
Journal of Computer and Knowledge Engineering, Vol. 9, No. 1, 2025. (10-24) 
 

 

 
Ferdowsi 

University of 

Mashhad  

 

 

Journal of Computer and Knowledge 

Engineering 
 

https://cke.um.ac.ir 

 

 

 

 

 

 
 

Information and 

Communication 

Technology Association of 

Iran 

  

 

 

Efficient Implementation of DVI Protocol on FPGA 

Research Article 

Sara Ershadi-Nasab1 , Danial Bayati2, Saeed Yazdani3 

  10.22067/cke.2025.91345.1142 

 

Abstract This paper presents a general-purpose 

hardware implementation of the digital visual interface 

(DVI) protocol on the Xilinx Virtex-6 ML605 FPGA 

platform for real-time display of digital processing results. 

The design enables direct output of processed data from 

the FPGA to an external monitor without relying on 

external processors or software-based rendering tools. It 

addresses key challenges in timing synchronization, pixel 
formatting, and interfacing with the onboard Chrontel 

CH7301C encoder to support resolutions up to 

1920×1080 at 60 Hz. A lightweight processing pipeline is 

developed in Verilog to convert multidimensional outputs 

into a sequential stream of pixel data conforming to the 

DVI protocol. As a case study, a lightweight convolutional 

neural network trained on the CIFAR-10 dataset is 

implemented on the FPGA, and its classification 

probabilities are displayed as a probability map on an 

LCD. Experimental results confirm low resource 

utilization and real-time performance, validating the 

system’s applicability in embedded applications such as 

machine learning inference, image processing, and real- 

time monitoring. This work demonstrates the feasibility of 

FPGA- based platforms for efficiently displaying digital 

video output in intelligent edge systems. 

 

Key Words  Digital visual interface, field programmable 

gate array, image processing, real-time, video processing, 

Xilinx Virtex-6.  

 

1. INTRODUCTION 
HE integration of neural networks with real-time image 

processing on FPGA platforms is vital for applications that 

require low latency and efficient computation. While 

neural networks are effective at interpreting visual data, 

displaying their classification results in real time directly 

from an FPGA presents practical challenges. In software 
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environments such as Python or MATLAB, classification 

results can be easily shown using high-level functions like 

plot(). However, FPGA-based systems lack such 

abstractions; displaying outputs requires manual control 

over video signal generation and transmission to an 

external monitor. This makes even basic output display—

such as showing the predicted class on an LCD screen—a 

nontrivial hardware task. 

 The DVI is a widely accepted standard for transmitting 

digital video signals, enabling seamless connections 

between computers and display devices [1], [2]. It requires 

careful synchronization of pixel data, clock signals, and 

timing signals to ensure the correct display of visual 

outputs. Misalignment of these signals can result in 

distorted or invisible outputs. Therefore, a precise and 

accurate implementation of the DVI protocol is crucial for 

verifying the functionality of FPGA- based neural network 

systems. As the demand for high- quality digital video 

transmission increases, bridging the gap between legacy 

interfaces—such as the video graphics array (VGA) and 

modern digital standards has become essential. Field-

programmable gate arrays (FPGAs) provide a flexible and 

customizable platform for implementing such interface 

conversions. 

 In modern image processing and deep learning 

applications, it is often necessary to display the output of 

computations on a monitor [3], [4]. This requirement 

becomes particularly important when processing is carried 

out on FPGA boards, as the FPGA functions as a 

specialized integrated circuit (IC) that performs intensive 

computational tasks. The results must be presented clearly 

and efficiently to ensure that the system operates as 

intended. In recent years, implementing deep learning 

algorithms on FPGA boards has gained significant 

attention, as these platforms offer high performance, low 

power consumption, and customizability compared to 

traditional processors [5], [6], [7]. Many embedded and 
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edge applications now utilize specialized ICs, rather than 

general-purpose processors, to per- form neural network 

inference. These specialized ICs optimize power, memory 

usage, and transistor count, making them well- suited for 

real-time processing. However, to verify the accuracy and 

effectiveness of neural networks, the processed outputs 

must be displayed to the user in a comprehensible manner, 

necessitating the implementation of a video display 

protocol.  

 A key limitation in FPGA-based video systems arises 

from the interface between multidimensional data 

structures used in AI models and the strictly sequential 

data format required by video output hardware. While the 

Chrontel (CH7301C) [8] DVI encoder integrated on the 

ML605 board handles the encoding of pixel data into the 

transition minimized differential signaling (TMDS) format 

for robust transmission over DVI cables, it requires a 

continuous, precisely timed stream of pixel values along 

with horizontal and vertical synchronization signals. In 

contrast, neural networks and image processing algorithms 

typically operate on two- or three-dimensional data 

arrays—such as feature maps or RGB images—rather than 

linear pixel sequences. This structural mismatch demands 

custom logic to convert high-level, array-based outputs 

into tightly timed, flattened pixel streams that comply with 

the DVI protocol. The lack of built-in hardware for this 

conversion makes it necessary to implement a fully 

synchronized pipeline capable of feeding the Chrontel 

encoder accurately and in real time. Addressing this 

challenge is essential for achieving smooth and coherent 

display of neural network results in embedded artificial 

intelligence (AI) applications. This paper presents an 

efficient hardware-software co-design approach for real-

time display of neural network classification results using 

the DVI protocol on an FPGA. A lightweight neural 

network, trained on the CIFAR-10 dataset, is implemented 

within the FPGA, with its weights manually embedded in 

Verilog. The network processes input images and produces 

classification probabilities, from which the seven most 

probable classes are selected for display. These results are 

formatted as RGB data, which is then converted into a 

DVI-compatible signal for output to an external monitor. 

To achieve this, we generate synchronization signals, 

overlay the classification results on the display, and 

transmit the output to the onboard Chrontel DVI encoder 

of the Xilinx ML605 board. This enables real- time 

rendering of the classification output directly on an LCD 

screen, alongside the processed input image. By 

eliminating the need for external CPUs or GPUs, this 

approach enhances resource efficiency and provides a 

scalable solution for embedded AI applications. The 

proposed system demonstrates how FPGA-based deep 

learning architectures can be directly integrated with 

standard video output protocols, making them well-suited 

for edge computing and real-time classification tasks. This 

paper discusses the process of implementing the DVI 

protocol on the ML605 FPGA, including the challenges of 

signal synchronization, the integration of neural network 

output, and the successful testing of the system for real-

time image processing applications. By utilizing the power 

of the Xilinx Virtex-6 architecture, we aim to showcase the 

potential of FPGA platforms in the efficient and accurate 

display of neural network and image processing outputs. 

 One of the significant challenges in the integration of 

neural network outputs and real-time image processing in 

FPGA systems is the precise synchronization of timing 

signals for video display, especially in legacy-to-modern 

interface conversions. Existing solutions often focus on 

individual aspects, such as processing efficiency or display 

fidelity, without addressing the combined demand for real-

time performance and high- quality visualization. Our 

work introduces a novel approach by integrating DVI 

protocol on the ML605 FPGA to achieve seamless and 

accurate displaying of neural network outputs. The system 

leverages the capabilities of the Xilinx Virtex-6 

architecture, ensuring synchronization of pixel, clock, and 

timing signals with resolutions up to 1920×1080 at 60 Hz. 

This dual capability of high-resolution rendering and real-

time processing represents a significant step forward in the 

design of embedded systems, particularly for edge AI 

applications like medical imaging and smart monitoring. 

In this work, the ML605 FPGA development board, built 

on the Xilinx Virtex-6 architecture, is employed to 

prototype and implement complex digital systems. The 

design is developed using the Xilinx ISE 14.7 toolchain, 

which fully supports hardware synthesis and configuration 

for this platform. With its high-capacity FPGA, ample 

memory, and versatile I/O interfaces, the ML605 is well-

suited for system-on-chip (SoC) development and the 

implementation of advanced video interfaces. 

 The primary contribution of this work is the real-time 

implementation of the DVI protocol on the Xilinx Virtex-

6 ML605 FPGA platform. This implementation enables 

direct displaying of neural network outputs and image 

processing results by addressing key challenges in signal 

synchronization and high-resolution rendering. Key 

innovative aspects of the implementation include: 

1) Real-time DVI protocol implementation on FPGA: 

This work presents the complete implementation of the 

DVI protocol on the Xilinx ML605 FPGA board, 

enabling direct display of neural network outputs on 

external monitors without requiring a host CPU or 

GPU. 

2) Direct integration of neural inference with display 

pipeline: A novel hardware-software co-design is 

developed that links a lightweight convolutional neural 

network (CNN), manually implemented in Verilog, 

with a real-time pixel stream generator. The system 

converts multidimensional classification outputs into 

sequential RGB pixel values for video rendering. 

3) Custom hardware pipeline for TMDS-compatible 

output: The system addresses the structural mismatch 

between array-based AI outputs and the linearly timed 

pixel streams required by the DVI encoder. A 

synchronized pipeline is implemented to format and 

transmit the CNN output via the on-board Chrontel 

CH7301C encoder using the TMDS standard. 

4) Legacy-to-modern interface conversion: The design 

enables legacy VGA-style embedded systems to 

connect with modern digital displays via the DVI 

protocol, effectively bridging analog and digital video 

standards using programmable logic. 
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5) Efficient FPGA resource utilization: The architecture 

demonstrates minimal consumption of FPGA 

resources (less than 1% of slice registers and LUTs), 

allowing significant headroom for additional logic, 

such as more complex networks or preprocessing units. 

6)Hardware-based rendering of neural outputs: 

Classification probabilities are displayed as visual 

indicators—such as variable-width bars—directly on 

the LCD without software-based rendering. This 

hardware-centric approach facilitates real-time 

feedback in embedded systems. 

7) Scalability for edge AI applications: The system is 

well-suited for embedded AI scenarios, such as 

medical diagnostics, smart surveillance, and industrial 

monitoring, where low latency, power efficiency, and 

real-time result visualization are critical. 

 This novel implementation not only confirms the 

feasibility of video protocol integration on FPGA 

platforms but also provides a scalable framework for real-

time display in advanced embedded systems. 

 The structure of this paper is organized as follows: 

Section II introduces relevant studies addressing the topic. 

Section III presents a detailed comparison of commonly 

used display interfaces, including VGA, DVI, and high-

definition multimedia interface (HDMI), highlighting their 

features, limitations, and use cases. The proposed method 

architecture is outlined in Section IV. The experimental 

results are provided in Section V. Finally, the conclusion 

is presented in Section VI. 

 

2. RELATED WORK 
Integrating neural networks and real-time image 

processing outputs on FPGA platforms has garnered 

significant attention in recent years [9], [5]. Various 

studies have explored FPGA- based solutions for 

implementing video display protocols, focusing on DVI 

and related technologies [10], [9]. These efforts highlight 

the versatility of FPGAs in bridging legacy and modern 

systems while ensuring high-performance real- time 

processing. Recent advancements in AI have driven 

significant progress in intelligent flexible sensing systems 

capable of highly efficient data acquisition, analysis, and 

perception. These innovations enable more sophisticated 

communication between neural processing units and 

external sensors, improving real-time monitoring and 

display capabilities for applications such as flexible 

sensory systems, humanoid robotics, and human activity 

monitoring [4]. Similarly, the development of systems-on-

chip such as TinyVers, which incorporates state- retentive 

design for machine learning (ML) inference at the extreme 

edge, demonstrates the significance of energy-efficient 

and versatile hardware platforms in supporting real-time 

AI applications [5]. Recent advancements have showcased 

the implementation of FPGA-based real-time image 

processing systems, emphasizing the integration of DVI-

compatible video interfaces for effective visualization and 

synchronization [9]. Optimization techniques for 

deploying CNNs on FPGA plat- forms have further 

enhanced the efficiency of hardware- software co-design, 

enabling seamless display of neural net- work output [10]. 

High-speed video processing and display integration have 

also been demonstrated, particularly through FPGA-

accelerated object detection systems utilizing edge in- 

formation, achieving real-time potential in applications 

[11]. 

 Moreover, digital oscillatory neural network 

frameworks have been implemented on FPGAs for edge 

AI applications, highlighting the relevance of video signal 

generation capabilities in DVI-based visualization systems 

[12]. The development of real-time systems for processing 

neuronal network activity on FPGA platforms has further 

established the critical role of DVI in rendering real-time 

outputs for high-speed visual feedback [13]. Additionally, 

FPGA implementations of hyperchaotic neural network 

systems have illustrated the adaptability of these platforms 

for complex computations and their corresponding outputs 

[14].  

 Efforts have also focused on privacy-preserving 

authentication protocols for IoT devices, leveraging FPGA 

capabilities with DVI for secure and efficient visualization 

[3]. Finally, real-time video enhancement algorithms 

implemented on FP- GAs have underscored their ability to 

handle computationally intensive tasks while adhering to 

DVI standards for high- quality visualization [15].  

 Another important area of exploration has been the 

evolution of GPU hardware, which offers significant 

parallel processing capabilities for neural networks and AI 

workloads. Peddie [6] provides an in-depth review of the 

GPU environment and its impact on hardware, 

highlighting advancements in graphics processing 

technology and its integration into AI and ML workflows.  

 These insights are particularly relevant as GPUs and 

FPGAs continue to coexist as complementary technologies 

in real-time AI processing. These studies collectively 

demonstrate the flexibility and efficiency of FPGA 

platforms in integrating neural networks, real-time image 

processing, and video display protocols such as DVI. They 

provide a solid foundation for developing FPGA-based 

systems that deliver high-speed, accurate visual outputs—

crucial for applications in AI, edge computing, and 

embedded systems.  

 Wang and Luo [16] emphasize the benefits of FPGA 

accelerators in optimizing custom hardware architectures 

for real-time applications. Their review highlights the 

importance of precision reduction techniques in 

minimizing latency and enhancing performance—

approaches that directly support our objective of achieving 

high-speed and accurate displaying of neural network 

outputs.  

 Recent investigations into FPGA-based visualization 

systems have also explored optimization strategies aimed 

at reducing latency and power consumption. In particular, 

hybrid systems that combine FPGAs with processors or 

GPUs have received attention for their ability to offload 

specific tasks, such as preprocessing or feature extraction, 

to dedicated hardware blocks. This co-design approach is 

instrumental in meeting the strict timing constraints 

required for real-time video out- puts [17].  

 Overall, these studies underscore the potential of FPGA 

platforms for efficient video protocol integration and real- 
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time visualization, thereby paving the way for 

advancements in embedded display systems across 

applications like medical imaging, edge AI, and smart 

monitoring. Furthermore, the adaptation of FPGAs for AI-

driven video analytics has shown remarkable results. 

Thyagarajan et al. [18] and Park et al. [15] demonstrated 

the integration of neural network models with smart 

cameras, achieving real-time performance in applications 

like sports analytics and video enhancement. These 

findings align with the growing need for low-latency, high-

throughput FPGA solutions for video-based AI 

applications. Przesmycki and Nowosielski [19] explored 

the security implications of compromising emanations in 

VGA and DVI interfaces, providing insights into the 

design of secure and reliable FPGA-based visualization 

systems.  

 Moreover, Bailey [7] elaborated on the fundamentals of 

embedded image processing systems on FPGAs, detailing 

the integration of advanced display protocols like DVI and 

HDMI for multimedia applications. Hoang et al. [20] 

presented a pulse-coupled neural network (PCNN) 

framework implemented on FPGAs for real-time object 

recognition, showcasing DVI compatibility for visual 

outputs. Similarly, Fang et al. [21] proposed systematic 

optimization of spiking neural networks (SNNs) on 

FPGAs, emphasizing their ability to handle cognitive tasks 

in real-time scenarios. Farabet et al. [22] developed FPGA- 

based stream processors for convolutional neural 

networks, enabling real-time vision tasks with standard 

DVI connections for video display. These systems 

demonstrate the capacity of FPGA-based platforms to 

manage complex visual processing pipelines while 

ensuring low latency. Additionally, Yildiz et al. [23] and 

Kayaer et al. [24] explored FPGA implementations of 

cellular neural networks for preprocessing blocks in high-

definition video applications. Their systems utilize DVI 

interfaces to process and visualize outputs in real time. 

Abernot [25] investigated the use of oscillatory neural 

networks on FPGA platforms, highlighting their utility in 

edge AI systems requiring real-time video processing. This 

study underscores the adaptability of FPGA designs in 

integrating learning models with real-time video outputs. 

Yildiz et al. [26] presented the implementation of 

preprocessing blocks for cellular neural network-based 

systems on FPGAs, utilizing DVI for real-time output 

visualization. This research high- lighted the efficiency of 

FPGA designs for low-latency video applications. Antonik 

[27] explored FPGA implementations for hardware 

reservoir computing and real-time machine learning, 

emphasizing applications in edge AI. Similarly, Ahilan 

and James [28] focused on the design and implementation 

of a real-time car theft detection system, which leveraged 

FPGA processing and DVI visualization to achieve high-

speed image analysis. Davutoğlu et al. [29] designed a 

real-time frame buffer implementation using external 

memory on FPGAs. Their study demonstrated how FPGAs 

can efficiently manage frame data while supporting DVI 

interfaces for video display. Fasih et al. [30] examined 

FPGA-based systems for video enhancement in advanced 

driver assistance systems (ADAS), incorporating 

convolutional neural networks and DVI outputs to 

improve video clarity. 
 

 

 
TABLE 1 Detailed comparison of Vga, Dvi, and hdmi display interfaces 

 

Feature VGA DVI HDMI 

Year of Introduction 1987 1999 2003 

Signal Type Analog 
Analog & Digital (DVI-A, DVI-D, 

DVI-I) 
Digital 

Maximum Resolution Up to 1080p 
1920x1200 (Single-Link), 

2560x1600 (Dual-Link) 

8K at 60Hz or 4K at 120Hz (HDMI 

2.1) 

Color Depth Limited by analog quality 
24-bit (Single-Link) or higher for 

Dual-Link 
Up to 48-bit (HDR supported) 

Audio Support No No 
Yes, with multichannel audio 

support 

Cable Length Up to 15m with quality loss 
Up to 5m for digital, longer for 

analog 
Up to 15m for 4K, shorter for 8K 

Compatibility 
Legacy monitors and 

projectors 
Transitional systems 

Modern displays, TVs, and 

projectors 

Connector Type 15-pin D-Sub Multi-pin (varied) Compact (Type-A, Mini, Micro) 

Video Signal Quality Prone to interference 
Better than VGA; pure digital avoids 

noise 

Excellent; supports HDR and high 

refresh rates 

Multi-Monitor Support Not supported Not supported Supported via splitters 

Data Bandwidth Not standardized 
4.95 Gbps (Single-Link), 9.9 Gbps 

(Dual-Link) 
Up to 48 Gbps (HDMI 2.1) 

Use Cases 
Legacy monitors and 

projectors 
PC monitors and transitional setups 

TVs, gaming systems, multimedia 

devices 

Adapter Availability 
VGA to HDMI/DVI with 

converters 
DVI to VGA/HDMI with converters HDMI to VGA/DVI with converters 

Cost Low Moderate Higher (for high-speed cables) 
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3. COMPARISON OF VGA, DVI, AND HDMI IN 

FPGA-BASED SYSTEMS 

Video interfaces play a crucial role in FPGA-based image 

processing and displaying the neural network output. 

Among the widely used standards, VGA, DVI, and HDMI 

offer different trade-offs in terms of signal quality, 

bandwidth, and implementation complexity. Table 1. 

summarizes their key differences, focusing on their impact 

on FPGA implementation. DVI strikes a balance between 

complexity and quality, making it a suitable choice for 

FPGA-based real-time visualization of neural network 

outputs. Unlike VGA, it provides lossless digital 

transmission, and compared to HDMI, it avoids the 

additional complexity of audio and high-bandwidth digital 

content protection (HDCP) encryption, which are 

unnecessary for many FPGA applications. 

 

4. PROPOSED METHOD 

Fig. 1 illustrates the high-level design of the proposed 

hardware-based image classification pipeline. This system 

con- sists of six sequential stages that transform raw image 

data into classified and visualized output, ultimately 

displayed in 

 real time on a digital monitor. The process begins with 

image processing, where the input image—typically in 𝑊 

× 𝐻 × 3 RGB format—is resized, normalized, and 

optionally filtered to enhance its features and ensure 

consistency for the classification model. Next, the AI 

processing stage applies a lightweight classification 

algorithm, which may be based on neural networks or 

simpler machine learning methods. This stage extracts 

relevant features and produces a classification output in the 

form of a probability map or class index. 

 The third stage, probability map visualization, converts 

the AI output into a visual format by mapping probabilities 

or class indicators into color-coded RGB values. This 

makes the classification interpretable when displayed on a 

screen. In stage four, the system generates essential 

synchronization signals such as horizontal sync (HSYNC), 

vertical sync (VSYNC), and data enable (DE), along with 

precise pixel timing to prepare the image stream for 

display output. These signals ensure that the display device 

receives video data in a valid scanline order. 

 Once the pixel data and control signals are properly 

formatted, the fifth stage interfaces with the Chrontel 

(CH7301C) DVI encoder chip. This stage handles the 

conversion of parallel RGB data into TMDS (Transition 

Minimized Differential Signaling) format, which is the 

standard for DVI transmission. The sixth and final stage 

handles the actual DVI output, transmitting the TMDS 

signals to an external monitor where the classified image 

is rendered in real time, enabling immediate feedback and 

visualization. 

 Fig. 2 provides a detailed RTL schematic that 

corresponds specifically to the first four stages of the 

pipeline. These stages are fully implemented in Verilog 

and deployed on an FPGA platform. The image processing 

logic is handled by the image_processing module, which 

receives and formats the incoming image data. This is 

followed by the ai_processing module, which performs 

classification using MAC operations and feature extraction 

based on preloaded filters. The output of this stage is 

passed to the probability_map_visualizing module, which 

trans- forms the classification results into pixel-level RGB 

values based on scan positions. 

 

 

 

Fig. 1.  Overview of the hardware-based image classification pipeline implemented in Verilog. The process is divided into six main 

stages, from image input to real-time DVI display 
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Fig. 2.  Register transfer level (RTL) schematic of the Verilog-based image classification system. This diagram focuses on the 

implementation of Stages 1 through 4 within the FPGA, showing signal flow, control logic, and synchronization modules 

 

 To prepare for external video transmission, 

synchronization signals and timing control are generated 

by the display_clock and display_timing modules. These 

provide the pixel clock, scan coordinates, and sync signals 

required by the downstream encoder. While the RTL 

diagram concludes at this point, the outputs from Stage 4 

are structured specifically for interfacing with the Chrontel 

encoder in Stage 5, and eventually, real-time rendering on 

a monitor via Stage 6. 

4.1. Image Processing Stage 

The Image Processing stage serves as the initial 

component of our FPGA-based classification pipeline, 

tasked primarily with preparing raw image data for 

subsequent analysis by the AI Processing module. This 

stage plays a fundamental role, ensuring compatibility and 

quality enhancement of image data, thus directly 

influencing inference accuracy and computational 

efficiency. 

 In the present design, we adopt the widely recognized 

CIFAR-10 dataset as the primary source of training and 

evaluation images. CIFAR-10 provides 60,000 images 

(32×32 pixels, RGB) split into 50,000 training images and 

10,000 test images. These images span 10 distinct classes, 

each containing 

 6,000 samples. While CIFAR-10 images are natively in 

color (3 channels). 

 Initially, input image data arrives in standard RGB for- 

mat, represented as three separate channels (Red, Green 

and Blue) with each pixel typically stored at 8-bit color 

depth. Given the resource constraints and processing 

requirements of FPGA  

 hardware, these images undergo several preprocessing 

steps to enable efficient inference and maintain acceptable 

accuracy. First, input images are resized to a fixed, 

uniform resolution compatible with the downstream 

inference engine 

 (e.g., 32×32 or 64×64 pixels). This resizing, 

implemented in Verilog, utilizes hardware-optimized 

interpolation algorithms 

 (e.g., bilinear interpolation) to maintain image quality 

while reducing computational overhead. The choice of a 
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relatively small, standardized resolution aligns well with 

the limited memory and computational bandwidth on 

FPGAs, ensuring predictable timing and efficient 

parallelization. 

 Subsequently, normalization of pixel values scales the 

image data into a suitable numerical range (such as 0–1 in 

floating- point or Qm.n in fixed-point) to ensure stable 

arithmetic operations during neural network inference. For 

this project, an 8-bit RGB input is often transformed into a 

fixed-point representation (e.g., Q8.8) or scaled floating-

point format that fits the FPGA’s DSP slices and LUTs. 

This consistent input magnitude fosters stable training 

convergence (if on-FPGA training or partial re-training is 

used) and more accurate inference under resource 

constraints. 

 Depending on deployment needs, noise reduction 

filtering, such as median filtering or Gaussian smoothing, 

can be added to enhance the signal-to-noise ratio of raw 

images. In an FPGA context, these filters can be efficiently 

realized via parallelized convolution modules or simplified 

averaging techniques. The hardware-level parallelism 

offered by FPGAs significantly reduces latency for such 

operations, crucial for real-time applications. 

 Finally, the processed and normalized image data is 

buffered in on-chip block RAM or external memory, ready 

for rapid retrieval during inference. This buffering ensures 

a smooth pipeline from raw data ingestion to the AI 

Processing stage, mitigating bandwidth bottlenecks and 

guaranteeing real-time performance. By streamlining the 

raw images into a predictable format, the Image Processing 

stage lays the ground- work for the subsequent hardware-

accelerated CNN inference. 

4.2. AI Processing Stage 

The AI processing stage is the core of our FPGA-based 

image classification pipeline, where a CNN is 

implemented directly in Verilog HDL to achieve efficient 

real-time inference. Leveraging the intrinsic parallel 

processing capabilities of FPGAs, this design tackles the 

computationally intensive nature of CNNs while working 

under the logic, DSP, and memory constraints of devices 

like the ML605 board. 

 In our approach, we adopt a six-layer CNN architecture 

inspired by the work in [31]. The model comprises: 

1) Sliding Window Convolution (for feature 

extraction), 

2) ReLU Activation (introducing non-linearity), 

3) Max Pooling (down sampling to reduce spatial 

dimension), 

4) Flattening (restructuring 2D features into a 1D 

vector), 

5) Fully Connected (learning global relationships 

among features), 

6) Softmax Activation (producing a probability 

distribution over the 10 CIFAR-10 classes). 
 Each layer is coded as a separate Verilog module, 
allowing straightforward testing and debugging. For 
instance, the con- volution layer involves efficient 
hardware-based matrix multi- plication to convolve filters 
over the input feature maps, while the ReLU module 
employs a simple conditional operation to clamp negative 
values to zero. The Max Pooling module further reduces 
data dimensionality by selecting the maximum value 
within local neighborhoods of a feature map, improving 
robustness to minor shifts. Flattening modules then 
reshape the 2D feature maps into 1D vectors for fully 
connected processing, and a final Softmax step converts 
outputs to class probabilities. 

 Fig. 3 illustrates the internal organization of the 

inference module. A dedicated memory controller 

retrieves pretrained weights and biases from off-chip 

memory (e.g., DDR3 on the FPGA), while the 

computation engine executes multiply- and-accumulate 

(MAC) operations in parallel. By instantiating multiple 

DSP slices for simultaneous MAC operations, the 

inference pipeline substantially reduces latency compared 

to software-based implementations.

 

Fig. 3.  AI processing stage (inference) module organization. 



18  Sara Ershadi-Nasab, Danial Bayati, Saeed Yazdani 

 

 

 

 To achieve consistent performance and accuracy, we 

pre- trained the CNN offline, using standard frameworks 

(e.g., Ten- sorFlow or PyTorch) with the CIFAR-10 

dataset. During this training phase, high-level floating-

point arithmetic was used. Post-training, model parameters 

were quantized or scaled to fit the fixed-point precision 

supported by the Verilog modules on the FPGA. This 

quantization can be as coarse as Q4.12 or Q8.8, depending 

on resource availability and desired accuracy. An 

activation function module applies nonlinearities such as 

ReLU. Compared to sigmoid or tanh, ReLU is both simpler 

to implement and less prone to saturating at extremes. The 

AI inference controller, operating in concert with these 

modules, handles synchronization, data flow, and final 

classification result generation. Once classification is 

complete, the output is forwarded to subsequent logic 

interfaces for digital video output or further processing 

steps. 

 By consolidating these hardware modules, we 

demonstrate a feasible CNN pipeline capable of real-time 

classification, even on mid-range FPGA platforms. This 

tightly integrated design exemplifies how FPGAs can 

address demanding edge inference tasks, combining low-

power consumption with competitive throughput for 

resource-constrained environments. Future enhancements 

may explore deeper CNN architectures or color- image 

pipelines once resource usage is further optimized. 

Nonetheless, the current 6-layer CNN exhibits strong 

proof- of-concept for FPGA-based deep learning inference 

on the CIFAR-10 dataset. 

4.3.    Probability Map Visualization Stage 

The probability map visualization stage serves as a critical 

intermediary within the FPGA-based classification 

pipeline, connecting AI-generated outputs to the digital 

video display subsystem. In this stage, the numeric 

classification results produced by the AI inference engine 

are systematically converted into clearly distinguishable 

visual representations suitable for subsequent DVI output. 

Specifically, classification labels or inference results—

initially represented as numeric vectors or encoded class 

identifiers—are mapped into a predefined color- coding 

scheme. In our implementation, this involves associating 

each classified category with a unique color, employing a 

fixed set of up to ten distinct colors, each corresponding 

directly to a specific classification result. Such mapping is 

efficiently realized using lookup tables (LUTs) 

implemented directly within Verilog code. 

 The Verilog implementation of the probability map 

visualization module involves defining a lookup table that 

associates each of the classification outputs with a 

preselected RGB color value. This enables immediate, 

visual differentiation of predicted classes on screen, 

enhancing interpretability and facilitating rapid decision-

making. The hardware module utilizes internal FPGA 

resources, typically block RAM or distributed LUTs, to 

perform this quick mapping operation. For instance, an 

inference result labeled as “Class 1” might correspond to 

red, while “Class 2” might be displayed as green, and so 

forth. If the AI inference identifies more than a limited 

number of classes, a hierarchical encoding strategy can be 

employed to group classes into broader categories, 

preserving FPGA resources while maintaining visual 

clarity. 

 Additionally, the module handles synchronization tasks 

necessary for digital video interfaces. It ensures that the 

converted RGB data stream matches the timing 

requirements of the DVI protocol, performing frame 

buffering and pixel synchronization. Precise control of 

pixel timing, horizontal and vertical synchronization 

signals, and other required digital video parameters 

guarantees a stable, high-quality visual output free from 

artifacts or latency issues. 

 Moreover, for scenarios involving uncertainty or 

unidentified classes, an additional category (often 

represented by a neutral color or grayscale) can be 

assigned. Implementing 

 these visual encoding schemes directly through 

hardware de- scription language allows for seamless, real-

time visualization of classification results without latency 

overhead, which is critical for applications requiring 

immediate feedback, such as real-time image 

classification and monitoring systems. 

4.4. Generating Synchronization Signals 

Stage 4 of the system comprises several essential mod- 

ules that work in tandem to generate synchronization 

signals and drive display output. These modules include 

dis- play_clock, display_timing, and RGB color channel 

multiplexers (mux_dvi_red, mux_dvi_green, 

mux_dvi_blue). Together, they handle the timing, pixel 

positioning, and output format- ting necessary for DVI 

video transmission, as shown in fig. 2. 

 The display_clock module is responsible for producing 

the required video clocks using a mixed-mode clock 

manager (MMCM). It generates a stable pixel clock 

(o_clk_1×) for the entire display pipeline and asserts a 

o_locked signal once clock stabilization is achieved. By 

manipulating multiplication and division factors, the 

module ensures that clock frequencies align precisely with 

resolution-specific requirements, facilitating smooth video 

playback. 

 As shown in Table 2, the clock parameters are resolution 

dependent. The MULT_MASTER parameter sets the base 

frequency multiplier, while DIV_MASTER, DIV_5×, and 

DIV_1× divide the result to generate the final pixel clock. 

 For high-definition formats like 1920×1080, smaller 

division values (e.g., DIV_1×, × = 5) ensure the required 

high- frequency clocks are achieved for dense pixel grids. 

 
TABLE 2 

Clock setting for different resoulutions 

Parameter 640×480 800×600 1280×720 1920×1080 

MULT_MASTER 31.5 10.0 37.125 37.125 

DIV_MASTER 5 1 5 5 

DIV_5× 5.0 5.0 2.0 1.0 

DIV_1× 25 25 10 5 

 

 The display_timing module generates horizontal and 

vertical sync signals (o_hs, o_vs), display enable (o_de), 
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and current pixel coordinates (o_sx, o_sy) based on the 

incoming pixel clock (i_pix_clk). These signals are 

fundamental for precise raster scanning and timing 

alignment with modern DVI dis- plays. 

 Table 3. presents the horizontal and vertical timing 

parameters. These include the active resolution (H_RES, 

V_RES) as well as blanking intervals (H_FP, H_SYNC, 

H_BP, and their vertical counterparts). At higher 

resolutions like 

 1920×1080, longer back porch values (e.g., H_BP = 

148) allow more time for processing and synchronization. 

Sync 

 polarities (H_POL, V_POL) also adapt to modern 

display requirements—switching to active-high signals for 

resolutions 800x600 and above. 

 The output of the display_timing module directly drives 

the RGB multiplexers: mux_dvi_red, mux_dvi_green, 

mux_dvi_blue. These modules select between raw image 

data and AI-generated overlay visuals (received from 

upstream modules like probability_map_visualizing) 

using select signals. The chosen color values are then 

output to the DVI lines: DVI_RED, DVI_GREEN, and 

DVI_BLUE.  
TABLE 3 

Display timings for different resoulutions 

Parameter 640×480 800×600 1280×720 1920×1080 

H_RES 640 800 1280 1920 

V_RES 480 600 720 1080 

H_FP 16 40 110 88 

H_SYNC 96 128 40 44 

H_BP 48 88 220 148 

V_FP 10 1 5 4 

V_SYNC 2 4 5 5 

V_BP 33 23 20 36 

H_POL 0 1 1 1 

V_POL 0 1 1 1 

 

4.5. Chrontel Encoder Chip (CH7301C) and DVI Output 

Stage 

The final and crucial step in the FPGA-based image 

classification pipeline involves the Chrontel (CH7301C) 

DVI Transmitter chip. This integrated circuit, utilized 

specifically on the ML605 FPGA development board, is 

designed for converting digital image data from the 

FPGA’s internal processing units into standardized DVI 

signals, suitable for high-quality video output. 

 The Chrontel (CH7301C) is a specialized 

semiconductor device that accepts parallel digital data 

(typically in RGB format) from the FPGA and converts it 

into a serialized digital signal conforming to DVI 

standards. This chip facilitates the transition from internal 

FPGA processing outputs into a standard video signal 

suitable for displays. To achieve this, the (CH7301C) 

device internally incorporates encoding logic, parallel-to-

serial conversion circuits, and synchronization logic. It 

receives 24-bit parallel RGB data signals along with 

synchronization signals (horizontal sync, vertical sync, 

and pixel clock signals) directly from the FPGA output 

pins. The device then performs parallel-to-serial data 

conversion, encoding the video data using the TMDS 

protocol, which is fundamental to the DVI standard. 

 In practice, once the AI inference results have been con- 

verted into color-coded pixel data by the probability map 

visualization module within the FPGA, these parallel pixel 

data streams are passed directly into the (CH7301C). This 

chip organizes the incoming RGB digital signals, applies 

necessary timing and synchronization adjustments, and 

serializes the data into TMDS-compliant signals. TMDS 

encoding ensures minimal electromagnetic interference 

(EMI), high-speed data transmission, and robust signal 

integrity, allowing reliable delivery of digital video signals 

across standard DVI cables to display devices. 

 The Chrontel chip manages critical video signal timing, 

including pixel clock generation, horizontal 

synchronization (HSYNC), vertical synchronization 

(VSYNC), and data enable (DE) signals. Correct 

synchronization of these signals ensures stable and flicker-

free images. The chip typically supports a wide range of 

resolutions, accommodating various resolutions defined 

by FPGA configurations. Internally, the (CH7301C) also 

integrates modules for color space management and signal 

integrity control, ensuring consistent output quality and 

compatibility with digital displays. 

 The DVI standard itself is a high-speed digital interface 

widely used for video transmission between source 

devices (such as FPGA boards or graphics cards) and 

display monitors. DVI leverages the TMDS standard, 

effectively minimizing electromagnetic interference and 

maintaining signal integrity, making it well-suited for 

high-resolution, high-bandwidth digital video streams. On 

the ML605 FPGA board, the Chrontel (CH7301C) 

precisely encodes and transmits the FPGA- generated 

video signals, ensuring that the classification output 

images are clearly, accurately, and promptly displayed 

without data loss or distortion. 

 Key Components of the DVI Signal: 

1) Pixel Data (RGB Values): Represents pixel colors as 8- 

or 10-bit RGB values. In the provided Verilog code, a 1-

bit RGB representation uses the MSB for output, 

simplifying color processing. 

2) Synchronization Signals: 

 HSYNC (Horizontal Sync): Marks the start of a 

new pixel row. 

 VSYNC (Vertical Sync): Indicates the start of a 

new frame, resetting the display for the next 

frame. 

3) Clock Signal (DVI_CLK): Synchronizes pixel data and 

timing signals with the display’s refresh rate for smooth 

video output. 

 Timing and Display Processing: The Verilog code 

manages timing through modules that generate pixel 

positions (sx, sy), frame signals, and synchronization 

outputs (h_sync, v_sync). These signals ensure pixel data 

aligns with the LCD’s grid structure. 

 LCD Display Conversion: The LCD controller 
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processes incoming RGB data to adjust liquid crystal cells, 

determining pixel color and intensity. HSYNC, VSYNC, 

and DVI_CLK ensure data is applied in the correct 

sequence, maintaining image integrity and frame 

synchronization. 

 

4.6. Displaying the Output of the Trained Neural 

Network on Monitor using DVI 

Using the DVI to analyze trained neural network results, a 

system was implemented to display outputs on a monitor. 

This involves hardware-software integration to enable 

efficient and accurate visualization. 

 Process Overview: Neural network outputs, such as 

class labels or probabilities, are processed into visual 

formats (e.g., bounding boxes, heatmaps). A lightweight 

rendering engine maps these data into graphical primitives 

and generates images or video frames compatible with 

DVI displays. 

 DVI Signal Generation and Hardware Integration: A 

DVI transmitter module encodes visual content into 

synchronization signals (HSYNC, VSYNC) and RGB 

pixel data. An FPGA or microcontroller ensures 

compliance with DVI timing specifications, delivering 

high-resolution, low-latency output to the monitor 

 

5. EXPERIMENTAL RESULTS 
As a case study the proposed CNN for classification of 

CIFAR-10 images is implemented in Verilog as suggested 

in [31], to display the output classification of this network 

we used the proposed method, Result in Table 4. indicate 

the number of slice registers, slice LUTs, I/O pins and 

global clock buffers (BUFG) used in CNN architecture. 

The DVI protocol implementation on the ML605 FPGA 

was evaluated in terms of device utilization to highlight its 

resource efficiency. Our analysis focused on key FPGA 

resources—namely slice registers, LUTs, and logic 

components. Table 5. presents the synthesis report results, 

which reflect the resource usage of the DVI protocol 

module (as illustrated in Fig. 4). The notably low resource 

consumption (31 slice registers and 90 LUTs) underscores 

the lightweight nature of our design for generating 

synchronization signals in stage 4 explained in section IV-

D. 

 
TABLE 4 

Device utilization summary for slice logIc of prorosed CNN for 

classification of cifar-10 images 
 

Resource Used Available Utilization 

 (%) 

Slice Registers (FF) 910 301,440 0.30 

Slice LUTs 1,871 150,720 1.24 

I/O Pins 357 720 49.58 

Global Clock Buffers 

(BUFG) 

1 32 3.13 

 

 

 

 

TABLE 5 

Device utilization summary for slice logic for generating 

synchronization signals 
 

Resource Used Available Utilization (%) 

Slice Registers 31 301,440 1 

Slice LUTs 90 150,720 1 

Logic Components 88 150,720 1 

 

The results demonstrate efficient utilization of FPGA 

resources, with significant room for additional 

functionality if needed. The utilization metrics indicate 

that the design is optimized and suitable for real-time 

processing while maintaining a low resource footprint. Our 

experiments confirmed the success of the FPGA-based 

DVI protocol implementation. The results showed that the 

system meets DVI standards for signal synchronization 

and output quality, supports high-resolution video 

displays, and demonstrates real-time performance for 

image processing and displaying the predicted output 

prob- ability map of neural network. The following key 

points were confirmed through testing: 

• Precise signal synchronization with no visible 

distortion or delay. 

• High-quality video output, supporting resolutions 

up to 1920×1080 at 60 Hz. 

• Real-time image processing with a throughput of 

up to 30 fps at 1280×720 resolution. 

• Efficient use of FPGA resources, leaving room for 

additional tasks or optimizations. 

These results validate the feasibility and effectiveness 

of using the ML605 FPGA for displaying the predicted 

output probability map of trained model by neural network 

and image processing applications and pave the way for 

future improvements in FPGA-based video systems. As 

shown in Fig. 4, the probability values of the classes in the 

multi-class trained neural network can be displayed on an 

LCD. Each class probability is represented by the width of 

the corresponding column bar, visually indicating the 

likelihood of each class. 

 Fig. 4 illustrates the neural network output as it is 

rendered on an LCD screen via the DVI protocol 

implemented on the FPGA. The figure shows how 

classification results—such as class probabilities—are 

translated into graphical bar elements for real-time display. 

Each class is represented by a colored bar, where the bar’s 

width corresponds to the predicted probability of that class. 

This format enables quick interpretation of classification 

outcomes, supporting applications such as medical 

imaging or real-time object detection. The FPGA ensures 

precise synchronization of pixel and timing signals, 

allowing seamless and low-latency image rendering. This 

figure demonstrates the system’s effectiveness in 

converting computational results into a clear and 

immediate display format, highlighting its applicability for 

embedded and edge AI systems. 
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Fig. 4.  Real-time display of the CNN model’s probability map on the CIFAR-10 dataset during the testing phase. The width of each 

color bar indicates the predicted probability of the corresponding class, with the widest bar representing the most likely classification. 

 
Fig. 5.  Signal waveforms for timing, pixel data, and clock synchronization. 

 

 Fig. 5. shows the signal waveforms captured during the 

execution of the design. These waveforms illustrate the 

synchronization of timing signals, pixel data, and clock 

signals, which are critical for ensuring the correct 

operation of the DVI protocol. 

 The signal waveforms validate the proper 

implementation of the DVI protocol, showing stable 

synchronization across all required signals. These results 

support the design’s ability to handle real-time video 

outputs effectively. 

 Using on-board LEDs to monitor the status of TMDS 

signals is an effective and simple method for debugging 

the DVI connection from an FPGA to a monitor. If the 

LEDs connected to the TMDS lines, such as data or clock, 

are not blinking, it indicates that the TMDS signals are not 

initialized correctly, and the issue is not related to the 

monitor. To troubleshoot, we ensure proper initialization 

of TMDS signals, verify clock settings on the FPGA, and 

confirm that the DVI standard configurations (e.g., 

resolution, sampling rate) are accurate 

 

6. CONCLUSION 
This paper presented a hardware implementation of the 

DVI protocol on the ML605 FPGA platform for real-time 

display of neural network and image processing outputs. 

Leveraging the capabilities of the Xilinx Virtex-6 
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architecture and the flexibility of FPGA-based design, a 

system was developed to transmit high-quality digital 

video signals directly to an external monitor. 

 The implementation addresses critical challenges such 

as pixel synchronization, precise timing control, and 

protocol compliance, thereby enabling accurate rendering 

of classification results without relying on external 

processors. The system 

 supports high-resolution output (up to 1920×1080 at 60 

Hz) and demonstrates low resource utilization, making it 

suitable 

 for embedded and edge AI applications. 

 By embedding the DVI output functionality within the 

FPGA and integrating lightweight neural network 

inference, this work provides an effective hardware-

software co-design framework for real-time feedback in 

intelligent systems. The approach is particularly valuable 

for tasks requiring low latency and high reliability, such as 

smart monitoring and medical imaging. 

 Future research could explore extending the design to 

sup- port alternative video standards (e.g., HDMI or 

DisplayPort), implementing more complex neural 

architectures, or scaling the design for multi-channel 

outputs. Additionally, improvements in memory access 

patterns, dynamic reconfiguration, or adaptive resolution 

could further enhance system performance and flexibility. 

 Overall, this work demonstrates the viability of FPGA- 

based systems for efficient, high-performance neural 

network inference and real-time display using digital video 

interfaces, contributing to the advancement of intelligent 

embedded system design. 
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