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An efficient Dai-Kou-type method with

image de-blurring application

K. Ahmed"*"™ M.Y. Waziri""", S. Murtala?, A.S. Halilu>*", H.
Abdullahi® and Y.B. Musa®

Abstract

Well-conditioning of matrices has been shown to improve the numerical
performance of algorithms by way of ensuring their numerical stability. In
this paper, a modified Dai-Kou-type conjugate gradient method is devel-
oped for constrained nonlinear monotone systems by employing the well-

conditioning approach. The new method ensures that the much required
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condition for global convergence of iterates generated is satisfied irrespec-
tive of the linesearch strategy employed. Another novelty of the scheme is
its practical application in image de-blurring problems. The method per-
forms well and converges globally under mild assumptions. Experiments in
image de-blurring and convex constrained systems of equations show the

scheme to be effective.
AMS subject classifications (2020): Primary 90C30; Secondary 90C26, 94A12.

Keywords: Nonlinear equations; Eigenvalues; Constrained equations; Con-

vex set; Sparse signals.

1 Introduction

Generally, a system of nonlinear monotone equations is given by
F(z) =0, z € R", (1)

with F' from R™ — R"™, being a continuous and monotone mapping. Mono-

tonicity of F' means it satisfies the inequality
(F(z) — F(y))"(z —y) >0, for all z,y € R™. (2)
For the constrained version of (1), which is formulated as
F(z)=0; zeC, 3)

T resides in a closed convex nonempty set C C R™ for which (3) holds.

The Newton’s and quasi-Newton’s methods [14, 21, 48, 54] are the famous
schemes employed for solving (1) and (3). However, storing the Jacobian or
its approximation in every iteration, renders these methods unsuitable for
high dimension problems.

The appropriate iterative scheme that conveniently addresses storage re-
quirements is the conjugate gradient (CG) scheme. It is usually designed for
the optimization problem

min f(z), (4)
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in which f denotes a smooth real-valued function. The CG method is often
applied to solve (4) due to its minimal memory requirement. As with other
line search methods, and starting with o € R™, the CG method’s iterates

are obtained via
Tht1 = Tk + Sk, Sk = Vpd, k>0, (5)

where xj, stands for previous iterate, ¥ > 0 is the steplength that is usually

obtained using a well-defined formula in the scheme’s direction dj, namely,

k41 = —Gk+1 + Brdr,  do = —go, (6)

where gr+1 = g(zk+1), go = g(xo) represent gradients of f at zjy1 and zy.
In addition, B in (6) is a parameter that defines the CG scheme and its
various formulation exists in the literature (see [31, 42]). The classical ones
are proposed in [20, 25, 27, 33, 41, 50, 51] and are given by

FR _ lgn+1]? CD _ lgn-+1]? BDY — llgr+l” (7)
lgwll? —gidy’ di (k41— gr)’
HS _ 91?+1(9k+1 - 9k) PRP __ 91?+1(9k+1 — 9k) LS _ 91{+1(9k+1 — 9k)
S PR k=2 Pk T 7,

—gfdy

(®)

df (gr+1 — gr) ll9kl]?

with || - || being the o — norm of vectors.

A typical CG scheme implemented with (5) and (6), generates descent

directions if the following inequality holds:

di 119k < 0. 9)

However, for convergence analysis, the CG methods are required to satisfy

the following sufficient descent condition:

dip1gk+1 < —cllgesl®, ¢ >0. (10)

By seeking a CG direction such that it will be closest to that of the scaled
memoryless BFGS scheme [55], Dai and Kou [18] provided a class of CG
schemes (DK) for solving (4) with the update parameter
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DK _ Yb gkt Iyl wEse ) Gieis 1

A N CL IR Dol o 1) B ot (11)
yi dy, spye  llskll®/ i de

where yr = gr+1 — gr. The authors in [18] defined 74 in (11) similar to the

one given in [55]. Interestingly, other formulations have been provided over

the years, which include the ones in [47] provided by Oren and Spedicato,

namely,

O _ sy @ _ P
yi Myye” " sty

the ones proposed by Oren and Luenberger in [46], that is,

Tar—1 T
L6 s My sk @) Sk
ko T ’ kT T ’

i, Uk 53, Qi

as well as the choice provided in [6] by Al-Baali, namely,

2 T
T,gs) —min{l,lz,k” }, T’gﬁ) —min{l,sky];}7
Sk Uk sl

where My, and @y, are matrices. The approximation of 74 given in [18], that

is,

T
Sk Yk

Tk —
[E

has so far been taken to be the most effective for implementing the DK

scheme. In their work in [18], the authors declared that other efficient ap-

proximations of 7, can be obtained by employing different approaches.

Due to the appealing attributes of CG schemes for solving (4) with the
knowledge that the optimality condition of (4) and (3) equates both concepts,
that is, Vf = F, where F' denotes the gradient of some objective functions,
researchers have proposed their versions for solving (1) [34, 58, 59] and (3)
(2, 3,4, 32, 36, 40, 57, 63, 62]. Search directions of these schemes are defined

as
do = —Fo, dpy1=—Fep1+ Brdy, Fry1 = F(ap), k=0,1,...,

with ) representing a modified version of any of the earlier CG parameters
in (7) and (8) or their hybrid. To that end, researchers have combined the
parameters in (7) and (8) with the projection technique in [54] to solve (1)
and (3) (see [3, 34, 40, 58, 59, 62] for details). In response to the issue raised
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by the authors in [18] regarding other more effective approximations of the
parameter 75 in (11), some research aimed at addressing it have been made
in recent years. For example, Ding et al. [22] provided a class of DK schemes

for (3) with choices of 75 given as

yell® Stk
=1, P = (12)
Sio Yk skl
or the convex combination
=0t + (1 -8)rf, §elo,1], (13)
in which
Uk = Uk — Meokl|Frlldy, ordy = sg,  op >0,
with
~T
_ -0 d -
w= 1 R e {0, PO g~ - R R= P

Following the work in [22] and by exploiting Newton’s direction, Waziri et
al. [56] presented another DK-type scheme for solving (3) with the choice of
T given as

TMDK 1 4 scwe |lwell® (14)

Isell> spwe”

where
wi =y + Crsi + D||Fil|"sk, yr = F(zk) — F(xk), Sk = 2k — T = opdy,

Sgyk
Ck:max _W,O 5 D>07 r> 0.
Sk

In their recent work, Waziri et al. [2] proposed two other types of DK-type
methods for (3) with approximations of 75, defined as

~ 2 =2
T, = max {%k,cl ”_Zgrk_H } , T, = max {f‘k,CQ + H_?#c_” } ) (15)
Sk Yk S Yk

in which o o
- 350k |7kl

k= T T
I8l sioe

(16)

where
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Uk = Y+ usu+A||Fil|"sk, sk = wp—xk, yp = F(wp)—F(xg), A>0, r>0,

with

_ ST
wk:max{ 5k Yk O},

[EA

and ¢; > 1 and ¢ > 0.

Remark 1. Tt is worth stating here that only the schemes in [22] with choices
of 7, presented in (12) and (13) satisfy the condition (10) necessary for de-
termining global convergence of algorithms for the problem (3) without any
adjustments. For instance, the choice of 74 given in (15) was obtained by
adjusting the original choice in (16) since adopting the latter may not satisfy
(10) automatically. Also, note that the choice in (14) may be negative or
zero at some iterative point and may also not always satisfy (10). Lastly,
the iteration matrices of the directions in [2, 22, 56] were not shown to be

well-conditioned, which could improve the efficiency of the methods.
The article’s objectives are listed as follows:

o To derive an efficient DK-type scheme for the constrained problem (3)

with an approximation of 7, obtained without any adjustments.

e To present a DK-type scheme for which the inequality (10) necessary

in obtaining convergence results of methods for the problem (3) holds.

e To derive a method in which the symmetric form of its direction matrix

is well-conditioned.

e To present proof of the scheme’s convergence under mild conditions.

To apply the scheme to image deblurring problems.

The remaining sections of the paper are outlined as follows: Section 2 deals
with motivation and derivation of the proposed algorithm. Section 3 dis-

cusses the results of the convergence of the scheme. In Section 4, results of
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experiments carried out for problem (3) and image deblurring are discussed,

while conclusions are made in Section 5.

2 Inspiration and Algorithm

We first recall that the most prominent quasi-Newton scheme developed by
the researchers Broyden [15], Fletcher [26], Goldfarb [30], and Shanno [53]
popularly known as BFGS, where By, is usually an n x n symmetric positive-
definite matrix is formulated as

BispstBe  yryl

Bit1 = By —
sT Bysy, YLk

, sk €R" yp e R™ (17)

From the Woodbury formula presented in [55] for the inverse of the sum of

an invertible matrix and a rank-k correction, the inverse of (17) is given as

Hy 1 = Hy—

skyi Hy, +Hkyk5£+<1 i kakyk) SkSE sk €R", yp €R"

Sfyk s{yk s{yk
To avoid computing and storing the n X n matrix Hj at each iteration, it
is replaced by the identity matrix I, and the so called memoryless update is

obtained, that is,

T T 2 T

S + Y S SkS

Hypq = 1— 2206 965 +<1+ ||ka|| > Fk sy R,y € R (18)
SLYe /) S Yk

Sk Yk
As mentioned earlier, the BFGS method implemented with (17) is the most
popular and effective quasi-Newton scheme available. The method is guar-
anteed to satisfy the descent condition (9), since the update (17) satisfies
the much required quasi-Newton condition. Other attributes of the BFGS
scheme include its correction of eigenvalues mechanism [43]. However, the
BFGS’s efficiency depends strongly on the structure of eigenvalues of (17) [8].
Powell [52] and Byrd et al. [16] noted that the update (17) better corrects its
small eigenvalues than large ones. Also, numerical experiments conducted by
Gill and Leonard [29] showed that it is possible for the update (17) to require
many iterations or gradient and function evaluations for some problems. The
authors in [29] showed that these shortcomings of the BFGS method may re-

sult from poor initial Hessian approximations or its ill-conditioning along the
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iterations. To overcome these shortfalls of the scheme, a number of scaling
techniques have been applied to the BFGS update matrix in (17). This in-
cludes the modification by Biggs [13], where the update’s third term in (17)

was scaled by a positive parameter ~; to yield

By.sysi By, Yyl
Biy1 = B, — — =" ks, €R", oy €R™
s;. Brsy Y Sk

In Oren and Luenberger [45], the first and second terms of the matrix in (17)

were scaled and the resulting modification becomes

Sk € Rn7 Yr € Rn,

B B I
Bror = b [Bk  Bisisy, k:| L UkY

T T,
s;, Brsk Yi, Sk

where J§; > 0. Motivated by the strategy of changing structure of eigenvalues
[43], Andrei [10] provided a two-parameter scaling BFGS method, where

Bj41 is given by

By.syst By, Yy
Bk+1=5k[3k—T k Ko, sp €R™, oy, € R,
s;, Brsk Yi Sk

with v, > 0 and J§; > 0. In this update, J; is obtained such that eigenvalues
of By are clustered, while 7, is computed to have a shift of the eigenval-
ues to the left. The latter procedure produces a better distribution of the
eigenvalues. In other developments, the update matrix defined by (18) has
also been modified in order to better distribute the eigenvalues and improve
performance of the scheme. To that end, the following self scaled memoryless

approximation to the Hessian inverse (18) was presented in [44]

T T 2 T

Hk+1 = Qk:]—ak kY ,;_ LT + (1 + ek ||Z¥C|| ) S;Sk 3 Sk € Rnu Yk € R”Lu
Sk Yk SLYk /) SpYk

(19)

with 6y known as scaling parameter. In line with (19), Babaie-Kafaki [12]

proposed the following extension:

T T 2 T
Sk + YrS k SkS
Hk+1=9kf—9k7yk;p Y k+(1+%”yT” ) 7, sy €R", y, €R",
SL Yk SpYk /) Si Yk 20)

where v, and 6 represents positive parameters. Analysis of the scheme

obtained with (20) proves that it satisfies (10) and its condition number
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remains in an improved condition. A modification of (18) was proposed in

[11], namely,

1 Hyyrst + spyl H ) TH spsT
Hypq = RYkSk T SkYp 12k | (Ok | Yk kYK ) SkSk 7

— |H, —
n styk Vi sty ) shuw

where 0, and ~y; are parameters determined by employing Byrd and Nocedal’s
measure function in [17]. Now, as stated by Andrei [8], to achieve faster

convergence of linear CG methods, the following approaches are employed:

o Clustering eigenvalues of a search direction matrix about a point [9, 60]

or about several points [37] in its spectrum.
o Preconditioning of a search direction matrix [35].

Before we proceed to formulate our scheme, we first give the following addi-

tional assumptions on the mapping F’:

Assumption 1. The solution set C of (3) is not empty, that is, there exists

T € C satisfying (3).

Assumption 2. F' is Lipschitz continuous, that is,

|F(z) — F(y)|| < Lz —yl|l, forallz,yeC, L a positive constant.
(21)
Now, motivated by the shortcomings of the DK-type methods in [2, 22, 56],
the scaled double parameter BFGS approximation to the inverse Hessian (20)
as well as the need to explore other more effective approximations of the DK
parameter, that ensures (10) holds without any adjustment, we propose the

following DK-type search direction:

196 sEge ) Fryase
dy1 = ’YFk+1+7ﬂNHSdk<Tk +y— - —dy, do=—Fp,
g s Uk Isell? ) df gk
(22)
where "
BTz
pas = ZhVk g1 (23)
dk Yk
with
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Ue =Yk + 78K,y = F(wp) — F(zg), r>0, (24)

and

w = o + Vpdi, Sk = Wk — T
From (24) and (2), we have

Sfyk
I

r r

dly, = + —|Iskll* > —|lsk]|*> > 0
Lo Jlsel = -l >0,
from which we obtain

sk = sk Yk + rllsill* = rllsil* > 0. (25)

Note that the search direction defined by (22) can be written in compact

form as
k41 = — My 1 Frq1,
where
=T T — 12 T T
kUL Sk S [Tk sk}, Sk Sk
My =9I —y == + T2+ ———E 1y : (26)
Sk St Uk (st k)? sk

To proceed, we add rank-one update to (26) to obtain its symmetric form as

=T = T T = 1124, T T
Y SkYg Yk Sk SkSk 951 s1:85 SkSk
Mgy = =Y - =V + T TV s - (27)
Sk SiUk SpUk (5% 9r)? skl
Better still, we can re-write (27) as
Mi1 = 7IQp 41, (28)
in which
Quir =1 — Skglz . ﬂksf . Sksg Hgk”28ksg _ Sksg (29)
T U €8 L B
We can further express (29) as the rank-two update
=T
SkYj,
=7—
Qr+1 To
N (ellskll® (sEgr) sk = sk ll® (L 1) gx +skll*gwll® sk — ’Y(Sfﬂk)%k)sg,go)
{

Yswll?(s§ 7x)?

Now, since from (25) sfgr > 0, then s # 0 and g # 0. Suppose V =
span{sy,yr}. Then dim(V) < 2 and dim(V+) > n — 2, with V! being
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orthogonal complement of V. So, there exists a set of mutually orthogonal

vectors {&}}1'-2 C V* such that
sieh=glei =0, i=1,....n—2,
for which we obtain
Myy1&f, = Myl & =€, i=1,...,n—2.

Therefore, My 1 contains n —2 eigenvalues equal to v each. We now find the

remaining two eigenvalues, which we label as, )\z and A; .

By applying the fundamental formula of algebra (see [55, inequality

(1.2.70)]) for determinant of a rank-two update, namely,

det(I+vvf +v3vl) = (14+vlve) 1+vTvy) = (0T va) (v v3),  v1,v9,v3,v4 € R,

and setting v; = f%, Vo = Yk,
Ulskll* (st gr) > sk =75k 1* (sk 96 Tu+ |5k |21 T0 11> sk = (s Tx) > s8)
vy = < and v4 = s
3 skl (sFgr)? ’ G
we get
| s "
et(Qr+1) = Th— 75— — (31)
VSi Yk

Note that the matrix M}, as defined in (28) is the product of two matrices,
and
det(~I) =~

Combining this result with (31), we obtain

_ s 112
det(i) =" (md2h 1)
VS Yk
= 7"72./\+/\7,

which yields

2 2
R 0 W T
VSk Yk k

Since trace of the symmetric matrix My ; is the summation of all its eigen-

values, we have
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v (EAR [PAREAS
tr(Mgy1) =ny — 2y 4+ Tp—— + - —
S1 Y (5%91)%)

=g+ A+
—_———

(n-2) times
which further yields

Isel® | Naelllsel®
51 Yk (s£9K)?

M+ =7 (32)

From (32) and (31), the remaining eigenvalues of M}, are obtained as so-

lution of the following quadratic polynomial:

sell® gl sl Iskll> o
/\2<Tk — + - -7 ) Ay — .
stk (st ur)? St Uk

i  lsell® _ lsellgell® 4+ -
Consequently, by setting @) = szgk_ s e = s&igjﬁ’ Ap and A\, are deter-
mined by
AE = T ®r + v — v £/ (TePs + Y — )2 — 4(v7Pr — 72)

2 )

or more precisely,

Te®r + ik — 7 £ /(P + Yk — 37)% + 492 — 492

+
Ay = >

(33)

Clearly, by the Cauchy-Schwarz inequality in (33), A > 0. Also, A, > 0

whenever

(34)

Now, we proceed to obtain an approximation of 73 such that (34) is satisfied
making Mj4, a positive-definite matrix. To achieve this, we employ the
clustering of eigenvalues technique. Suppose that /\z and A, have the same
values as the first (n — 2) eigenvalues of My 1, namely, A} = A\, = ~. Then

from determinant of My obtained in (31), we have

Isel? |

T — -
VSk Yk

which implies that

Y5k Uk

=2
N PRTER

(35)
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13 An efficient Dai-Kou-type method with image de-blurring application

which clearly satisfies (34) and ensures that all the eigenvalues of My, | are

clustered.

Lemma 1. The search direction sequence {dj} obtained by (22) with (23),
(24) and v € (0, 1] satisfy the inequality
i1 Fir1 < —cl| Frqa |, (36)

where ¢ = ?ﬂ%.

Proof. From (22), (35), and by setting I'y, = s} g for convenience, we have

T 2 FkTJrlgk T
A1 Fit1 = =V Frea [|” + T Friisk
gk |I? I (Fl;f-s-lsk)z
(T’C” re sl) T T
Fy a0k Tr gl Base)?

- _ F 2 k+1 FT _ k+1

YN e ll* + T, k+15k 7||sk||2 + T, T,

FL i x|
< Bl + v EE AW
k k
_ 7Fg+1ngkFl?+13k - ’YFiHFk+1”2 - 7||§k||2(Fg+13k)2
Iy

Fi'le+1H2+ H— ||2(FT s )2_ F2||F ||2_ H— ||2(FT s )2
< v 4 YNYk E+15k YL k41 YNYk k+15k

(| Frera?
= Bl

1

=1 (1= 1) 1Fal?

3y
= —Z||Fl~c+1||2-

We arrived at the last inequality by employing the identity
2¢fca < lea® + [leal?, cr,e0 €RY,

with Cc1 =
(36) holds. O

T'y F; _ . 3
%, cy = \@(F,CTHsk)yk. Hence, setting ¢ = =, we see that

Next, we introduce the projection operator defined by

Pe(z) = arg min||z —yl|:y € C, forall z € R",

Iran. J. Numer. Anal. Optim., Vol. 7?7, No. 7?7, 7?7 pp 77



Ahmed, Waziri, Murtala, Halilu, Abdullahi and Musa 14
with the properties:
[Pe(z) = Pe)ll < llz—yll, forall z,y € R",
and
[Pe(z) —yll < llz —yll, forallyeCl, (37)
where C is as defined earlier.

Algorithm 1

Data: Select € >0, 29 €C, 8 €(0,1),5 € (0,1),0< ¢ < 2,7 >0, € (0,1].
Initialization: Set kK = 0 and dy = —Fp.

1: Obtain F(xy) and confirm if ||[F'(xy)| < e. End if yes, otherwise goto 2.

2: Determine wy = zy + Yxdg, where ¥ = 8" with m being the smallest

nonnegative integer for which
—F(zy + 8" di) " d > 68™ |y |? (38)
holds.
3: If wg € C and || F(wg)]| < ¢, end, otherwise, compute
Tp+1 = Pe [zr — ¢ppF(wy)], where (39)

F(wg)" (xr — wy)
([ £ (wy) |2

Pr =

4: Obtain di11 by (22) with (23), (24), and (35).
5: Set k = k + 1 and proceed to 1.

3 Convergence report

First, we show that 75, obtained in (35) is bounded.

From (21), (25), (35) and the Cauchy Schwarz inequality, we have
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15 An efficient Dai-Kou-type method with image de-blurring application

2L||sx|? (41)

Lemma 2. The sequence {dj41} of directions obtained by Algorithm 1 sat-
isty

2vL ~vL?
dmﬁlsaﬂ|s(v++-+ )nmgm (42)

where v € (0,1], > 0, and L > 0.

Proof. The first inequality follows from the Cauchy—Schwarz inequality and

(22). For k = 0 in (22), we have that dy = —Fp, which indicates that
lldoll = ||Eo||- Now, we show that the inequality holds for £ > 1. From the
Cauchy—Schwarz inequality, (21), (22), (25), and (41), we obtain
F Yk 2 sty FT Sk
ldirall = || =vFisr + 75k — (Tk +7Hz¥€” k) T
kyk Sk Yk [l sl Sk Yk
([ Ex 1[Gl s ||1[7k+1||||5k||2
< EFrall +7 T + |7l
S Yk ky
+7||Fk+1||||17k||2||8k||2 +7||Fk+1||||8kH [l
CA7% [ERRETA7
Ll Frrallllsell® | (B llllsel® L2 Ferallllse]*
<Y Frqall + +m +
rllskll® skl r2[sk*
L||Fy || llskl* (43)
+ T
rlls|

L||F F L?||F L||F
P e L eV QL 1 e 1 SV e A1 81

r 72 r
L|| F; F; L3||F,
el | WPl 2P

= Y[ Fell + 2 5
T r
~L ~L
@++—Mﬂmu
which proves the second inequality of (42). O

Next, we prove that the line search (38) is well defined and also terminates

after finite iterations:
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Lemma 3. Let Assumption 2 hold, and suppose that Algorithm 1 is not
terminated in step 1. Then there exists a nonnegative integer my such that

(38) is satisfied. In addition, the step-size 9;, obtained in (38) satisfies

3B

Y > :=min< 1,
AL +0) (v+ 2L 424 2R

i

Proof. To show the first part, we assume that there exists ky > 0 such that
(38) is not true in the k§" iterate for each value of m. So, for all m > 0, we
have

—F(xg, + B dry ) dyy < 58™||dp, || (45)

Since F' is continuous on R™, applying limit to (45) as m grows to infinity,
yields
F(ay,)"dy, >0,

which is contradicted by (36), namely,
3y
F(wk())Tdko < _I||F(xko>”2

Thus, we proved the first part.

Now, suppose that the algorithm is terminated at xzy, then F(xy) = 0 or
F(wy) = 0. This indicates the solution to be xj, otherwise xj is not a
solution. Then, from (36) dj, # 0. Now, from (38) we see that if Jj, # 1, then
95, = B9}, will not satisfy (38), that is,

—F(ﬂ)k)Tdk < 57§k”dk‘|27

where, Wy, = xj + Opdi. By Assumption 2 and (36), we have
3
TIE? < —Fld
= (F(ﬂ)k) — Fk)Tdk — F(’(I)k)Tdk
< Lkl di|1* + 60| di||®
= B710k(L + 6)|di]|*.

Hence, we obtain
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398 [1F:]?
4(L +6) [|dy?

_ 3B |1
CAEE (g a8 Ry
3B
A(L + 6) (7+27L +%+ﬁ)27

Vg >

T r2

where (43) was used to obtain the second inequality. O

Lemma 4. Let Assumptions 1, and 2 hold. Then for a solution Z of (3) in C,

the sequence {||zx — Z||} is convergent implying that {x} is bounded. Also
klgilo Iglldl] = 0. (46)
Proof. From (38) and definition of wy, we have
(zk — wi) T F(we) > 60%]|del|*. (47)
By (2) and for all # € C, we have
(z1, — 2)T F(wy) = (x5, — wi) " F(wg) + (wy — 2)"F(wy)

_|_
> (1, — wi) T F(wy) + (v, — 2)TF(2) (48)

= (:L‘k — wk)TF(wk).
From (37), (39), (40), (47) and (48), we have

[zk41 = Z|* = [Pelzr — dprF (wy)] — 2|
< ek — ¢pp F(wi) — Z||?
= |[(zx — T) — pprF (wy,)||”
= ||lzr — 2)1* = 20p F(wi) " (xx — Z) + ¢° || F (i) ||
< ok = 2(1* — 2¢pF (wi) " (zx — wi) + ¢ o | F (wi)||*
(F(wr)" (2, — wy))?

_ _ 72 _
e Pl w

which yields
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0 <[lzgpr =2l < o — 2| < flog—1 =2l < - < lzo — 2.

So, {||zx — Z||} is non-increasing and bounded, which indicates that {z;} is
bounded also. This with the fact that F' is Lipschitz continuous implies that

a constant my exists for all £ > 0 such that,
el < ma,  [[F(ze)]] < ma. (50)
Also, by (43) and (50) a constant mg exists for which

oL m ~AL?
el < (7+Z+m+”> mi.

2vL
r

m L?
+ r + ’YTZ

Setting mgy = (’y +
Furthermore, from (50), monotonicity of F, the Cauchy—Schwarz inequality,
and (47), we have

) m1, we obtain that dj is bounded.

Fl (xp —wi) _ F(wp)” (z — wp)

lze —well = [Jok — wil]

my 2 || Fill = > Ol|zp—wg|| = dljwy]|—0ma,

which consequently implies that

my + dmy

<
[lw]| < 5

mi+dmy
4

By setting mg3 := , we establish boundedness of {wy}. Hence, from

continuity of F', a constant m exists such that
|1 F(wg)|| <m, forall k> 0.

Combining this with (49), we obtain
2 4 m? 2 2
0% Jy, — wi]|” < m(ﬂxk =77 = kg1 — ). (51)
Now, following the convergence of {||z; — Z||} and boundedness of {F(wg)},

we take limit as k approaches infinity in (51) to obtain
62 lim 9%||dx||* <0,
k — oo

which indicates that

lim 9y|di = 0.
k — oo
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O

Theorem 1. Suppose that Assumptions 1 and 2 hold and that {z\} is ob-
tained by Algorithm 2.1. Then, {x} converges to a solution of (3).

Proof. Firstly, from (44) and (46), we have that 0 < 9||dk|| < Yg||dk]| — 0,
which consequently indicates that limy _, « ||dg|| = 0. This together with (42)
yields
3
< —||Fell £ ||d 0
0=l kIl < [ldkll =0,

which indicates that limy , o || Fx|| = 0. Now, inequality (46) and the bound-
edness of the sequence {z;} indicates the existence of a cluster point of {xy}
say & C C, where C denotes solution set of F. Let K C {0,1,2,...} be an

infinite index set for which
im axp=7%¢€C.
k — oco,ke
Since F' is continuous, we have that

0= 1 Fi|| = li Fi|| = ||F(z
Jim [F =l [B = PG,

which indicates that Z is a solution of (3). Also, since {||xx—Z||} is convergent,

setting T = T yields

li —-z|= U —z| =0.
o Ml =l =t e = 2]
which, therefore, indicates that {z)} converges to z € C. O

4 Results of numerical experiments

To test effectiveness of Algorithm 1, two experiments are conducted and

discussed in the next two subsections.
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4.1 First experiment: Convex constrained nonlinear

monotone systems

For these experiments, the performance of Algorithm 1 is tested against four
recent methods for solving the constrained problem (3), namely, ACGD [22],
MDKM [56], SCRME [28], and SDYCG [7]. Codes for the algorithms, which
are available at https://github.com/hungugida/hungugida/blob/main/
MATLABcodeforconstrainedsystem.zip was written in MATLAB R2014a
and executed using a system configured as (2.30ghz cpu, 4¢b RAM). The
stoppage criteria for all runs are ||F(xy)|| < 10710 or ||F(wyg)| < 1071 or
iterations exceed 1000. We set parameters of (38) for Algorithm 1 as 8 = 0.6,
6 = 0.0001, v = 0.27, ¢ = 1.8, r = 0.0001. The exact values of the parame-

ters used in the articles for each of the four schemes were also applied here.

The underlisted test examples with dimensions 5000, 10000, and 50000 were
used to test Algorithm 1, ACGD, MDKM, SCRME and SDYCG, where F is

given as: F = (fi(x), fo(x),. .., fulz))".

Example 1. [38] with C = R"} added to yield

filz) =2x; —sinz;, i=1,2,...,n.

Example 2. [40].

fi(z) = z1 —exp (cos (%))7

fi(z) ==z —exp (cos(m)), i=2,3,...,n—1,

n+1
fn(z) = 20y — xp (cos (I";l:;z")),
with C = R7.

Example 3. [38]
filx) =2x; —sin|z,|, i=1,2,...,n,

where C = R%.

Example 4. This is a modified version of the example in [39] with C = R}
added to yield

filw) = esnen — 1,

filx) =eSm% 4y — 1, i=2,...,n.
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Example 5. [64] with C = R"} added to yield
fi(x) =2z +sina; — 1,

filx) =2x;—1 + 2x; + 2sinz; — 1,

fulz) =2z, +sinz, —1, i=2,...,n—1.

Example 6. This is a modification of test example 4
fi(x) = 3z; +esin® — 1,

filz) =3x; + 0% —1 i=2....,n,

with C = R™.

Example 7. This is a modification of test example 5
fi(x) = 3z1 + coszy — 1,

fix) =3x;—1 + 3w; + cosz; — 1,

fulx) =3xy +cosa, —1, i=2,...,n—1,

with C =R’

Example 8. Modification of test example 2
fi(z) =21 — elcos =572)
Ti_1t+zitTigq
filz) = 27 — e\"” )7 1=2,3,...,m—1,
Tp_1fTn
fn(z'f) —z,—c cos —— —— )

where C = R}

The following initial guesses were used:

T T
1_ 1 \NT 2_ (13 [(=1)"—2] 3 _ —2[(=1)"-2]
xo—(1,§7...,g) 7.’,[:0—(5,5,...7— 3 ,.’170— 1,3, y — 3 y
T
4 _ (n=1 n=2 T 5_ (13 —[(=1)"=2] 6_ (1 2 T
I'O*(nv na"'vo) 71'0*(Za1a' ’ A y Lo= n'n’ 71) .
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Figure 1: Dolan and More profile for number of iterations
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Figure 3: Dolan and More profile for CPU time

We presented results of the first experiment in Tables 1, 2, 3 and 4, where
the labels PN, VAR, SP, NIT, FE, PT, and Norm represent number of test
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27 An efficient Dai-Kou-type method with image de-blurring application

example, Dimension, Initial guess, number of iterations, function evaluations,
CPU time, and norm achieved at approximate solution. Also, * * % indicates
no solution of (3) was obtained in 1000 iterations. It is clear from the four
tables that Algorithm 1 outperformed the other methods in all three metrics
considered. These results are further analyzed in Figures 1, 2, and 3, which
are plotted by utilizing Dolan and More [23] performance profile. In Figure
1, we see that about 83% of the test examples were solved by Algorithm 1
with less iterations, while ACGD, MDKM, SRCME and SDYCG solved 2%,
8%, 0% and 32%. Furthermore, these values include instances where some
of the algorithms solved 24% of the text examples with the same minimum
number of iterations. Also, from Figure 2, we see that Algorithm 1 solved
77% of the test examples with minimum function evaluations compared to
ACGD, MDKM, SRCME and SDYCG that recorded 1%, 5%, 16%, and 6%.
Here also, some of the algorithms solved 13% of the test examples with the
same minimum function evaluations. Next, we observed from Figure 3 that
Algorithm 1 solved 77.78% of the test examples with the least CPU time
compared to ACGD, MDKM, SRCME and SDYCG that recorded 2.78%,
6.25%, 3.47%, and 9.72%. In addition, the top curve in all three figures
corresponds to that of Algorithm 1, which clearly shows that the scheme is
the most effective. Moreover, the average residual for the five algorithms
as computed from Tables 1, 2, 3, and 4 are given as follows: Algorithm
1 (3.09 x 107*), ACGD (3.36 x 10~!'), MDKM (4.56 x 10~11), SRCME
(7.58 x 10711), and SDYCG (3.90 x 10719). This, together with the other
metrics analyzed, indicates that Algorithm 1 is more efficient for solving (3)

than the other schemes.

4.2 Experiment 2: Image De-blurring

We use this subsection to demonstrate the application of Algorithm 1 in
deblurring images contaminated by noise. To achieve the desired goal, we
compare our scheme with two effective schemes in the literature, namely,
HTTCGP [63] and MFRM [1].
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As a background for image de-blurring, we briefly discuss sparse signal re-
covery, which deals with obtaining sparse solutions for the under-determined
linear system Ha = h, where H € RF*"(k < n) is a sampled matrix, z a
sparse signal and h € R* denotes an observed value. In recovering x from

Hx — h, the following ¢; norm regularization problem is solved:
) 1
min f(2) := 5 [|h = Ha|l3 + |z, (52)

with ¢ > 0. Careful observation reveals (52) to be a form of the problem

represented in (4).

In [24], it was shown that to solve (52), it is first expressed as a convex

quadratic model, where x € R™ is written as

r=v—v, v>0, v>0, v,veR"
with v; = (2;)4,v = (—x;)4, foralli=1,2,...,n and (-); = max{0,z}.
Using this expression, we have ||z||; = ELv+ETv where E,, = (1,1,...,1)T €

R™. Thus, (52) becomes
1
min {2||H(U —v) = hl3+(Efv+ EXv)jv > 0,0 > O} . (53)
Now, if we define
v —w HIH —HTH
w = ) = (Eoy, + , W= HTha G= ’
(,,) Xk (cu) (—HTH HT’H>

then (53) becomes
1
min{QwTGw+XTw w > O} . (54)

Moreover, since G is a positive semi-definite matrix, (54) is a convex quadratic
problem [61]. Also, based on the optimality condition mentioned earlier, w

in (54) is a minimizer of (54) if it solves the system of equations
F(w) = min{w, Gw + x} = 0.

Finally, Xiao [61] and Pang [49], showed that F' satisfies (2) and (21). Hence,
(52) can be represented as the problem (3), and solved using Algorithm 1.
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29 An efficient Dai-Kou-type method with image de-blurring application

Next, we apply Algorithm 1 to de-blur three images, which includes Ein-
stein.tif (M1) (512x512), Cameraman.png (M2) (512x512) and Barbara.png
(M3) (512 x 512). In the experiments, the signal-to-noise ratio (SNR)

]|

vk =20 x o (27

and the peak to signal ratio (PSNR)

2
PSNR =10 x logy ﬁ,

were used to calculate restoration quality, with V being the maximum abso-

lute value of recovery and (MSE) is defined by
1
MSE =~z - 2|, (55)

where z is the signal recovered and ¥ the actual sparse one. In addition, we
use MSE as defined in (55) and structured similarity index (SSIM), which
describes the similarity between the original and reconstructed or recovered
images to measure numerical efficiency of the algorithms. Performance of
Algorithm 1 is compared with that of HTTCGP [63] and MFRM [1], which
are also effective for de-blurring images, using the same parameter values
in the respective papers. Parameters for Algorithm 1 are set as 8 = 0.9,
6 = 0.001, »r = 0.01 and v = 0.25, while ¢ retains the value in the first

experiment.
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Blurred Algorithm 1

]

HTTCGP MFRM
. |]

Original

Blurred

Figure 4: Recovered images under Gaussian blur kernel with standard deviation 0.5

Algorithm 1 HTTCGP

Blurred

Figure 5: Recovered images under Gaussian blur kernel with standard deviation 0.75
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Original

Blurred Algorithm 1 HTTCGP
‘ -l -

ETH

Figure 6: Recovered images under Gaussian blur kernel with standard deviation 1.25

Generally, the restored images from blurry ones by an algorithm with
larger values of SNR, PSNR, and SSIM appear much closer to the original
ones than algorithms with lower values of the metrics. Also, algorithms with
a lower value of MSE yield better quality of restored images than algorithms
with larger values of the metrics. In our experiments, Algorithm 1 yields
the best values of the aforementioned performance metrics (see underlined
values in Table 5). Also, the original, blurry, and recovered images by the
three algorithms are presented in Figures 4, 5, and 6. Furthermore, a number
of Gaussian blur kernels were used to test robustness of the algorithms (see
Table 5). In Table 5, the test problem solved with standard deviation of the
Gaussian blur kernel ¢ is given by Mi(o). Therefore, based on this discussion,

we conclude that Algorithm 1 is effective for image recovery problems.

5 Conclusion

In this work, an adaptive DK method was considered for nonlinear monotone

systems and image recovery problems. The novelty of the work is that value

Iran. J. Numer. Anal. Optim., Vol. 7?7, No. 7?7, 7?7 pp 77



33 An efficient Dai-Kou-type method with image de-blurring application

of the parameter of the scheme was obtained such that the eigenvalues of the
symmetric form of its iteration matrix are clustered at a point. This strat-
egy helps to ensure that the scheme’s directions automatically possess the
property for global convergence without any adjustment made to the derived
value of the DK parameter. The method can also be used to solve nonsmooth
nonlinear problems. Also, analysis of the method’s convergence proved that
it converges globally, while its effectiveness was shown through experiments
with four other effective methods for solving constrained nonlinear problems
and image deblurring. As future research, we intend to apply the proposed

method to solve signal reconstruction and motion control problems.
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