- Abubakar, B., Uthman, Y. A., Jatau, A. I., Danbatta, A., Nuhu, H. N., & Mustapha, M. (2022). Misuse of analysis of variance in African biomedical journals: a call for more vigilance. Bulletin of the National Research Centre, 46(232). https://doi.org/10.1186/s42269-022-00924-8
- Ahmed, J., Hiremath, N., & Jacob, H. (2016). Antimicrobial efficacies of essential oils/nanoparticles incorporated polylactide films against L. monocytogenes and S. typhimurium on contaminated cheese. International Journal of Food Properties, 20(1), 53- https://doi.org/10.1080/10942912.2015.1131165
- Aljilji, A., Mahmutović, O., Bašić, H., & Prazina, N. (2020). Mechanical properties of dried fruit packaging materials. Periodicals of Engineering and Natural Sciences, 8(4), 2547-2552.
- (2012). Standard test method for tensile properties of thin plastic sheeting (ASTM D882‑12). West Conshohocken, PA: ASTM International.
- Briassoulis, D., Athanasoulia, I. G., & Tserotas, P. (2022). PHB/PLA plasticized by olive oil and carvacrol solvent-cast films with optimised ductility and physical ageing stability. Polymer Degradation and Stability, 200, 1-21. https://doi.org/10.1016/j.polymdegradstab.2022.109958
- Cangialosi, D. (2024). Physical aging and vitrification in polymers and other glasses: Complex behavior and size effects. Polymer Science, 62(9), 1952-1974. https://doi.org/10.1002/pol.20230850
- Ching, L. W., Keesan, F. W. M., & Muhamad, I. I. (2022). Optimization of ZnO/GO nanocomposite-loaded polylactic acid active films using response surface methodology. Journal of King Saud University– Science, 34(3). https://doi.org/10.1016/j.jksus.2022.101835
- Eslami, Z., Elkoun, S., Robert, M., & Adjalle, K. (2023). A Review of the Effect of Plasticizers on the Physical and Mechanical Properties of Alginate-Based Films. Molecules, 28(18), 6637. https://doi.org/10.3390/molecules28186637
- Falqi, F. H., Bin-Dahman, O. A., Hussain, M., & Al-Harthi, M. A. (2018). Preparation of Miscible PVA/PEG Blends and Effect of Graphene Concentration on Thermal, Crystallization, Morphological, and Mechanical Properties of PVA/PEG (10wt%) Blend. International Journal of Polymer Science, 2018, 1-10. https://doi.org/10.1155/2018/8527693
- Guaras, M. P., Alvarez, V. A., & Luduena, L. N. (2019). Effect of storage time, plasticizer formulation and extrusion parameters on the performance of thermoplastic starch films. Advanced Materials Letters, 10(3), 206-214. https://doi.org/10.5185/amlett.2019.2205
- Guz, L., Fama, L., Candal, R., & Goyanes, S. (2017). Size effect of ZnO nanorods on physicochemical properties ofplasticized starch composites. Carbohydrate Polymers, 157, 1611-1619. https://doi.org/10.1016/j.carbpol.2016.11.041
- Havstad, M. R., Tucman, I., Katancic, Z., & Pilipovic, A. (2023). Influence of Ageing on Optical, Mechanical, and Thermal Properties of Agricultural Films. Polymers, 15(17), 3638. https://doi.org/10.3390/polym15173638
- He, H., Duan, Z., & Wang, Z. (2020). Anomalously enhanced toughness of poly (lactic acid) nanocomposites by core-shell particles with high thickness soft shell. Composites: Part A, 128, 105676. https://doi.org/10.1016/j.compositesa.2019.105676
- Heydari-Majd, M., Ghanbarzadeh, B., Noghabi, M. S., & Abdolshahi, A. (2020). Poly(lactic acid)based bionanocomposites: effects of ZnO nanoparticles and essential oils on physicochemical properties. Polymer Bulletin, 79, 97-119. https://doi.org/10.1007/s00289-020-03490-z
- Heydari-Majd, M., Ghanbarzadeh, B., Shahidi-Noghabi, M., Najafi, M. A., & Hosseini, M. (2019). A new active nanocomposite film based on PLA/ZnO nanoparticle/essential oils for the preservation of refrigerated Otolithes ruber fillets. Food Packaging and Shelf Life, 19, 94-103. https://doi.org/10.1016/j.fpsl.2018.12.002
- Heydarian, A., Ahmadi, E., Dashti, F., & Normohammadi, A. (2022). Evaluation of Mechanical and Chemical Parameters of Okra with Chitosan Coating in Nano Packaging Films and Atmospheric Modified Conditions. Journal of Agricultural Machinery, 12(4), 600-612. (in Persian with English abstract). https://doi.org/10.22067/jam.2021.69257.1027
- Izdebska, J. (2016). Aging and Degradation of Printed Materials. In J. Izdebska & S. Thomas (Eds.), Printing on Polymers (pp. 353-370): William Andrew Publishing. https://doi.org/10.1016/B978-0-323-37468-2.00022-1
- Janik, W., Nowotarski, M., Ledniowska, K., Biernat, N., Abdullah, Shyntum, D. Y., ..., & Dudek, G. (2023). Effect of Time on the Properties of Bio-Nanocomposite Films Based on Chitosan with Bio-Based Plasticizer Reinforced with Nanofiber Cellulose. International Journal of Molecular Sciences, 24(17), 13205. https://doi.org/10.3390/ijms241713205
- Jantrawut, P., Chaiwarit, T., Jantanasakulwong, K., Brachais, C. H., & Chambin, O. (2017). Effect of Plasticizer Type on Tensile Property and In Vitro Indomethacin Release of Thin Films Based on Low-Methoxyl Pectin. Polymers, 9(7), 289. https://doi.org/10.3390/polym9070289
- Khairuddin, E., Pramono, S. B., Utomo, V., Wulandari, A., Zahrotul, W., & Clegg, F. (2016). FTIR studies on the effect of concentration of polyethylene glycol on polimerization of Shellac. Journal of Physics, 776. https://doi.org/10.1088/1742-6596/776/1/012053
- Leceta, I., Penalba, M., Arana, P., Guerrero, P., & Caba, K. D. L. (2015). Ageing of chitosan films: Effect of storage time on structure and optical, barrier and mechanical properties. European Polymer Journal, 66, 170-179. https://doi.org/10.1016/j.eurpolymj.2015.02.015
- Leon, N., Martinez, A. B., Castejon, P., Arencon, D., & Martinez, P. P. (2017). The fracture testing of ductile polymer films: Effect of the specimen notching. Polymer Testing, 63, 180-193. https://doi.org/10.1016/j.polymertesting.2017.08.022
- Li, F. J., Liang, J. Z., Zhang, S. D., & Zhu, B. (2015). Tensile Properties of Polylactide/Poly(ethylene glycol) Blends. Journal of Polymers and the Environment, 23, 407-415. https://doi.org/10.1007/s10924-015-0718-7
- Li, W., Li, L., Cao, Y., Lan, T., Chen, H., & Qin, Y. (2017). Effects of PLA Film Incorporated with ZnO Nanoparticle on the Quality Attributes of Fresh-Cut Apple. Nanomaterials, 7(8), 1-20. https://doi.org/10.3390/nano7080207
- Lin, D., Zheng, Y., Wang, X., Huang, Y., Ni, L., Chen, X., ..., & Wu, D. (2020). Study on physicochemical properties, antioxidant and antimicrobial activity of okara soluble dietary fiber/sodium carboxymethyl cellulose/thyme essential oil active edible composite films incorporated with pectin. International Journal of Biological Macromolecules, 165, 1241-1249. https://doi.org/10.1016/j.ijbiomac.2020.10.005
- Liu, H., & Zhang, J. (2011). Research Progress in Toughening Modification of Poly(lactic acid). Polymer Physics, 49(15), 1051-1083. https://doi.org/10.1002/polb.22283
- Luangtana-Anan, M., Nunthanid, J., & Limmatvapirat, S. (2010). Effect of Molecular Weight and Concentration of Polyethylene Glycol on Physicochemical Properties and Stability of Shellac Film. Journal of Agricultural and Food Chemistry, 58, 12934-12940. https://doi.org/10.1021/jf1031026
- Maeda, K., Akatsuka, K., Okuma, G., & Yasumori, A. (2021). Mechanical Properties of CaO–Al2O3–SiO2 Glass-Ceramics Precipitating Hexagonal CaAl2Si2O8 Crystals, 11(4), 393. https://doi.org/10.3390/cryst11040393
- Maulana, D. S., Mubarak, A. S., & Pujiastuti, D. Y. (2021). The concentration of polyethylene glycol (PEG) 400 on bioplastic cellulose-based carrageenan waste on biodegradability and mechanical properties. IOP Conference Series: Earth and Environmental Science, 679(1), 012008. https://doi.org/10.1088/1755-1315/679/1/012008
- Meyers, M. A., & Chawla, K. K. (2008). Mechanical Behavior of Materials. United States of America, New York: Cambridge University Press. https://doi.org/10.1017/CBO9780511810947
- Mirkhalaf, S. M., & Fagerstrom, M. (2021). The mechanical behavior of polylactic acid (PLA) films: fabrication, experiments and modelling. Mechanics of Time-Dependent Materials, 25, 119-131. https://doi.org/10.1007/s11043-019-09429-w
- Odian, G. (2004). Principles of polymerization (4th ed.). New York, NY: John Wiley & Sons.
- Oksiuta, Z., Jalbrzykowski, M., Mystkowska, J., Romanczuk, E., & Osiecki, T. (2020). Mechanical and Thermal Properties of Polylactide (PLA) Composites Modified with Mg, Fe, and Polyethylene (PE) Additives. Polymers, 12(12), 2939. https://doi.org/10.3390/polym12122939
- Pantani, R., Gorrasi, G., Vigliotta, G., Murariu, M., & Dubois, P. (2013). PLA-ZnO nanocomposite films: water vapor barrier properties and specific enduse characteristics. European Polymer Journal, 49(11), 3471-3482. https://doi.org/10.1016/j.eurpolymj.2013.08.005
- Parreidt, T. S., Schott, M., Schmid, M., & Muller, K. (2018). Effect of Presence and Concentration of Plasticizers, Vegetable Oils, and Surfactants on the Properties of Sodium-Alginate-Based Edible Coatings. Molecular Sciences, 19(3), 1-21. https://doi.org/10.3390/ijms19030742
- Pivsa-Art, W., Fujii, K., Nomura, K., Aso, Y., Ohara, H., & Yamane, H. (2016). The effect of poly(ethylene glycol) as plasticizer in blends of poly(lactic acid) and poly(butylene succinate). Journal of Applied Polymer Science, 133(8). https://doi.org/10.1002/APP.43044
- Sangroniz, A., Zhu, J. B., Tang, X., Etxeberria, A., Chen, E. Y. X., & Sardon, H. (2019). Packaging materials with desired mechanical and barrier properties and full chemical recyclability. Nature Communications, 10. https://doi.org/10.1038/s41467-019-11525-x
- Schwarz, D., Pagac, M., Petrus, J., & Polzer, S. (2022). Effect of Water-Induced and Physical Aging on Mechanical Properties of 3D Printed Elastomeric Polyurethane. Polymers, 14(24), 5496. https://doi.org/10.3390/polym14245496
- Shafiee-Nasab, M., Tabari, M., & Azizi, M. H. (2018). Morphological and mechanical properties of Poly (lactic Acid) /zinc oxide nanocomposite films. Nanomedicine Research Journal, 3(2), 96-101. https://doi.org/10.22034/nmrj.2018.02.006
- Shahid, S., & Gukhool, W. (2020). Experimental testing and material modeling of anisotropy in injection moulded polymer materials (Master’s thesis). Blekinge Institute of Technology, Karlskrona, Sweden. https://doi.org/10.13140/RG.2.2.12587.87846
- Shankar, S., Wang, L. F., & Rhim, J. W. (2018). Incorporation of zinc oxide nanoparticles improved the mechanical, water vapor barrier, UV-light barrier, and antibacterial properties of PLA-based nanocomposite films. Materials Science & Engineering C, 93, 289-298. https://doi.org/10.1016/j.msec.2018.08.002
- Song, B. (2022). Dynamic high-rate tensile characterization of metallic materials with a Kolsky tension bar. In B. Song (Ed.), Advances in Experimental Impact Mechanics (pp. 1-40). Netherlands: Elsevier. https://doi.org/10.1016/B978-0-12-823325-2.00007-8
- Tajari, N., Sadrnia, H., & Hosseini, F. (2023). Effects of ZnO nanoparticles, polyethylene glycol 400, and polyoxyethylene sorbitan ester Tween 80 on PLA films properties. International Polymer Processing, 39(1), 1-14. https://doi.org/10.1515/ipp-2023-4338
- Tajari, N., Sadrnia, H., & Hosseini, F. (2024). Investigating the Effect of Storage Time on the Mechanical Properties of Biodegradable Polylactic Acid Film Containing Zinc Oxide Nanoparticles. Journal of Agricultural Machinery, 14(3), 283-299. (in Persian with English abstract). https://doi.org/10.22067/jam.2023.81863.1160
- Tang, Z., Fan, F., Chu, Z., Fan, C., & Qin, Y. (2020). Barrier Properties and Characterizations of Poly(lactic Acid)/ZnO Nanocomposites. Molecules, 25(6), 1310. https://doi.org/10.3390/molecules25061310
- Yu, F., Fei, X., He, Y., & Li, H. (2021). Poly(lactic acid)-based composite film reinforced with acetylated cellulose nanocrystals and ZnO nanoparticles for active food packaging. International Journal of Biological Macromolecules, 186, 770-779. https://doi.org/10.1016/j.ijbiomac.2021.07.097
- Ziani, K., Oses, J., Coma, V., & Mate, J. I. (2008). Effect of the presence of glycerol and Tween 20 on the chemical and physical properties of films based on chitosan with different degree of deacetylation. LWT- Food Science and Technology, 41, 2159-2165. https://doi.org/10.1016/j.lwt.2007.11.023
|