- Adavi, Z. (2013). Simulating the effects of climate change on potato production in Fereydoun area of Isfahan city and providing adaptation solutions based on modeling approaches. Faculty of Agriculture, Shahrekord University, Shahrekord, Iran. https://doi.org/10.29252/jcpp.9.2.79
- Agricultural statistics, crop year 2015-2016, first volume, crops, Ministry of Jihad Agriculture, Information and Communication Technology Center.
- Agovino, M., Casaccia, M., Ciommi, M., Ferrara, M., & Marchesano, K. (2018). Agriculture, climate change and sustainability: the case of EU-28. Ecol. Indic 105, 525–543. https://doi.org/10.1016/j.ecolind.2018.04.064
- Arora, V.K., Scinocca, J.F., Boer, G.J., Christian, J.R., Denman, K.L., Flato, G.M., Kharin, V.V., Lee, W.G., & Merryfield, W.J. (2011). Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophysical Research Letters, 38(5), 1-6. https://doi.org/10.1029/2010gl046270
- Ashofteh, F. (2012). Climate change impact on the crop water requirement using HadCM3 model in Aidoghmoush irrigation network. Iranian Journal of Irrigation and Drainage, 3(6),142-151. (In Persian with English abstract)
- Ashraf, B. (2011). Estimating the water requirement of sugar beet and wheat in the period 2011-2030 using simulated data by the LARS-WG5 model (case study: Razavi Khorasan province), Faculty of Agriculture, Ferdowsi University of Mashhad, Iran. https://doi.org/10.52547/fsct.19.124.257
- Boogaard, H.L., Van Diepen, C.A., Rotter, R.P., Cabrera, J.C.M.A., & Van Laar, H.H. (1998). WOFOST 7.1 User guide for the WOFOST 7.1 Crop Growth Simulation Model 161 and WOFOST Control Center 1.5, Technical Document 52. DLO Winand Staring Center. Wageningen, The Netherlands. https://doi.org/10.32614/cran.package.rwofost
- Bradley, N.L., Leopold, A.C., Ross, J., & Huffaker, W. (1999). Phenological changes reflect climate change in Wisconsin: Proceedings of the National Academy of Sciences of the United States of America, 96, 9701-9704. https://doi.org/10.1073/pnas.96.17.9701
- Carson, D.J. (1999). Climate modelling: achievements and prospects: Quarterly Journal of Royal Meteorological Society 125, 1-28. https://doi.org/10.1256/smsqj.55301
- Davis, K.F., Gephart, J.A., Emery, K.A., Leach, A.M., Galloway, J.N., & D’Odorico, P. (2016). Meeting future food demand with current agricultural resources: Glob. Environment Change, 39, 125–132. https://doi.org/10.1016/ j.gloenvcha.2016.05.004
- Delghandi, M., Massah-Bovani, A.R., Ajorlou, M.J., Broomandnasab, S., & Andarzian, B. (2014). Risk assessment of climate change impacts on production and phenology of wheat (case study: Ahvaz Region). Journal of Water and Irrigation Management, 4, 161-175. )In Persian with English abstract).
- Devaux, A., Goffart, J., Petsakos, A., Kromann, P., Gatto, M., Okello, J., Suarez, V., & Hareau, G. (2020). Global food security, contributions from sustainable potato agrifood systems. In: Campos, H., Ortiz, O. (Eds.), The Potato Crop: Its Agricultural, Nutritional and Social Contribution to Humankind. Springer International Publishing, Cham, 3–35. https://doi.org/10.1007/978-3-030-28683-5_1
- Fallah Ghalheri, GH.A. (2014). Principles and Fundamentals of Meteorology. Mashhad, Climatology Research Institute.
- Ghorbani, K.H., Zakerinia, M., & Hezarjaribi, A. (2013). The effect of climate change on water requirement of soybean in Gorgan. Journal of Agricultural Meteorology, 2(1), 60-72. (In Persian with English abstract)
- Godfray, H.C.J., Beddington, J.R., Crute, I.R., Haddad, L., Lawrence, D., Muir, JF., Pretty, J., Robinson, S., Thomas, SM., & Toulmin, C. (2010). Food security: the Challenge of Feeding 9 Billion People. Science, 80(327), 812–818. https://doi.org/10.1126/science.1185383
- González-Jiménez, J., Andersson, B., Wiik, L., & Zhan, J. (2023). Modelling potato yield losses caused by Phytophthora infestans: Aspects of disease growth rate, infection time and temperature under climate change, Field Crops Research, 299, 108977. https://doi.org/10.1016/j.fcr.2023.108977
- Jafarpour, S. (2016). Investigating the effects of climate change on water demand and yield of major crops in Ardabil plain. Master Thesis, Faculty of Agriculture and Natural Resources, Mohaghegh Ardabili University of Ardabil, Iran. https://doi.org/10.52547/jwmr.13.26.1
- Jianzhao, T., Huizi, B., Shenghai, Z., Dengpan, X., Zheng, T., De, L.L., Bin, W., & Puyu, F. (2024). Adaptations of potato production to future climate change by optimizing planting date, irrigation and fertilizer in the Agro-Pastoral Ecotone of Chin. Climate Risk Management, 44, 100604. https://doi.org/10.1016/j.crm.2024.100604
- Jones, J.W., Antle, J.M., Basso, B., Boote, K.J., Conant, R.T., Foster, I., Godfray, HCJ., Herrero, M., Howitt, RE., Janssen, S., Keating, BA., Munoz-Carpena, R., Porter, CH., Rosenzweig, C., & Wheeler, TR. (2017). Brief history of agricultural systems modeling. Agriculture Systematic, 155, 240–254. https://doi.org/1016/j.agsy. 2016.05.014
- Lobell, D.B., & Field, C.B. (2007). Global scale climate-crop yield relationships and the impacts of recent warming. Environmental Research Letters, 2(1), 1-7. https://doi.org/10.1088/1748-9326/2/1/014002
- Moradi, R., Koocheki, A., & Nassiri Mahallati, M. (2015). Effect of climate change on maize production and shifting of planting date as adaptation strategy in Mashhad. Journal of Agricultural Science and Sustainable Production, 23(4), 111-130. (In Persian with English abstract). https://doi.org/10.1007/s11027-012-9410-6
- Naresh Kumar, S., Govindakrishnan, P., Swarooparani, D., Nitin, C., Surabhi, J., & Aggarwal, P. (2015). Assessment of impact of climate change on potato and potential adaptation gains in the Indo-Gangetic Plains of India. International Journal of Plant Production, 9, 151-170.
- Nazari, S.H., Taheriun, M., & Ahmadi, A. (2015). Investigation of the effects of climate change on temperature and precipitation in the catchment area of Mahabad Dam (using CanESM2 model), the second national conference on architecture. New Urban Development, National Center of Iranian Architects, Urmia, 5 October 2015.
- Pradel, W., Gatto, M., Hareau, G., Pandey, S.K., & Bhardway, V. (2019). Adoption of potato varieties and their role for climate change adaptation in India. Climate Risk Management, 23, 114-123, https://doi.org/10. 1016/j.crm.2019.01.001
- Pulatov, B., Linderson, M., Hall, K., & Jönsson, AM. (2015). Modeling climate change impact on potato crop phenology, and risk of frost damage and heat stress in northern Europe. Agricultural and Forest Meteorology, 214(215), 281-292. https://doi.org/10.1016/j.agrformet.2015.08.266
- Rezai Zaman, M., & Afrozi, A. (2015). Evaluation of the effects of climate change on crop yield and presenting a strategy for changing the cultivation pattern (case study: Simine River basin). Journal of Water and Soil Resources Conservation, 4, 51-64. (In Persian with English abstract).
- Saadi, S., Todorovic, M., Tanasijevic, L., Pereira, LS., Pizzigalli, C., & Lionello, P. (2014). Climate change and Mediterranean agriculture: Impacts on winter wheat and tomato crop evapotranspiration, irrigation requirements and yield. Agricultural Water Management, 147, 103-115. https://doi.org/10.1016/j.agwat.2014.05.008
- Sahrish, N., Shakeel, A., Ghulam, A., Zartash, F., Sajjad, H., Mukhtar, A., Muhammad, A. K., Ahmad, K., Shah, F., Wajid, N., Sezai, E., Carol Jo, W., & Gerrit, H. (2022). Modeling the impact of climate warming on potato phenology. European Journal of Agronomy, 132, https://doi.org/10.1016/j.eja.2021.126404
- Savary, S., Willocquet, L., Pethybridge, SJ., Esker, P., McRoberts, N., & Nelson, A. (2019). The global burden of pathogens and pests on major food crops. Nature Ecology & Evolution, 3, 430–439. https://doi.org/10.1038/s41559-018-0793-y
- Sayari, N. (2011). Prediction of changes in temperature and precipitation under global warming and its impact on the water needs of agricultural plants in the Kashf Roud basin, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran.
- Spitters, C.J.T., Toussaint, H.A.J.M., & Goudriaan, J. (1990). Separating the diffuse and direct component of global radiation and its implications for modelling canopy photosynthesis. Part I: Components of incoming radiation. Agricultural andForest Meteorologym 38, 217-229. https://doi.org/10.1016/0168-1923(86)90060-2
- Tanasijevic, L., Todorovic, M., Pereira, LS., Pizzigalli, C., & Lionello, P. (2014). Impacts of climate change on olive crop evapotranspiration and irrigation requirements in the Mediterranean region. Agricultural Water Management, 144, 54-68. https://doi.org/10.1016/j.agwat.2014.05.019
- Taei Semiromi, S., Moradi, HR., & Khodagholi, M. (2014). Simulation and prediction some of climate variable by using multi line SDSM and Global Circulation Models (Case study: Bar Watershed Nayshabour). Human & Environment, 39, 1-15.
- Torkaman, M. (2016). Effect of warming and future climate change on crop characteristics and potato production in Iran. Faculty of Agriculture, Ferdowsi University of Mashhad, Iran. https://doi.org/10.26420/annagriccropsci. 2022.1109
- Thomas, K., Iwan, S., Annemarie, G., Fulco, L., & Teferi, D. (2025). Projected climate change impacts on Potato yield in East Africa. European Journal of Agronomy, 166, 127560. https://doi.org/10.1016/j.eja.2025.127560
- UN. (2015). WWAP (United Nations World Water Assessment Programme), 2015. The United Nations World Water Development Report 2015: Water for a Sustainable World. UNESCO, Paris. 2-122. https://doi.org/10.18356/ 82cad0af-en
- Van Laar, H.H., Goudriaan, J., & van Keulen, H. (1992). Simulation of crop growth for potential and water-limited production situations (as applied to spring wheat). Simulation Reports CABO-TT 27. CABO-DLO, WAU-TPE, Wageningen.
- Van Keulen, H., & van Diepen, C.A. (1990). Crop growth models and agroecological characterization. In: Scaife, A. (ed.): Proceedings of the first congress of the European Society of Agronomy, 5-7 December 1990, Paris. CEC, ESA, INRA. session 2:1-16. Paris.
- Willby, R.L., Dawson, C.W., & Barrow, E.M. (2002). SDSM a decision support tool for the assessment of regional climate change impacts. Environmental Modelling & Software, 17, 145-157. https://doi.org/10.1016/s1364-8152(01)00060-3
|