involves hardware-software integration to enable efficient and 

accurate visualization. 

Process Overview: Neural network outputs, such as class 

labels or probabilities, are processed into visual formats (e.g., 

bounding boxes, heatmaps). A lightweight rendering engine 

maps these data into graphical primitives and generates images 

or video frames compatible with DVI displays. 

DVI Signal Generation and Hardware Integration: A DVI 

transmitter module encodes visual content into synchronization 

signals (HSYNC, VSYNC) and RGB pixel data. An FPGA or 

microcontroller ensures compliance with DVI timing 

specifications, delivering high-resolution, low-latency output to 

the monitor 

V.  EXPERIMENTAL RESULTS 

As a case study the proposed CNN for classification of 

CIFAR-10 images is implemented in Verilog as suggested in 

[31], to display the output classification of this network we used 

the proposed method, Result in Table IV indicate the number of 

slice registers, slice LUTs, I/O pins and global clock buffers 

(BUFG) used in CNN architecture. The DVI protocol 

implementation on the ML605 FPGA was evaluated in terms of 

device utilization to highlight its resource efficiency. Our 

analysis focused on key FPGA resources—namely slice 

registers, LUTs, and logic components. Table V presents the 

synthesis report results, which reflect the resource usage of the 

DVI protocol module (as illustrated in Figure 4). The notably 

low resource consumption (31 slice registers and 90 LUTs) 

underscores the lightweight nature of our design for generating 

synchronization signals in stage 4 explained in section IV-D. 

 
TABLE IV 

DEvIcE UTILIzATIon sUMMARY foR sLIcE LogIc of PRoPosED CNN foR 

cLAssIfIcATIon of CIFAR-10 IMAgEs 

 
Resource Used Available Utilization (%) 

Slice Registers (FF) 910 301,440 0.30 

Slice LUTs 1,871 150,720 1.24 

I/O Pins 357 720 49.58 

Global Clock Buffers (BUFG) 1 32 3.13 

 

 
TABLE V 

DEvIcE UTILIzATIon sUMMARY foR sLIcE LogIc foR gEnERATIng 

sYncHRonIzATIon sIgnALs 

 

Resource Used Available Utilization (%) 

Slice Registers 31 301,440 1 

Slice LUTs 90 150,720 1 

Logic Components 88 150,720 1 

 

The results demonstrate efficient utilization of FPGA 

resources, with significant room for additional functionality if 

needed. The utilization metrics indicate that the design is 

optimized and suitable for real-time processing while 
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maintaining a low resource footprint. Our experiments 

confirmed the success of the FPGA-based DVI protocol 

implementation. The results showed that the system meets DVI 

standards for signal synchronization and output quality, 

supports high-resolution video displays, and demonstrates real-

time performance for image processing and displaying the 

predicted output prob- ability map of neural network. The 

following key points were confirmed through testing: 

• Precise signal synchronization with no visible distortion 

or delay. 

• High-quality video output, supporting resolutions up to 

1920×1080 at 60 Hz. 

• Real-time image processing with a throughput of up to 

30 fps at 1280×720 resolution. 

• Efficient use of FPGA resources, leaving room for 

additional tasks or optimizations. 

These results validate the feasibility and effectiveness of 

using the ML605 FPGA for displaying the predicted output 

probability map of trained model by neural network and image 

processing applications and pave the way for future 

improvements in FPGA-based video systems. As shown in 

Figure 4, the probability values of the classes in the multi-class 

trained neural network can be displayed on an LCD. Each class 

probability is represented by the width of the corresponding 

column bar, visually indicating the likelihood of each class. 

 

Fig. 4.  Real-time display of the CNN model’s probability map on the 

CIFAR-10 dataset during the testing phase. The width of each color bar 

indicates the predicted probability of the corresponding class, with the widest 

bar representing the most likely classification. 

 

Figure 4 illustrates the neural network output as it is rendered 

on an LCD screen via the DVI protocol implemented on the 

FPGA. The figure shows how classification results—such as 

class probabilities—are translated into graphical bar elements 

for real-time display. Each class is represented by a colored bar, 

where the bar’s width corresponds to the predicted probability 

of that class. This format enables quick interpretation of 

classification outcomes, supporting applications such as 

medical imaging or real-time object detection. The FPGA 

ensures precise synchronization of pixel and timing signals, 

allowing seamless and low-latency image rendering. This 

figure demonstrates the system’s effectiveness in converting 

computational results into a clear and immediate display 

format, highlighting its applicability for embedded and edge AI 

systems. 

 

Fig. 5.  Signal waveforms for timing, pixel data, and clock synchronization. 

 

Figure 5 shows the signal waveforms captured during the 

execution of the design. These waveforms illustrate the 

synchronization of timing signals, pixel data, and clock signals, 

which are critical for ensuring the correct operation of the DVI 

protocol. 

The signal waveforms validate the proper implementation of 

the DVI protocol, showing stable synchronization across all 

required signals. These results support the design’s ability to 

handle real-time video outputs effectively. 

Using on-board LEDs to monitor the status of TMDS signals 

is an effective and simple method for debugging the DVI 

connection from an FPGA to a monitor. If the LEDs connected 

to the TMDS lines, such as data or clock, are not blinking, it 

indicates that the TMDS signals are not initialized correctly, 

and the issue is not related to the monitor. To troubleshoot, we 

ensure proper initialization of TMDS signals, verify clock 

settings on the FPGA, and confirm that the DVI standard 

configurations (e.g., resolution, sampling rate) are accurate 

VI.  CONCLUSION 

This paper presented a hardware implementation of the DVI 

protocol on the ML605 FPGA platform for real-time display of 

neural network and image processing outputs. Leveraging the 

capabilities of the Xilinx Virtex-6 architecture and the 

flexibility of FPGA-based design, a system was developed to 

transmit high-quality digital video signals directly to an 

external monitor. 

The implementation addresses critical challenges such as 

pixel synchronization, precise timing control, and protocol 

compliance, thereby enabling accurate rendering of 

classification results without relying on external processors. 

The system 

supports high-resolution output (up to 1920×1080 at 60 Hz) 

and demonstrates low resource utilization, making it suitable 



 

 

for embedded and edge AI applications. 

By embedding the DVI output functionality within the 

FPGA and integrating lightweight neural network inference, 

this work provides an effective hardware-software co-design 

framework for real-time feedback in intelligent systems. The 

approach is particularly valuable for tasks requiring low latency 

and high reliability, such as smart monitoring and medical 

imaging. 

Future research could explore extending the design to sup- 

port alternative video standards (e.g., HDMI or DisplayPort), 

implementing more complex neural architectures, or scaling the 

design for multi-channel outputs. Additionally, improvements 

in memory access patterns, dynamic reconfiguration, or 

adaptive resolution could further enhance system performance 

and flexibility. 

Overall, this work demonstrates the viability of FPGA- 

based systems for efficient, high-performance neural network 

inference and real-time display using digital video interfaces, 

contributing to the advancement of intelligent embedded 

system design. 
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