
Journal of Computer and Knowledge Engineering, Vol. , No.. 2025.

DOI:

Efficient Implementation of

DVI Protocol on FPGA

Sara Ershadi-Nasab1 , Danial Bayati2 and Saeed Yazdani3

Abstract--This paper presents a general-purpose hardware

implementation of the digital visual interface (DVI) protocol on

the Xilinx Virtex-6 ML605 FPGA platform for real-time display

of digital processing results. The design enables direct output of

processed data from the FPGA to an external monitor without

relying on external processors or software-based rendering tools.

It addresses key challenges in timing synchronization, pixel
formatting, and interfacing with the onboard Chrontel CH7301C

encoder to support resolutions up to 1920×1080 at 60 Hz. A

lightweight processing pipeline is developed in Verilog to convert

multidimensional outputs into a sequential stream of pixel data

conforming to the DVI protocol. As a case study, a lightweight
convolutional neural network trained on the CIFAR-10 dataset is

implemented on the FPGA, and its classification probabilities are

displayed as a probability map on an LCD. Experimental results

confirm low resource utilization and real-time performance,

validating the system’s applicability in embedded applications

such as machine learning inference, image processing, and real-

time monitoring. This work demonstrates the feasibility of FPGA-

based platforms for efficiently displaying digital video output in

intelligent edge systems.

Index Terms-- Digital visual interface, field programmable gate

array, image processing, real-time, video processing, Xilinx

Virtex-6.

I. INTRODUCTION

HE integration of neural networks with real-time image

processing on FPGA platforms is vital for applications that

require low latency and efficient computation. While neural

networks are effective at interpreting visual data, displaying

their classification results in real time directly from an FPGA

presents practical challenges. In software environments such as

Python or MATLAB, classification results can be easily shown

using high-level functions like plot(). However, FPGA-based

systems lack such abstractions; displaying outputs requires

manual control over video signal generation and transmission

to an external monitor. This makes even basic output display—

such as showing the predicted class on an LCD screen—a

nontrivial hardware task.

The DVI is a widely accepted standard for transmitting

digital video signals, enabling seamless connections between

computers and display devices [1], [2]. It requires careful

synchronization of pixel data, clock signals, and timing signals

to ensure the correct display of visual outputs. Misalignment of

 Manuscript received Revised, , accepted .
1 Corresponding author. Computer engineering department, Ferdowsi University of Mashhad, Mashhad, Iran, Email: ershadinasab@um.ac.ir
2 Computer engineering department, Ferdowsi University of Mashhad, Mashhad, Iran, Email: danial.bayati@um.ac.ir
3 Computer engineering department, Ferdowsi University of Mashhad, Mashhad, Iran, Email: sa.yazdani@um.ac.ir

these signals can result in distorted or invisible outputs.

Therefore, a precise and accurate implementation of the DVI

protocol is crucial for verifying the functionality of FPGA-

based neural network systems. As the demand for high- quality

digital video transmission increases, bridging the gap between

legacy interfaces—such as the video graphics array (VGA) and

modern digital standards has become essential. Field-

programmable gate arrays (FPGAs) provide a flexible and

customizable platform for implementing such interface

conversions.

In modern image processing and deep learning applications,

it is often necessary to display the output of computations on a

monitor [3], [4]. This requirement becomes particularly

important when processing is carried out on FPGA boards, as

the FPGA functions as a specialized integrated circuit (IC) that

performs intensive computational tasks. The results must be

presented clearly and efficiently to ensure that the system

operates as intended. In recent years, implementing deep

learning algorithms on FPGA boards has gained significant

attention, as these platforms offer high performance, low power

consumption, and customizability compared to traditional

processors [5], [6], [7]. Many embedded and edge applications

now utilize specialized ICs, rather than general-purpose

processors, to per- form neural network inference. These

specialized ICs optimize power, memory usage, and transistor

count, making them well- suited for real-time processing.

However, to verify the accuracy and effectiveness of neural

networks, the processed outputs must be displayed to the user

in a comprehensible manner, necessitating the implementation

of a video display protocol.

A key limitation in FPGA-based video systems arises from

the interface between multidimensional data structures used in

AI models and the strictly sequential data format required by

video output hardware. While the Chrontel (CH7301C) [8] DVI

encoder integrated on the ML605 board handles the encoding

of pixel data into the transition minimized differential signaling

(TMDS) format for robust transmission over DVI cables, it

requires a continuous, precisely timed stream of pixel values

along with horizontal and vertical synchronization signals. In

contrast, neural networks and image processing algorithms

typically operate on two- or three-dimensional data arrays—

such as feature maps or RGB images—rather than linear pixel

T

https://orcid.org/0000-0003-1561-4446
https://orcid.org/0009-0008-8377-5050
https://orcid.org/0009-0005-4241-1187

sequences. This structural mismatch demands custom logic to

convert high-level, array-based outputs into tightly timed,

flattened pixel streams that comply with the DVI protocol. The

lack of built-in hardware for this conversion makes it necessary

to implement a fully synchronized pipeline capable of feeding

the Chrontel encoder accurately and in real time. Addressing

this challenge is essential for achieving smooth and coherent

display of neural network results in embedded artificial

intelligence (AI) applications. This paper presents an efficient

hardware-software co-design approach for real-time display of

neural network classification results using the DVI protocol on

an FPGA. A lightweight neural network, trained on the CIFAR-

10 dataset, is implemented within the FPGA, with its weights

manually embedded in Verilog. The network processes input

images and produces classification probabilities, from which

the seven most probable classes are selected for display. These

results are formatted as RGB data, which is then converted into

a DVI-compatible signal for output to an external monitor. To

achieve this, we generate synchronization signals, overlay the

classification results on the display, and transmit the output to

the onboard Chrontel DVI encoder of the Xilinx ML605 board.

This enables real- time rendering of the classification output

directly on an LCD screen, alongside the processed input

image. By eliminating the need for external CPUs or GPUs, this

approach enhances resource efficiency and provides a scalable

solution for embedded AI applications. The proposed system

demonstrates how FPGA-based deep learning architectures can

be directly integrated with standard video output protocols,

making them well-suited for edge computing and real-time

classification tasks. This paper discusses the process of

implementing the DVI protocol on the ML605 FPGA, including

the challenges of signal synchronization, the integration of

neural network output, and the successful testing of the system

for real-time image processing applications. By utilizing the

power of the Xilinx Virtex-6 architecture, we aim to showcase

the potential of FPGA platforms in the efficient and accurate

display of neural network and image processing outputs.

One of the significant challenges in the integration of neural

network outputs and real-time image processing in FPGA

systems is the precise synchronization of timing signals for

video display, especially in legacy-to-modern interface

conversions. Existing solutions often focus on individual

aspects, such as processing efficiency or display fidelity,

without addressing the combined demand for real-time

performance and high- quality visualization. Our work

introduces a novel approach by integrating DVI protocol on the

ML605 FPGA to achieve seamless and accurate displaying of

neural network outputs. The system leverages the capabilities

of the Xilinx Virtex-6 architecture, ensuring synchronization of

pixel, clock, and timing signals with resolutions up to

1920×1080 at 60 Hz. This dual capability of high-resolution

rendering and real-time processing represents a significant step

forward in the design of embedded systems, particularly for

edge AI applications like medical imaging and smart

monitoring. In this work, the ML605 FPGA development

board, built on the Xilinx Virtex-6 architecture, is employed to

prototype and implement complex digital systems. The design

is developed using the Xilinx ISE 14.7 toolchain, which fully

supports hardware synthesis and configuration for this

platform. With its high-capacity FPGA, ample memory, and

versatile I/O interfaces, the ML605 is well-suited for system-

on-chip (SoC) development and the implementation of

advanced video interfaces.

The primary contribution of this work is the real-time

implementation of the DVI protocol on the Xilinx Virtex-6

ML605 FPGA platform. This implementation enables direct

displaying of neural network outputs and image processing

results by addressing key challenges in signal synchronization

and high-resolution rendering. Key innovative aspects of the

implementation include:

• Real-time DVI protocol implementation on FPGA: This

work presents the complete implementation of the DVI protocol

on the Xilinx ML605 FPGA board, enabling direct display of

neural network outputs on external monitors without requiring

a host CPU or GPU.

• Direct integration of neural inference with display

pipeline: A novel hardware-software co-design is developed

that links a lightweight convolutional neural network (CNN),

manually implemented in Verilog, with a real-time pixel stream

generator. The system converts multidimensional classification

outputs into sequential RGB pixel values for video rendering.

• Custom hardware pipeline for TMDS-compatible output:

The system addresses the structural mismatch between array-

based AI outputs and the linearly timed pixel streams required

by the DVI encoder. A synchronized pipeline is implemented

to format and transmit the CNN output via the on-board

Chrontel CH7301C encoder using the TMDS standard.

• Legacy-to-modern interface conversion: The design

enables legacy VGA-style embedded systems to connect with

modern digital displays via the DVI protocol, effectively

bridging analog and digital video standards using

programmable logic.

• Efficient FPGA resource utilization: The architecture

demonstrates minimal consumption of FPGA resources (less

than 1% of slice registers and LUTs), allowing significant

headroom for additional logic, such as more complex networks

or preprocessing units.

• Hardware-based rendering of neural outputs:

Classification probabilities are displayed as visual indicators—

such as variable-width bars—directly on the LCD without

software-based rendering. This hardware-centric approach

facilitates real-time feedback in embedded systems.

• Scalability for edge AI applications: The system is well-

suited for embedded AI scenarios, such as medical diagnostics,

smart surveillance, and industrial monitoring, where low

latency, power efficiency, and real-time result visualization are

critical.

This novel implementation not only confirms the feasibility

of video protocol integration on FPGA platforms but also

provides a scalable framework for real-time display in

advanced embedded systems.

The structure of this paper is organized as follows: Section

II introduces relevant studies addressing the topic. Section III

presents a detailed comparison of commonly used display

Journal of Computer and Knowledge Engineering, Vol. , No.. 2025. 3

interfaces, including VGA, DVI, and high-definition

multimedia interface (HDMI), highlighting their features,

limitations, and use cases. The proposed method architecture is

outlined in Section IV. The experimental results are provided in

Section V. Finally, the conclusion is presented in Section VI.

II. RELATED WORK

Integrating neural networks and real-time image processing

outputs on FPGA platforms has garnered significant attention

in recent years [9], [5]. Various studies have explored FPGA-

based solutions for implementing video display protocols,

focusing on DVI and related technologies [10], [9]. These

efforts highlight the versatility of FPGAs in bridging legacy and

modern systems while ensuring high-performance real- time

processing. Recent advancements in AI have driven significant

progress in intelligent flexible sensing systems capable of

highly efficient data acquisition, analysis, and perception.

These innovations enable more sophisticated communication

between neural processing units and external sensors,

improving real-time monitoring and display capabilities for

applications such as flexible sensory systems, humanoid

robotics, and human activity monitoring [4]. Similarly, the

development of systems-on-chip such as TinyVers, which

incorporates state- retentive design for machine learning (ML)

inference at the extreme edge, demonstrates the significance of

energy-efficient and versatile hardware platforms in supporting

real-time AI applications [5]. Recent advancements have

showcased the implementation of FPGA-based real-time image

processing systems, emphasizing the integration of DVI-

compatible video interfaces for effective visualization and

synchronization [9]. Optimization techniques for deploying

CNNs on FPGA plat- forms have further enhanced the

efficiency of hardware- software co-design, enabling seamless

display of neural net- work output [10]. High-speed video

processing and display integration have also been

demonstrated, particularly through FPGA-accelerated object

detection systems utilizing edge in- formation, achieving real-

time potential in applications [11].

Moreover, digital oscillatory neural network frameworks

have been implemented on FPGAs for edge AI applications,

highlighting the relevance of video signal generation

capabilities in DVI-based visualization systems [12]. The

development of real-time systems for processing neuronal

network activity on FPGA platforms has further established the

critical role of DVI in rendering real-time outputs for high-

speed visual feedback [13]. Additionally, FPGA

implementations of hyperchaotic neural network systems have

illustrated the adaptability of these platforms for complex

computations and their corresponding outputs [14].

Efforts have also focused on privacy-preserving

authentication protocols for IoT devices, leveraging FPGA

capabilities with DVI for secure and efficient visualization [3].

Finally, real-time video enhancement algorithms implemented

on FP- GAs have underscored their ability to handle

computationally intensive tasks while adhering to DVI

standards for high- quality visualization [15].

Another important area of exploration has been the evolution

of GPU hardware, which offers significant parallel processing

capabilities for neural networks and AI workloads. Peddie [6]

provides an in-depth review of the GPU environment and its

impact on hardware, highlighting advancements in graphics

processing technology and its integration into AI and ML

workflows.

These insights are particularly relevant as GPUs and FPGAs

continue to coexist as complementary technologies in real-time

AI processing. These studies collectively demonstrate the

flexibility and efficiency of FPGA platforms in integrating

neural networks, real-time image processing, and video display

protocols such as DVI. They provide a solid foundation for

developing FPGA-based systems that deliver high-speed,

accurate visual outputs—crucial for applications in AI, edge

computing, and embedded systems.

Wang and Luo [16] emphasize the benefits of FPGA

accelerators in optimizing custom hardware architectures for

real-time applications. Their review highlights the importance

of precision reduction techniques in minimizing latency and

enhancing performance—approaches that directly support our

objective of achieving high-speed and accurate displaying of

neural network outputs.

Recent investigations into FPGA-based visualization

systems have also explored optimization strategies aimed at

reducing latency and power consumption. In particular, hybrid

systems that combine FPGAs with processors or GPUs have

received attention for their ability to offload specific tasks, such

as preprocessing or feature extraction, to dedicated hardware

blocks. This co-design approach is instrumental in meeting the

strict timing constraints required for real-time video out- puts

[17].

Overall, these studies underscore the potential of FPGA

platforms for efficient video protocol integration and real- time

visualization, thereby paving the way for advancements in

embedded display systems across applications like medical

imaging, edge AI, and smart monitoring. Furthermore, the

adaptation of FPGAs for AI-driven video analytics has shown

remarkable results. Thyagarajan et al. [18] and Park et al. [15]

demonstrated the integration of neural network models with

smart cameras, achieving real-time performance in applications

like sports analytics and video enhancement. These findings

align with the growing need for low-latency, high-throughput

FPGA solutions for video-based AI applications. Przesmycki

and Nowosielski [19] explored the security implications of

compromising emanations in VGA and DVI interfaces,

providing insights into the design of secure and reliable FPGA-

based visualization systems.

Moreover, Bailey [7] elaborated on the fundamentals of

embedded image processing systems on FPGAs, detailing the

integration of advanced display protocols like DVI and HDMI

for multimedia applications. Hoang et al. [20] presented a

pulse-coupled neural network (PCNN) framework

implemented on FPGAs for real-time object recognition,

showcasing DVI compatibility for visual outputs. Similarly,

Fang et al. [21] proposed systematic optimization of spiking

neural networks (SNNs) on FPGAs, emphasizing their ability

to handle cognitive tasks in real-time scenarios. Farabet et al.

[22] developed FPGA- based stream processors for

convolutional neural networks, enabling real-time vision tasks

with standard DVI connections for video display. These

systems demonstrate the capacity of FPGA-based platforms to

manage complex visual processing pipelines while ensuring

low latency. Additionally, Yildiz et al. [23] and Kayaer et al.

[24] explored FPGA implementations of cellular neural

networks for preprocessing blocks in high-definition video

applications. Their systems utilize DVI interfaces to process

and visualize outputs in real time. Abernot [25] investigated the

use of oscillatory neural networks on FPGA platforms,

highlighting their utility in edge AI systems requiring real-time

video processing. This study underscores the adaptability of

FPGA designs in integrating learning models with real-time

video outputs. Yildiz et al. [26] presented the implementation

of preprocessing blocks for cellular neural network-based

systems on FPGAs, utilizing DVI for real-time output

visualization. This research high- lighted the efficiency of

FPGA designs for low-latency video applications. Antonik [27]

explored FPGA implementations for hardware reservoir

computing and real-time machine learning, emphasizing

applications in edge AI. Similarly, Ahilan and James [28]

focused on the design and implementation of a real-time car

theft detection system, which leveraged FPGA processing and

DVI visualization to achieve high-speed image analysis.

Davutoğlu et al. [29] designed a real-time frame buffer

implementation using external memory on FPGAs. Their study

demonstrated how FPGAs can efficiently manage frame data

while supporting DVI interfaces for video display. Fasih et al.

[30] examined FPGA-based systems for video enhancement in

advanced driver assistance systems (ADAS), incorporating

convolutional neural networks and DVI outputs to improve

video clarity.

III. COMPARISON OF VGA, DVI, AND HDMI IN FPGA-BASED

SYSTEMS

Video interfaces play a crucial role in FPGA-based image

processing and displaying the neural network output. Among

the widely used standards, VGA, DVI, and HDMI offer

different trade-offs in terms of signal quality, bandwidth, and

implementation complexity. Table I summarizes their key

differences, focusing on their impact on FPGA implementation.

DVI strikes a balance between complexity and quality, making

it a suitable choice for FPGA-based real-time visualization of

neural network outputs. Unlike VGA, it provides lossless

digital transmission, and compared to HDMI, it avoids the

additional complexity of audio and high-bandwidth digital

content protection (HDCP) encryption, which are unnecessary

for many FPGA applications.

TABLE I

DETAILED CoMPARIson of VGA, DVI, AnD HDMI DIsPLAY InTERfAcEs

Feature VGA DVI HDMI

Year of

Introduction

1987 1999 2003

Signal Type Analog Analog & Digital
(DVI-A, DVI-D, DVI-I)

Digital

Maximum

Resolution

Up to 1080p 1920x1200 (Single-
Link), 2560x1600
(Dual-Link)

8K at 60Hz or 4K at
120Hz (HDMI 2.1)

Color Depth Limited by analog
quality

24-bit (Single-Link) or
higher for Dual-Link

Up to 48-bit (HDR
supported)

Audio Support No No Yes, with multichannel
audio support

Cable Length Up to 15m with
quality loss

Up to 5m for digital,
longer for analog

Up to 15m for 4K,
shorter for 8K

Compatibility Legacy monitors
and projectors

Transitional systems Modern displays, TVs,
and projectors

Connector Type 15-pin D-Sub Multi-pin (varied) Compact (Type-A,
Mini, Micro)

Video Signal
Quality

Prone to
interference

Better than VGA; pure
digital avoids noise

Excellent; supports
HDR and high refresh
rates

Multi-Monitor

Support

Not supported Not supported Supported via splitters

Data Bandwidth Not standardized 4.95 Gbps (Single-
Link), 9.9 Gbps (Dual-
Link)

Up to 48 Gbps (HDMI
2.1)

Use Cases Legacy monitors
and projectors

PC monitors and
transitional setups

TVs, gaming systems,
multimedia devices

Adapter
Availability

VGA to
HDMI/DVI with
converters

DVI to VGA/HDMI
with converters

HDMI to VGA/DVI
with converters

Cost Low Moderate Higher (for high-speed
cables)

IV. PROPOSED METHOD

Figure 1 illustrates the high-level design of the proposed

hardware-based image classification pipeline. This system con-

sists of six sequential stages that transform raw image data into

classified and visualized output, ultimately displayed in

real time on a digital monitor. The process begins with image

processing, where the input image—typically in 𝑊 × 𝐻 × 3

RGB format—is resized, normalized, and optionally filtered to

enhance its features and ensure consistency for the

classification model. Next, the AI processing stage applies a

lightweight classification algorithm, which may be based on

neural networks or simpler machine learning methods. This

stage extracts relevant features and produces a classification

output in the form of a probability map or class index.

The third stage, probability map visualization, converts the

AI output into a visual format by mapping probabilities or class

indicators into color-coded RGB values. This makes the

classification interpretable when displayed on a screen. In stage

four, the system generates essential synchronization signals

such as horizontal sync (HSYNC), vertical sync (VSYNC), and

data enable (DE), along with precise pixel timing to prepare the

image stream for display output. These signals ensure that the

display device receives video data in a valid scanline order.

Once the pixel data and control signals are properly

formatted, the fifth stage interfaces with the Chrontel

(CH7301C) DVI encoder chip. This stage handles the

conversion of parallel RGB data into TMDS (Transition

Minimized Differential Signaling) format, which is the standard

for DVI transmission. The sixth and final stage handles the

actual DVI output, transmitting the TMDS signals to an

Journal of Computer and Knowledge Engineering, Vol. , No.. 2025. 5

external monitor where the classified image is rendered in real

time, enabling immediate feedback and visualization.

Figure 2 provides a detailed RTL schematic that corresponds

specifically to the first four stages of the pipeline. These stages

are fully implemented in Verilog and deployed on an FPGA

platform. The image processing logic is handled by the

image_processing module, which receives and formats the

incoming image data. This is followed by the ai_processing

module, which performs classification using MAC operations

and feature extraction based on preloaded filters. The output of

this stage is passed to the probability_map_visualizing module,

which trans- forms the classification results into pixel-level

RGB values based on scan positions.

To prepare for external video transmission, synchronization

signals and timing control are generated by the display_clock

and display_timing modules. These provide the pixel clock,

scan coordinates, and sync signals required by the downstream

encoder. While the RTL diagram concludes at this point, the

outputs from Stage 4 are structured specifically for interfacing

with the Chrontel encoder in Stage 5, and eventually, real-time

rendering on a monitor via Stage 6.

Fig. 1. Overview of the hardware-based image classification pipeline

implemented in Verilog. The process is divided into six main stages, from

image input to real-time DVI display.

A. Image Processing Stage

The Image Processing stage serves as the initial component

of our FPGA-based classification pipeline, tasked primarily

with preparing raw image data for subsequent analysis by the

AI Processing module. This stage plays a fundamental role,

ensuring compatibility and quality enhancement of image data,

thus directly influencing inference accuracy and computational

efficiency.

In the present design, we adopt the widely recognized

CIFAR-10 dataset as the primary source of training and

evaluation images. CIFAR-10 provides 60,000 images (32×32

pixels, RGB) split into 50,000 training images and 10,000 test

images. These images span 10 distinct classes, each containing

6,000 samples. While CIFAR-10 images are natively in

color (3 channels).

Initially, input image data arrives in standard RGB for- mat,

represented as three separate channels (Red, Green and Blue)

with each pixel typically stored at 8-bit color depth. Given the

resource constraints and processing requirements of FPGA

Fig. 2. Register transfer level (RTL) schematic of the Verilog-based image

classification system. This diagram focuses on the implementation of Stages 1

through 4 within the FPGA, showing signal flow, control logic, and
synchronization modules.

hardware, these images undergo several preprocessing steps to

enable efficient inference and maintain acceptable accuracy.

First, input images are resized to a fixed, uniform resolution

compatible with the downstream inference engine

(e.g., 32×32 or 64×64 pixels). This resizing, implemented in

Verilog, utilizes hardware-optimized interpolation algorithms

(e.g., bilinear interpolation) to maintain image quality while

reducing computational overhead. The choice of a relatively

small, standardized resolution aligns well with the limited

memory and computational bandwidth on FPGAs, ensuring

predictable timing and efficient parallelization.

Subsequently, normalization of pixel values scales the image

data into a suitable numerical range (such as 0–1 in floating-

point or Qm.n in fixed-point) to ensure stable arithmetic

operations during neural network inference. For this project, an

8-bit RGB input is often transformed into a fixed-point

representation (e.g., Q8.8) or scaled floating-point format that

fits the FPGA’s DSP slices and LUTs. This consistent input

magnitude fosters stable training convergence (if on-FPGA

training or partial re-training is used) and more accurate

inference under resource constraints.

Depending on deployment needs, noise reduction filtering,

such as median filtering or Gaussian smoothing, can be added

to enhance the signal-to-noise ratio of raw images. In an FPGA

context, these filters can be efficiently realized via parallelized

convolution modules or simplified averaging techniques. The

hardware-level parallelism offered by FPGAs significantly

reduces latency for such operations, crucial for real-time

applications.

Finally, the processed and normalized image data is buffered

in on-chip block RAM or external memory, ready for rapid

retrieval during inference. This buffering ensures a smooth

pipeline from raw data ingestion to the AI Processing stage,

mitigating bandwidth bottlenecks and guaranteeing real-time

performance. By streamlining the raw images into a predictable

format, the Image Processing stage lays the ground- work for

the subsequent hardware-accelerated CNN inference.

B. AI Processing Stage

The AI processing stage is the core of our FPGA-based

image classification pipeline, where a CNN is implemented

directly in Verilog HDL to achieve efficient real-time inference.

Leveraging the intrinsic parallel processing capabilities of

FPGAs, this design tackles the computationally intensive nature

of CNNs while working under the logic, DSP, and memory

constraints of devices like the ML605 board.

In our approach, we adopt a six-layer CNN architecture

inspired by the work in [31]. The model comprises:

1) Sliding Window Convolution (for feature extraction),

2) ReLU Activation (introducing non-linearity),

3) Max Pooling (down sampling to reduce spatial

dimension),

4) Flattening (restructuring 2D features into a 1D vector),

5) Fully Connected (learning global relationships among

features),

6) Softmax Activation (producing a probability distribution

over the 10 CIFAR-10 classes).

Each layer is coded as a separate Verilog module, allowing

straightforward testing and debugging. For instance, the con-

volution layer involves efficient hardware-based matrix multi-

plication to convolve filters over the input feature maps, while

the ReLU module employs a simple conditional operation to

clamp negative values to zero. The Max Pooling module further

reduces data dimensionality by selecting the maximum value

within local neighborhoods of a feature map, improving

robustness to minor shifts. Flattening modules then reshape the

2D feature maps into 1D vectors for fully connected processing,

and a final Softmax step converts outputs to class probabilities.

Figure 3 illustrates the internal organization of the inference

module. A dedicated memory controller retrieves pretrained

weights and biases from off-chip memory (e.g., DDR3 on the

FPGA), while the computation engine executes multiply- and-

accumulate (MAC) operations in parallel. By instantiating

multiple DSP slices for simultaneous MAC operations, the

inference pipeline substantially reduces latency compared to

software-based implementations.

To achieve consistent performance and accuracy, we pre-

trained the CNN offline, using standard frameworks (e.g., Ten-

sorFlow or PyTorch) with the CIFAR-10 dataset. During this

training phase, high-level floating-point arithmetic was used.

Post-training, model parameters were quantized or scaled to fit

the fixed-point precision supported by the Verilog modules on

the FPGA. This quantization can be as coarse as Q4.12 or Q8.8,

depending on resource availability and desired accuracy. An

activation function module applies nonlinearities such as ReLU.

Compared to sigmoid or tanh, ReLU is both simpler to implement

and less prone to saturating at extremes. The AI inference

controller, operating in concert with these modules, handles

synchronization, data flow, and final classification result

generation. Once classification is complete, the output is

forwarded to subsequent logic interfaces for digital video

output or further processing steps.

By consolidating these hardware modules, we demonstrate a

feasible CNN pipeline capable of real-time classification, even

on mid-range FPGA platforms. This tightly integrated design

exemplifies how FPGAs can address demanding edge inference

tasks, combining low-power consumption with competitive

throughput for resource-constrained environments. Future

enhancements may explore deeper CNN architectures or color-

image pipelines once resource usage is further optimized.

Nonetheless, the current 6-layer CNN exhibits strong proof- of-

concept for FPGA-based deep learning inference on the

CIFAR-10 dataset.

Fig. 3. AI processing stage (inference) module organization.

C. Probability Map Visualization Stage

The probability map visualization stage serves as a critical

intermediary within the FPGA-based classification pipeline,

connecting AI-generated outputs to the digital video display

subsystem. In this stage, the numeric classification results

produced by the AI inference engine are systematically

converted into clearly distinguishable visual representations

suitable for subsequent DVI output. Specifically, classification

labels or inference results—initially represented as numeric

vectors or encoded class identifiers—are mapped into a

predefined color- coding scheme. In our implementation, this

involves associating each classified category with a unique

color, employing a fixed set of up to ten distinct colors, each

corresponding directly to a specific classification result. Such

mapping is efficiently realized using lookup tables (LUTs)

implemented directly within Verilog code.

The Verilog implementation of the probability map

visualization module involves defining a lookup table that

associates each of the classification outputs with a preselected

RGB color value. This enables immediate, visual differentiation

of predicted classes on screen, enhancing interpretability and

facilitating rapid decision-making. The hardware module

utilizes internal FPGA resources, typically block RAM or

distributed LUTs, to perform this quick mapping operation. For

instance, an inference result labeled as “Class 1” might

correspond to red, while “Class 2” might be displayed as green,

and so forth. If the AI inference identifies more than a limited

number of classes, a hierarchical encoding strategy can be

Journal of Computer and Knowledge Engineering, Vol. , No.. 2025. 7

employed to group classes into broader categories, preserving

FPGA resources while maintaining visual clarity.

Additionally, the module handles synchronization tasks

necessary for digital video interfaces. It ensures that the

converted RGB data stream matches the timing requirements of

the DVI protocol, performing frame buffering and pixel

synchronization. Precise control of pixel timing, horizontal and

vertical synchronization signals, and other required digital

video parameters guarantees a stable, high-quality visual output

free from artifacts or latency issues.

Moreover, for scenarios involving uncertainty or

unidentified classes, an additional category (often represented

by a neutral color or grayscale) can be assigned. Implementing

these visual encoding schemes directly through hardware de-

scription language allows for seamless, real-time visualization

of classification results without latency overhead, which is

critical for applications requiring immediate feedback, such as

real-time image classification and monitoring systems.

D. Generating Synchronization Signals

Stage 4 of the system comprises several essential mod- ules

that work in tandem to generate synchronization signals and

drive display output. These modules include dis- play_clock,

display_timing, and RGB color channel multiplexers

(mux_dvi_red, mux_dvi_green, mux_dvi_blue). Together, they

handle the timing, pixel positioning, and output format- ting

necessary for DVI video transmission, as shown in figure 2.

The display_clock module is responsible for producing the

required video clocks using a mixed-mode clock manager

(MMCM). It generates a stable pixel clock (o_clk_1×) for the

entire display pipeline and asserts a o_locked signal once clock

stabilization is achieved. By manipulating multiplication and

division factors, the module ensures that clock frequencies align

precisely with resolution-specific requirements, facilitating

smooth video playback.

TABLE II

CLocK SETTIngs foR DIffEREnT REsoLUTIons

Parameter 640×480 800×600 1280×720 1920×1080

MULT_MASTER 31.5 10.0 37.125 37.125

DIV_MASTER 5 1 5 5

DIV_5× 5.0 5.0 2.0 1.0

DIV_1× 25 25 10 5

As shown in Table II, the clock parameters are resolution

dependent. The MULT_MASTER parameter sets the base

frequency multiplier, while DIV_MASTER, DIV_5×, and

DIV_1× divide the result to generate the final pixel clock.

For high-definition formats like 1920×1080, smaller division

values (e.g., DIV_1×, × = 5) ensure the required high-

frequency clocks are achieved for dense pixel grids.

The display_timing module generates horizontal and vertical

sync signals (o_hs, o_vs), display enable (o_de), and current

pixel coordinates (o_sx, o_sy) based on the incoming pixel

clock (i_pix_clk). These signals are fundamental for precise

raster scanning and timing alignment with modern DVI dis-

plays.

Table III presents the horizontal and vertical timing

parameters. These include the active resolution (H_RES,

V_RES) as well as blanking intervals (H_FP, H_SYNC, H_BP,

and their vertical counterparts). At higher resolutions like

1920×1080, longer back porch values (e.g., H_BP = 148)

allow more time for processing and synchronization. Sync

polarities (H_POL, V_POL) also adapt to modern display

requirements—switching to active-high signals for resolutions

800x600 and above.

The output of the display_timing module directly drives the

RGB multiplexers: mux_dvi_red, mux_dvi_green,

mux_dvi_blue. These modules select between raw image data

and AI-generated overlay visuals (received from upstream

modules like probability_map_visualizing) using select signals.

The chosen color values are then output to the DVI lines:

DVI_RED, DVI_GREEN, and DVI_BLUE.

TABLE III

DIsPLAY TIMIngs foR DIffEREnT REsoLUTIons

Parameter 640×480 800×600 1280×720 1920×1080

H_RES 640 800 1280 1920

V_RES 480 600 720 1080

H_FP 16 40 110 88

H_SYNC 96 128 40 44

H_BP 48 88 220 148

V_FP 10 1 5 4

V_SYNC 2 4 5 5

V_BP 33 23 20 36

H_POL 0 1 1 1

V_POL 0 1 1 1

E. Chrontel Encoder Chip (CH7301C) and DVI Output Stage

The final and crucial step in the FPGA-based image

classification pipeline involves the Chrontel (CH7301C) DVI

Transmitter chip. This integrated circuit, utilized specifically on

the ML605 FPGA development board, is designed for

converting digital image data from the FPGA’s internal

processing units into standardized DVI signals, suitable for

high-quality video output.

The Chrontel (CH7301C) is a specialized semiconductor

device that accepts parallel digital data (typically in RGB

format) from the FPGA and converts it into a serialized digital

signal conforming to DVI standards. This chip facilitates the

transition from internal FPGA processing outputs into a

standard video signal suitable for displays. To achieve this, the

(CH7301C) device internally incorporates encoding logic,

parallel-to-serial conversion circuits, and synchronization

logic. It receives 24-bit parallel RGB data signals along with

synchronization signals (horizontal sync, vertical sync, and

pixel clock signals) directly from the FPGA output pins. The

device then performs parallel-to-serial data conversion,

encoding the video data using the TMDS protocol, which is

fundamental to the DVI standard.

In practice, once the AI inference results have been con-

verted into color-coded pixel data by the probability map

visualization module within the FPGA, these parallel pixel data

streams are passed directly into the (CH7301C). This chip

organizes the incoming RGB digital signals, applies necessary

timing and synchronization adjustments, and serializes the data

into TMDS-compliant signals. TMDS encoding ensures

minimal electromagnetic interference (EMI), high-speed data

transmission, and robust signal integrity, allowing reliable

delivery of digital video signals across standard DVI cables to

display devices.

The Chrontel chip manages critical video signal timing,

including pixel clock generation, horizontal synchronization

(HSYNC), vertical synchronization (VSYNC), and data enable

(DE) signals. Correct synchronization of these signals ensures

stable and flicker-free images. The chip typically supports a

wide range of resolutions, accommodating various resolutions

defined by FPGA configurations. Internally, the (CH7301C)

also integrates modules for color space management and signal

integrity control, ensuring consistent output quality and

compatibility with digital displays.

The DVI standard itself is a high-speed digital interface

widely used for video transmission between source devices

(such as FPGA boards or graphics cards) and display monitors.

DVI leverages the TMDS standard, effectively minimizing

electromagnetic interference and maintaining signal integrity,

making it well-suited for high-resolution, high-bandwidth

digital video streams. On the ML605 FPGA board, the Chrontel

(CH7301C) precisely encodes and transmits the FPGA-

generated video signals, ensuring that the classification output

images are clearly, accurately, and promptly displayed without

data loss or distortion.

Key Components of the DVI Signal:

• Pixel Data (RGB Values): Represents pixel colors as 8-

or 10-bit RGB values. In the provided Verilog code, a

1-bit RGB representation uses the MSB for output,

simplifying color processing.

• Synchronization Signals:

- HSYNC (Horizontal Sync): Marks the start of a new

pixel row.

- VSYNC (Vertical Sync): Indicates the start of a new

frame, resetting the display for the next frame.

• Clock Signal (DVI_CLK): Synchronizes pixel data and

timing signals with the display’s refresh rate for smooth

video output.

Timing and Display Processing: The Verilog code manages

timing through modules that generate pixel positions (sx, sy),

frame signals, and synchronization outputs (h_sync, v_sync).

These signals ensure pixel data aligns with the LCD’s grid

structure.

LCD Display Conversion: The LCD controller processes

incoming RGB data to adjust liquid crystal cells, determining

pixel color and intensity. HSYNC, VSYNC, and DVI_CLK

ensure data is applied in the correct sequence, maintaining

image integrity and frame synchronization.

F. Displaying the Output of the Trained Neural Network on

Monitor using DVI

Using the DVI to analyze trained neural network results, a

system was implemented to display outputs on a monitor. This

involves hardware-software integration to enable efficient and

accurate visualization.

Process Overview: Neural network outputs, such as class

labels or probabilities, are processed into visual formats (e.g.,

bounding boxes, heatmaps). A lightweight rendering engine

maps these data into graphical primitives and generates images

or video frames compatible with DVI displays.

DVI Signal Generation and Hardware Integration: A DVI

transmitter module encodes visual content into synchronization

signals (HSYNC, VSYNC) and RGB pixel data. An FPGA or

microcontroller ensures compliance with DVI timing

specifications, delivering high-resolution, low-latency output to

the monitor

V. EXPERIMENTAL RESULTS

As a case study the proposed CNN for classification of

CIFAR-10 images is implemented in Verilog as suggested in

[31], to display the output classification of this network we used

the proposed method, Result in Table IV indicate the number of

slice registers, slice LUTs, I/O pins and global clock buffers

(BUFG) used in CNN architecture. The DVI protocol

implementation on the ML605 FPGA was evaluated in terms of

device utilization to highlight its resource efficiency. Our

analysis focused on key FPGA resources—namely slice

registers, LUTs, and logic components. Table V presents the

synthesis report results, which reflect the resource usage of the

DVI protocol module (as illustrated in Figure 4). The notably

low resource consumption (31 slice registers and 90 LUTs)

underscores the lightweight nature of our design for generating

synchronization signals in stage 4 explained in section IV-D.

TABLE IV

DEvIcE UTILIzATIon sUMMARY foR sLIcE LogIc of PRoPosED CNN foR

cLAssIfIcATIon of CIFAR-10 IMAgEs

Resource Used Available Utilization (%)

Slice Registers (FF) 910 301,440 0.30

Slice LUTs 1,871 150,720 1.24

I/O Pins 357 720 49.58

Global Clock Buffers (BUFG) 1 32 3.13

TABLE V

DEvIcE UTILIzATIon sUMMARY foR sLIcE LogIc foR gEnERATIng

sYncHRonIzATIon sIgnALs

Resource Used Available Utilization (%)

Slice Registers 31 301,440 1

Slice LUTs 90 150,720 1

Logic Components 88 150,720 1

The results demonstrate efficient utilization of FPGA

resources, with significant room for additional functionality if

needed. The utilization metrics indicate that the design is

optimized and suitable for real-time processing while

Journal of Computer and Knowledge Engineering, Vol. , No.. 2025. 9

maintaining a low resource footprint. Our experiments

confirmed the success of the FPGA-based DVI protocol

implementation. The results showed that the system meets DVI

standards for signal synchronization and output quality,

supports high-resolution video displays, and demonstrates real-

time performance for image processing and displaying the

predicted output prob- ability map of neural network. The

following key points were confirmed through testing:

• Precise signal synchronization with no visible distortion

or delay.

• High-quality video output, supporting resolutions up to

1920×1080 at 60 Hz.

• Real-time image processing with a throughput of up to

30 fps at 1280×720 resolution.

• Efficient use of FPGA resources, leaving room for

additional tasks or optimizations.

These results validate the feasibility and effectiveness of

using the ML605 FPGA for displaying the predicted output

probability map of trained model by neural network and image

processing applications and pave the way for future

improvements in FPGA-based video systems. As shown in

Figure 4, the probability values of the classes in the multi-class

trained neural network can be displayed on an LCD. Each class

probability is represented by the width of the corresponding

column bar, visually indicating the likelihood of each class.

Fig. 4. Real-time display of the CNN model’s probability map on the

CIFAR-10 dataset during the testing phase. The width of each color bar

indicates the predicted probability of the corresponding class, with the widest

bar representing the most likely classification.

Figure 4 illustrates the neural network output as it is rendered

on an LCD screen via the DVI protocol implemented on the

FPGA. The figure shows how classification results—such as

class probabilities—are translated into graphical bar elements

for real-time display. Each class is represented by a colored bar,

where the bar’s width corresponds to the predicted probability

of that class. This format enables quick interpretation of

classification outcomes, supporting applications such as

medical imaging or real-time object detection. The FPGA

ensures precise synchronization of pixel and timing signals,

allowing seamless and low-latency image rendering. This

figure demonstrates the system’s effectiveness in converting

computational results into a clear and immediate display

format, highlighting its applicability for embedded and edge AI

systems.

Fig. 5. Signal waveforms for timing, pixel data, and clock synchronization.

Figure 5 shows the signal waveforms captured during the

execution of the design. These waveforms illustrate the

synchronization of timing signals, pixel data, and clock signals,

which are critical for ensuring the correct operation of the DVI

protocol.

The signal waveforms validate the proper implementation of

the DVI protocol, showing stable synchronization across all

required signals. These results support the design’s ability to

handle real-time video outputs effectively.

Using on-board LEDs to monitor the status of TMDS signals

is an effective and simple method for debugging the DVI

connection from an FPGA to a monitor. If the LEDs connected

to the TMDS lines, such as data or clock, are not blinking, it

indicates that the TMDS signals are not initialized correctly,

and the issue is not related to the monitor. To troubleshoot, we

ensure proper initialization of TMDS signals, verify clock

settings on the FPGA, and confirm that the DVI standard

configurations (e.g., resolution, sampling rate) are accurate

VI. CONCLUSION

This paper presented a hardware implementation of the DVI

protocol on the ML605 FPGA platform for real-time display of

neural network and image processing outputs. Leveraging the

capabilities of the Xilinx Virtex-6 architecture and the

flexibility of FPGA-based design, a system was developed to

transmit high-quality digital video signals directly to an

external monitor.

The implementation addresses critical challenges such as

pixel synchronization, precise timing control, and protocol

compliance, thereby enabling accurate rendering of

classification results without relying on external processors.

The system

supports high-resolution output (up to 1920×1080 at 60 Hz)

and demonstrates low resource utilization, making it suitable

for embedded and edge AI applications.

By embedding the DVI output functionality within the

FPGA and integrating lightweight neural network inference,

this work provides an effective hardware-software co-design

framework for real-time feedback in intelligent systems. The

approach is particularly valuable for tasks requiring low latency

and high reliability, such as smart monitoring and medical

imaging.

Future research could explore extending the design to sup-

port alternative video standards (e.g., HDMI or DisplayPort),

implementing more complex neural architectures, or scaling the

design for multi-channel outputs. Additionally, improvements

in memory access patterns, dynamic reconfiguration, or

adaptive resolution could further enhance system performance

and flexibility.

Overall, this work demonstrates the viability of FPGA-

based systems for efficient, high-performance neural network

inference and real-time display using digital video interfaces,

contributing to the advancement of intelligent embedded

system design.

REFERENCES

[1] J. Park and D. Kim, “Statistical eye diagrams for high-speed interconnects
of packages: A review,” IEEE Access, 2024.

[2] S. Singh et al., “Memory efficient VLSI implementation of real-time

motion detection system using FPGA,” MDPI, 2023.
[3] J. Plusquellic, E. E. Tsiropoulou et al., “Privacy-preserving authentication

protocols for IoT devices using FPGA and DVI integration,” IEEE

Transactions, 2023.
[4] H. Park and S. Kim, “Overviewing AI-dedicated hardware for on-device

AI in smartphones,” in Artificial Intelligence and Hardware Accelerators,

Springer, pp. 127–150, 2023.

[5] V. Jain et al., “TinyVers: A tiny versatile system-on-chip with state-

retentive eMRAM for ML inference at the extreme edge,” IEEE J. Solid-

State Circuits, vol. 58, no. 8, pp. 2360–2371, 2023.
[6] J. Peddie, “The GPU environment—hardware,” in The History of the

GPU—Eras and Environment, Springer, pp. 151–200, 2023.

[7] D. G. Bailey, Design for Embedded Image Processing on FPGAs, John
Wiley & Sons, 2023.

[8] Chrontel, Inc., CH7301C DVI Transmitter Device Datasheet, Rev. 2.1,

2014.
[9] M. A. Nuño-Maganda, J. H. Jiménez-Arteaga et al., “Implementation and

integration of image processing blocks in a real-time bottle classification

system,” Sci. Rep., 2022.
[10] W. Baisi, “A machine learning approach to optimizing CNN deployment

on tile-based systems-on-chip,” 2024.

[11] C. Kyrkou, C. Ttofis et al., “FPGA-accelerated object detection using
edge information,” in IEEE, 2011.

[12] M. Abernot, “Digital Oscillatory Neural Network Implementation on

FPGA for Edge Artificial Intelligence Applications,” Ph.D. dissertation,
Theses HAL, 2023.

[13] D. Guarrera, “Real-time processing of neuronal network activity

measured by a high-density microelectrode matrix through an FPGA
card,” Thesis, Univ. of Padova, 2022.

[14] X. Kong et al., “Memristor-induced hyperchaos and extreme

multistability in fractional-order HNN: FPGA implementation,” Neural
Netw., 2024.

[15] J. W. Park et al., “A low-cost and high-throughput FPGA implementation
of Retinex algorithm for real-time video enhancement,” IEEE Trans.,

2019.

[16] C. Wang and Z. Luo, “A review of the optimal design of neural networks
based on FPGA,” Electronics, vol. 12, no. 21, p. 10771, 2022.

[17] X. Liu and Y. Chen, “Hybrid FPGA-GPU co-design for real-time neural

network inference and visualization,” in Proc. IEEE/ACM Design Autom.
Conf. (DAC), pp. 712–718, 2023.

[18] V. Thyagarajan et al., “Video analytics with FPGA-based smart cameras

for object recognition in hockey games,” IEEE, 2023.

[19] R. Przesmycki and L. Nowosielski, “Compromising emanations from
VGA and DVI interfaces,” in Proc. Prog. Electromagn. Res. Symp.

(PIERS), IEEE, 2016.

[20] T. T. Hoang, N. H. Nguyen, and X. T. Nguyen, “A real-time object-
recognition system based on PCNN algorithm,” Int. J. Neural Comput.,

2012. [Accessed: 2024].

[21] H. Fang et al., “Encoding, model, and architecture: Systematic
optimization for spiking neural network in FPGAs,” in Proc. 39th Int.

Conf., 2020.

[22] C. Farabet et al., “Hardware accelerated convolutional neural networks
for synthetic vision systems,” in Proc. IEEE Embedded Vision Conf.,

2010.

[23] N. Yildiz, E. Cesur, and K. Kayaer, “Architecture of a fully pipelined real-
time cellular neural network emulator,” IEEE Trans. Circuits Syst. I,

2014.

[24] K. Kayaer and V. Tavsanoglu, “A new cellular neural network emulator
architecture processing video real-time,” in Proc. IEEE Signal Process.

Conf., 2009.

[25] M. Abernot, “Digital Oscillatory Neural Network Implementation on
FPGA for Edge Artificial Intelligence Applications and Learning,” Ph.D.

dissertation, Univ. of Montpellier, 2023.

[26] N. Yildiz, E. Cesur, and M. E. Yalcin, “Realization of preprocessing
blocks of CNN-based CASA system on FPGA,” in Proc. Eur. Conf.

Circuit Theory Design, 2013.

[27] P. Antonik, Application of FPGA to Real-Time Machine Learning:
Hardware Reservoir Computers and Software Image Processing,

Springer, 2018.
[28] A. Ahilan and E. A. K. James, “Design and implementation of real-time

car theft detection in FPGA,” in Proc. 3rd Int. Conf. Electron. Comput.

Technol., 2011.
[29] D. Davutoğlu, N. Yildiz, and U. E. Ayten, “Real-time frame buffer

implementation based on external memory using FPGA,” Procedia

Comput. Sci., 2018.
[30] A. Fasih, C. Schwarzlmueller, and D. Müller, “Video enhancement for

ADAS systems based on FPGA and CNN platform,” Image Process.

Comput. Vis. J., 2010.
[31] A. Padhi and S. V., “Image-classification-using-CNN-on-FPGA,” 2020.

