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Abstract. In statistical analysis, understanding and quantifying uncertainty is fundamental.
Measures such as entropy, extropy, varentropy, and varextropy provide valuable insights into the
characteristics of probability distributions. This paper focuses on the concept of varextropy and
presents a novel characterization of the uniform distribution, showing that the varextropy of a
random variable is zero if and only if the variable is uniformly distributed on the unit interval.
Building on this property, we propose a new goodness-of-fit test for uniformity based on a
nonparametric estimator of varextropy, denoted by ∆̂, as introduced by Noughabi and Noughabi
(2024). The test statistic is shown to be consistent, and its distribution under the null hypothesis
is explored via Monte Carlo simulations. Critical values are tabulated for various sample sizes
and tuning parameters, and the test’s power is empirically evaluated against alternatives such
as the Beta(1,2) distribution, demonstrating superior performance in detecting departures from
uniformity. The proposed method is further applied to a real-world environmental dataset of
vinyl chloride concentrations, where the transformed data, via the probability integral transform,
are shown to conform to a uniform distribution. Overall, this study not only extends the
theoretical understanding of varextropy but also introduces a practical and effective tool for
uniformity testing in both simulated and real data contexts.

Keywords: Entropy, Extropy, Goodness-of-fit, Monte Carlo simulation, Nonparametric estimator, Order
statistics, Uniformity test, Varextropy.

1 Introduction

Quantifying uncertainty in random variables is a central theme in probability theory, informa-
tion theory, and statistical inference. Various measures have been developed to capture different

∗Corresponding author
Received: 11 March 2025 / Accepted: 07 June 2025
DOI: 10.22067/smps.2025.92576.1044

© 2025 Ferdowsi University of Mashhad https://smps.um.ac.ir

101

 https://smps.um.ac.ir


102 Santosh Kumar Chaudhary

aspects of uncertainty, variability, and information content associated with probability distribu-
tions. Among the most widely known and utilized is Shannon’s entropy, introduced by Shannon
(1948), which provides a foundational measure of the average uncertainty or information con-
tent in a random variable. For an absolutely continuous random variable, entropy reflects the
expected value of the negative logarithm of its probability density function (pdf) and plays a
critical role in areas such as data compression, communication theory, and statistical model-
ing. Complementing entropy is the concept of extropy, proposed by Lad et al. (2015) as a dual
measure of uncertainty. While entropy captures average surprise or unpredictability, extropy is
designed to assess the regularity and concentration in the distribution of a continuous random
variable. Defined in terms of the squared density function, extropy offers a different perspective
on information, with applications in decision theory and statistical diagnostics. To understand
not just the mean behavior but also the variability of information content, the notion of varen-
tropy is employed. Varentropy, introduced by Arıkan (2016), is the variance of the information
content (i.e., the log-density). It quantifies the dispersion around the average uncertainty and is
particularly useful in finite blocklength information theory, where variability in data coding and
transmission must be accounted for. Varentropy has also gained attention in statistical contexts
as a more sensitive alternative to classical measures such as kurtosis, especially when analyzing
continuous distributions. Building on these concepts, the measure of varextropy has recently
been introduced to extend the idea of extropy by incorporating variability. Analogous to varen-
tropy, varextropy captures the variance of the density function itself, providing insights into the
fluctuation of distribution concentration. This new measure broadens the information-theoretic
toolkit for studying distributional properties and can offer useful characterizations of specific
distributions, such as the uniform distribution. The interplay between these four measures—
entropy, extropy, varentropy, and varextropy—opens up new avenues for theoretical exploration
and practical applications, particularly in statistical testing, distribution characterization, and
information processing. This paper focuses on the properties and applications of varextropy,
particularly in the context of testing for uniformity.

Testing for uniformity is a fundamental problem in statistical analysis with wide-ranging ap-
plications across various fields, including quality control, cryptography, simulation, and goodness-
of-fit testing. The uniform distribution often serves as a benchmark or null model in many statis-
tical procedures. For example, in simulation studies, ensuring that random number generators
produce values that are uniformly distributed is essential for the validity of results. Similarly,
in goodness-of-fit testing, the uniform distribution is commonly used to assess whether observed
data deviate significantly from a theoretical model. Moreover, many statistical transformations
and procedures assume an underlying uniformity, especially in the context of probability inte-
gral transforms. As such, reliable tests for uniformity are crucial for validating assumptions,
detecting structure in data, and supporting the development of robust statistical methodologies.
This motivates the exploration of new approaches, such as those based on information-theoretic
measures like varextropy, to enhance the sensitivity and applicability of uniformity tests.

Although varextropy is a relatively recent addition to the family of information-theoretic
measures, it has begun to draw interest for its potential applications in characterizing proba-
bility distributions. Previous studies have explored the mathematical properties of varextropy
and demonstrated its sensitivity to distributional shape and concentration. However, its use in
formal hypothesis testing, particularly for assessing uniformity, remains limited in the literature.



Varextropy measure with application 103

Existing uniformity tests are primarily based on classical approaches such as the Kolmogorov–
Smirnov test, Cramér-von Mises criterion, and entropy-based methods. In contrast, this work
introduces a novel test procedure that leverages the variance of the squared density, varextropy,
as a means to detect deviations from the uniform distribution. By establishing a new character-
ization of the uniform distribution through varextropy, we extend its utility beyond descriptive
analysis and into inferential statistics. Our method differs from earlier work in that it provides
a nonparametric, information-theoretic framework for uniformity testing, offering a potentially
more sensitive alternative to traditional approaches. Furthermore, we evaluate the effectiveness
of the proposed test through both theoretical derivations and empirical analyses using real-world
data, thereby demonstrating its practical relevance. The entropy of a discrete probability distri-
bution P = {p1, . . . , pn} is defined as (Shannon, 1948) H(P) =−∑n

i=1 pi ln pi. The varentropy of a
discrete probability distribution P = {p1, . . . , pn} is defined as (see Arıkan (2016); De Crescenzo
et al. (2025); Maadani et al. (2022))

V H(P) =
n

∑
i=1

pi (ln pi)
2 −

(
n

∑
i=1

pi ln pi

)2

.

Varentropy serves as a measure of the variability in the information content.
Lad et al. (2015) introduced the concept of extropy, which is the complement of Shannon entropy.
The extropy of a discrete probability distribution P = {p1, . . . , pn} is defined as

J(P) =−
n

∑
i=1

(1− pi) ln(1− pi).

Let X be an absolutely continuous random variable with common cumulative distribution func-
tion (cdf) FX and probability density function (pdf) fX . Let lX = inf{x ∈ R : FX(x) > 0},uX =
sup{x ∈ R : FX(x)< 1} and SX = (lX ,uX). Then, Shannon (1948) defined differential entropy as a
measure of uncertainty

H(X) =−
∫

SX

fX(x) log fX(x)dx.

Varentropy of X is defined as (Arıkan, 2016; Maadani et al., 2022)

V H(X) = Var[− log fX(X)]

=
∫

SX

fX(x)(log fX(x))2 dx−
(∫

SX

fX(x) log fX(x)dx
)2

.

This varentropy measure is widely used in data compression, finite blocklength information
theory, and statistics, as it aids in determining ideal code lengths, source dispersion, and other
relevant quantities. In statistics, it has proven to be a superior alternative to the kurtosis
measure for continuous density functions; see (Arıkan, 2016; Dudewicz and van der Meulen,
1981; Hazeb et al., 2021; Maadani et al., 2022) studied entropy- and extropy-based goodness-
of-fit tests for uniformity. An alternative measure of uncertainty, extropy, for a nonnegative
absolutely continuous random variable X , defined by Lad et al. (2015), is given by

J(X) = E
(
−1

2
fX(X)

)
=−1

2

∫
SX

f 2
X(x)dx.
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The primary objective of this study is to investigate the properties of varextropy and demonstrate
its potential in testing for the uniformity of continuous probability distributions. Specifically,
we aim to derive and explore the theoretical properties of varextropy, provide a characterization
of the uniform distribution based on this measure, and develop a nonparametric estimator for
varextropy from observed data. Additionally, we propose a novel test for uniformity that lever-
ages varextropy, extending its applicability beyond descriptive analysis into inferential statistics.
Finally, we evaluate the performance of the proposed test through both theoretical analysis and
empirical validation using real-world data to assess its effectiveness in detecting deviations from
the uniform distribution.

The main purpose of this paper is to obtain a test of uniformity using the derived charac-
terization of the uniform distribution based on the varextropy of a continuous random variable.
This paper is organized as follows. Section 2 contains some properties of varextropy. A charac-
terization of the uniform distribution using varextropy is given in Section 3. A nonparametric
estimator is given in Section 4. A test of uniformity is presented in Section 5, and Section 6
contains an application to real data.

2 Varextropy
The varextropy of a discrete probability distribution P = {p1, . . . , pn} is defined as (see, Goodarzi
(2024); Vaselabadi et al. (2021))

V J(P) =
n

∑
i=1

(1− pi)(ln((1− pi)))
2 −

(
n

∑
i=1

(1− pi) ln((1− pi))

)2

.

Varextropy also serves as a measure of the variability in the information content. Varextropy of
absolutely continuous random variables X is defined as

V J(X) = Var
(
−1

2
fX(X)

)
= E

(
−1

2
fX(X)− J(X)

)2

=
1
4

E( f 2
X(X))− 1

4
[E( fX(X))]2

=
1
4

∫
SX

f 3
X(x)dx− 1

4

(∫
SX

f 2
X(x)dx

)2

.

Note that V J(X)≥ 0, for any random variable X . Vaselabadi et al. (2021) obtained several varex-
tropy properties, as well as conditional varextropy properties based on order statistics, record
values, and proportional hazard rate models. The article contains some comparative results
regarding varextropy and varentropy. Goodarzi (2024) provided lower bounds for varextropy,
obtained the varextropy of a parallel system, and used the varextropy of order statistics to con-
struct a symmetry test. Zaid et al. (2022) computed the entropy, varentropy, and varextropy
measures in closed form for generalized and q-generalized extreme value distributions. Varen-
tropy is sometimes independent of the model parameters, whereas the varextropy measure is
more adaptable, for example, when X has a normal distribution with mean µ and variance σ2

(see Vaselabadi et al. (2021)).



Varextropy measure with application 105

Chacko and Grace (2024) investigated the varextropy measure for the nth upper and lower
k-record values, deriving expressions for both the measure and its residual and past forms. They
applied this to estimate the varextropy of a two-parameter Weibull distribution using maximum
likelihood estimations (MLEs) and Bayes estimates based on upper k-record values, with MCMC
used for the Bayes estimates. Their simulation results showed that mean squared errors (MSEs)
decreased as n increased, and Bayes estimates outperformed MLEs. Among the Bayes estimators,
those using the SEL function performed better, and the lowest MSE was achieved using Prior
1. Goodarzi (2022) derived the conditional covariance and variance for a parallel system with
n identical, independent components, assuming all components are still functioning at time x.
A lower bound for the conditional variance was also provided. Additionally, lower bounds for
varextropy were established, and the varextropy of a parallel system was calculated. The results
were applied to create a symmetry test, with a real dataset used to illustrate the test statistics.
Vaselabadi et al. (2021) explored several properties of the varextropy measure V J, highlighting
its use in quantifying information volatility in residual and past lifetimes. They examined its
behavior in relation to order statistics, record values, and proportional hazard rate models. An
approximate expression for V J(X) was also derived using a Taylor series expansion. Additionally,
they introduced the concept of conditional varextropy and proposed a new stochastic order called
varextropy ordering. Noughabi and Noughabi (2024) investigated the varextropy of a random
variable and introduced consistent estimators for it, highlighting their location-invariant variance
and mean squared error. Through Monte Carlo simulations, they evaluated the estimators’ bias
and RMSE under different distributions, showing that the proposed methods performed reliably
across various scenarios.

In some situations, two random variables can have the same extropy, which prompts the
age-old question, “Which of the extropies is a more appropriate criterion for measuring the
uncertainty?” For example, consider random variables U and V (see, Balakrishnan et al. (2020))
with pdfs

fU(x) =

{
1, 0 < x < 1,
0, otherwise,

and fV (x) =

{
2e−2x, x > 0,
0, otherwise.

We get J(U) = J(V ) = −1/2, V J(U) = 0, and V J(V ) = 1/12. This is the motivation behind
considering the variance of − 1

2 f (x), which is known as the varextropy of a random variable X .
So, varextropy can also play a role in measuring uncertainty. The varextropy for some standard
distributions are given in Table 1; for more example, see Vaselabadi et al. (2021).

Let {Xn,n ≥ 1} be a sequence of independent and identically distributed observations. An
observation X j will be called an upper record value if its value exceeds that of all previous
observations. Thus, X j is an upper record if X j > Xi for every j > i. See, Arnold et al. (1998)
for more details about record values. A random variable X is said to be smaller than Y in the
dispersive ordering (X ≤disp Y ) if F−1

Y (FX(x))− x is increasing in x ≥ 0. Belzunce et al. (2001)
showed that if X ≤disp Y , then UX

n ≤disp UY
n , where UX

n and UY
n are the nth upper records of X

and Y , respectively. Qiu (2017) showed that if X ≤disp Y , then J(X)≤ J(Y ) and J(UX
n )≤ J(UY

n ).
Vaselabadi et al. (2021) showed that if X ≤disp Y , then V J(X)≥V J(Y ). In view of these results,
it is conclude that X ≤disp Y , then V J(UX

n )≥V J(UY
n ), for n ≥ 1. It is obvious that if X and Y are

identically distributed, that is, X d
= Y , then V J(X) = V J(X), V J(Xi:n) = V J(Yi:n) and V J(UX

n ) =
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Table 1: Expression for V J(X).
Distribution pdf V J(X)

Uniform 1
b−a , a < x < b 0

Exponential λe−λx, x ≥ 0,λ > 0 λ 2/48

Weibull distribution 2xe−x2
, x > 0

√
π

23/2 − π
8

Normal 1√
2πσ e(−

(x−µ)2

σ2 )
, −∞ < x < ∞ 2−

√
3

16πσ2
√

3

Laplace distribution 1
2 e−|x| −∞ < x < ∞ 1

24

Logistic distribution e−x

(1+e−x)2 , −∞ < x < ∞ 1
8

Cauchy distribution 1
π(1+x2)

, −∞ < x < ∞ 1
8π − 1

16π2

V J(UY
n ), where Xi:n is the ith order statistic in a random sample of size n. Vaselabadi et al. (2021)

showed that varextropy is location-invariant but not scale-invariant, that is, if Y = aX +b, where
a > 0 and −∞ < b < ∞, then V J(Y ) = 1

a2 V J(X).
We have the following result for varextropy of order statistics of symmetric distribution.

Lemma 1. Let X1,X2, . . . ,Xn be random sample from continuous distribution with symmetric
around a finite µ with sample size n. Then

V J(Xi:n) =V J(Xn−i+1:n), 1 ≤ i ≤ n.

Proof. The result follows by location-invariant property of varextropy.

3 Weighted varextropy
Applications of weighted distributions include distribution theory, dependability, probability,
ecology, biostatistics, and applied statistics. Two random variables can have the same extropy
as well as the same varextropy in some situations. For example, consider random variables X
and Y with pdfs, respectively:

fX(x) =

{
2x, 0 < x < 1,
0, otherwise,

fY (x) =

{
2(1− x), 0 < x < 1,
0, otherwise.

We get J(X) = J(Y ) = −2/3, V J(X) = V J(Y ) = 1/18, but V Jw(X) = 1/12 and V Jw(Y ) = 1/180.
So here, weighted varextropy can also play a role as a measure of uncertainty. Gupta and
Chaudhary (2023) defined general weighted extropy with nonnegative weight w(x) as

Jw(X) =−1
2

∫ ∞

0
w(x) f 2

X(x)dx.
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Table 2: Expression for V Jx(X).
Distribution pdf V Jx(X)

Uniform 1
b−a , a < x < b 1

4

[
b3−a3

3(b−a)3 − (b2−a2)2

4(b−a)4

]
Exponential λe−λx, x ≥ 0,λ > 0 5

1728

Weibull distribution 2xe−x2
, x > 0 1

4

(
1

33/2 −1
)

Normal 1√
2πσ e(−

(x−µ)2

σ2 )
, −∞ < x < ∞ 1

4

(
1

(2πσ2)3/2

(
µ2 + 1

6σ2

)
−µ2

)2

Laplace distribution 1
2 e−|x| −∞ < x < ∞ 1

216

Logistic distribution e−x

(1+e−x)2 , −∞ < x < ∞ 1
8

Cauchy distribution 1
π(1+x2)

, −∞ < x < ∞ 1
16π2

We define the general weighted varextropy of a discrete probability distribution P = {p1, . . . , pn}
with X = {x1,x2, . . . ,xn} and weights w = {w1,w2, . . . ,wn} as

V Jw(P) =
n

∑
i=1

w2
i (1− pi)(ln((1− pi)))

2 −

(
n

∑
i=1

wi(1− pi) ln((1− pi))

)2

.

When wi = xi, ∀ i = 1,2, . . . ,n, then the weighted varextropy is given as

V Jx(P) =
n

∑
i=1

x2
i (1− pi)(ln((1− pi)))

2 −

(
n

∑
i=1

xi(1− pi) ln((1− pi))

)2

.

We define general weighted varextropy for an absolutely continuous random variable as

V Jw(X) = Var
(
−1

2
w(X) fX(X)

)
=

1
4
[
E(w2(X) f 2(X))− (E(w(X) fX(X)))2]

=
1
4

[∫
SX

w2(x) f 3(x)dx−
(∫

SX

w(x) f 2(x)dx
)2
]
.

When w(x) = x, then weighted varextropy is given as

V Jx(X) =
1
4

[∫
SX

x2 f 3(x)dx−
(∫

SX

x f 2(x)dx
)2
]
.

The weighted varextropy V Jx(X) for some standard distributions are given in Table 2.
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4 A characterization of uniform distribution

In many practical problems, the goodness-of-fit test may be reduced to the problem of testing
uniformity. Since the varextropy of X is the variance of − 1

2 fX(x), the varextropy is nonnegative
for any random variable X . Among all distributions with support on [0,1], the uniform distri-
bution has the maximum extropy. An important property of the uniform distribution is that it
obtains the minimum varextropy among all distributions having support on [0,1] (see, Qiu and
Jia (2018)).

The characterization provided in Theorem 1 is significant because it establishes a clear and
definitive criterion for identifying a uniform distribution based on varextropy. By showing that
a random variable X has zero varextropy if and only if it is uniformly distributed over [0,1], it
offers a direct and precise method for testing uniformity without needing complex parametric
assumptions. This improves upon existing characterizations by linking uniformity to an easily
computable quantity, varextropy, which is grounded in variance, making it more practical for
statistical analysis. Previous methods might have relied on more complex or indirect approaches,
but the varextropy-based test is simple, theoretically sound, and offers a direct comparison for
uniformity. This approach fills a gap by providing a nonparametric and computationally feasible
solution to uniformity testing, making it a more accessible tool in both theoretical and applied
statistics.

The characterization in Theorem 1 makes a few key assumptions. First, it assumes that the
random variable X is continuous and has support on the interval [0,1]. This is crucial because
the result specifically applies to distributions confined to this interval, such as the uniform distri-
bution. Second, the characterization assumes that the pdf fX(x) is well-defined and continuous
over this support. This ensures that the varextropy formula, which relies on the second moment
of the pdf, can be computed without encountering issues related to discontinuities or undefined
behavior. Additionally, the proof assumes that fX(x) integrates to 1 over [0,1], which is a fun-
damental property of any valid probability density function. These assumptions are necessary
to guarantee the correctness and applicability of the characterization, ensuring it is valid for
continuous distributions on the unit interval and can be used as a reliable test for uniformity.
Noughabi and Noughabi (2023) applied varentropy to test for uniformity. They showed that the
varentropy of X is zero if and only if X follows the standard uniform distribution, and they used
their proposed varentropy estimators as test statistics for conducting goodness-of-fit tests for
uniformity. Following result is a characterization of the uniform distribution using varextropy
(see (Chaudhary and Gupta, 2024, Theorem 11)).

Theorem 1. Let X be a continuous random variable with support on [0,1]. Then V J(X) = 0 if
and only if X has a uniform distribution on the interval [0,1].

Proof. Let random variable X have a uniform distribution on the interval [0,1]; then fX(x) = 1
for 0 ≤ x ≤ 1, and

V J(X) =
1
4

∫ 1

0
f 3(x)dx− 1

4

[∫ 1

0
f 2(x)dx

]2

= 0.
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Conversely, V J(X) = 0 implies Var( fX(X)) = 0, that is, fX(x) = c. Since∫ 1

0
fX(x)dx = 1, therefore fX(x) = 1, 0 ≤ x ≤ 1.

Hence, the proof is complete.

5 Nonparametric estimators
Suppose that X1:n,X2:n,X3:n, . . . ,Xn:n are order statistics of random sample X1,X2, . . . ,Xn from cdf
F . Then, then empirical distribution function of cdf F is given by

Fn(x) =


0, x < X1:n
i
n , Xi:n ≤ x < Xi+1:n, i = 1,2, . . . ,n−1,
1, x ≥ Xn:n.

Noughabi and Noughabi (2024) provided various estimators of V J(X). V J(X) can be expressed
as

V J(X) =
1
4

∫ 1

0

(
d

d p
(F−1(p))

)−2

d p−

(∫ 1

0

(
d

d p
(F−1(p))

)−1

d p

)2
 .

Following the idea of Vasicek (1976), Noughabi and Noughabi (2024) proposed the estimator ∆
for V J(X) as

∆ =
1
4n

n

∑
i=1

(
2m/n

Xi+m:n −Xi−m:n

)2

− 1
4

(
1
n

n

∑
i=1

(
2m/n

Xi+m:n −Xi−m:n

))2

.

Here, the window size m is a positive integer less than or equal to n
2 . If i+m > n, then we

consider Xi+m:n = Xn:n, and if i−m < 1, then we consider Xi−m:n = X1:n. The proposed estimator
for varextropy, ∆, calculates the weighted variance of order statistics based on sample data, using
a window size parameter m. It is defined as

∆ =
1
4n

n

∑
i=1

(
2m/n

Xi+m:n −Xi−m:n

)2

− 1
4

(
1
n

n

∑
i=1

(
2m/n

Xi+m:n −Xi−m:n

))2

.

This estimator is consistent, meaning it converges to the true value of varextropy as the sample
size increases and is flexible for a range of distributions. Its primary advantages include its
practical applicability for goodness-of-fit tests, such as testing uniformity, and its ability to offer
consistent results for large datasets. However, it is sensitive to the choice of the window size m,
and for large samples, it can become computationally intensive. Additionally, for small sample
sizes, the estimator may not be highly accurate, and its distribution under the null hypothesis
requires Monte Carlo simulations to determine critical values. Despite these limitations, the
estimator improves upon existing methods by directly utilizing order statistics and providing a
reliable approach to test uniformity.
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The proposed estimator, ∆, for varextropy offers several advantages when compared to other
estimators used in statistical tests for uniformity. One key feature is its use of order statistics,
which captures more nuanced information about the distribution of data, particularly in non-
parametric contexts. Compared to traditional estimators like the sample variance or methods
based on moments, ∆ incorporates weighted variations in the sample, making it more sensitive
to the underlying distribution, especially for detecting deviations from uniformity.

When compared to earlier estimators like the ones proposed by Noughabi and Noughabi
(2023), which are based on varentropy for uniformity testing, the proposed estimator has a
distinct advantage in terms of flexibility and consistency. While their estimator is also consistent,
it is based on a more complex approach, potentially requiring additional assumptions about the
distribution shape. The ∆ estimator, on the other hand, relies on empirical distributions and
requires fewer assumptions about the underlying data, making it more adaptable.

However, one limitation of ∆ is its reliance on the window size parameter m, which requires
tuning and may impact its performance in smaller datasets. Other methods, like those using
bootstrap resampling techniques, can offer an alternative, providing robust estimates without
relying on window size. Overall, the proposed estimator provides a more robust and flexible
approach than many existing alternatives, particularly when testing for uniformity in real-world
data.

6 A test of uniformity
In this section, we introduce a statistical test for uniformity based on the concept of varextropy,
specifically using the estimator ∆ proposed by Noughabi and Noughabi (2024). It has been
established that the varextropy of a random variable X is zero if and only if X follows a standard
uniform distribution. Using this property, we can utilize the proposed varextropy estimators as
test statistics for conducting goodness-of-fit tests to determine whether a given sample follows
a uniform distribution. The hypothesis of interest is framed as follows:

• Null hypothesis (H0): The random variable X is uniformly distributed.

• Alternative hypothesis (H1): The random variable X is not uniformly distributed.

We propose using ∆, an estimator of the varextropy V J(X), as the test statistic. The estimator ∆
is consistent, meaning that as the sample size n increases, ∆ converges in probability to the true
value of V J(X). Under the null hypothesis H0, if X follows a uniform distribution, ∆ converges
in probability to zero. On the other hand, if X is not uniformly distributed (under H1), ∆
converges to a nonzero value. This distinction allows us to use large values of ∆ as evidence of
nonuniformity. Therefore, we reject the null hypothesis when ∆ exceeds a certain threshold.

Since the distribution of the test statistic ∆ under the null hypothesis is too complex to
derive analytically, we use Monte Carlo simulation to empirically determine the critical values
and power of the test. The critical region for the test is defined as ∆ ≥C1−α , where C1−α is the
critical value corresponding to the significance level α. For a given sample size n and significance
level α, we compute C1−α using a Monte Carlo simulation. This approach allows us to determine
the appropriate threshold for rejecting the null hypothesis based on simulated data from the
uniform distribution.
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Table 3: Critical values at significance level α = 0.05.
m\n 10 20 30 40 50 80 100
2 4.7570 3.1388 2.2838 1.9478 1.6402 1.1355 1.0451
3 1.4909 1.2126 0.7925 0.6502 0.5729 0.4235 0.3559
4 0.7064 0.6089 0.4724 0.3841 0.3434 0.2541 0.2121
5 0.4074 0.4252 0.3525 0.2881 0.2396 0.1800 0.1541
9 0.1551 0.1703 0.1542 0.1399 0.1039 0.0947
14 0.0869 0.0973 0.1006 0.0829 0.0731
19 0.0637 0.0722 0.0722 0.0665
24 0.0528 0.0639 0.0619
30 0.0514 0.0546
39 0.0380 0.0436
49 0.0336

6.1 Critical points

We define a function to calculate the value of ∆. A sample of size n is generated from the U(0,1)
distribution, and the test statistic is computed for the sample data. After 10,000 replications,
the (1−α)th quantile of the test statistics is determined as the critical value at significance level
α. Critical values for α = 0.05 are given in Table 3 for different values of m and n.

To derive the critical values of the proposed test statistic ∆̂, we employ a Monte Carlo
simulation approach due to the analytical intractability of its sampling distribution under the
null hypothesis. Specifically, we generate 10,000 independent random samples of size n from
the standard uniform distribution U(0,1), which represents the null hypothesis H0. For each
simulated sample, we compute the value of the test statistic ∆̂ using the nonparametric estimator
that involves a fixed window size m. After obtaining 10,000 such values of ∆̂, we determine the
empirical (1−α)-th quantile to serve as the critical value C1−α at a given significance level
α. These critical values are summarized in Table 3 for various combinations of n and m, thus
providing practical benchmarks for implementation.

6.2 Power of test

We used the following procedure to estimate the power of the test. For each sample size n, we
generate 10,000 random samples of size n from the alternative distribution. The test statistic is
then computed for each sample. The power of the test at a significance level α is estimated as
the proportion of these 10,000 samples that fall within the corresponding critical region.

The estimated power of the test is obtained as the proportion of samples for which the test
statistic exceeds the critical value, leading to the rejection of H0. This empirical procedure
provides a consistent and practical method for evaluating the effectiveness of the test. The
results, presented in Table 4, demonstrate that the proposed test performs well in detecting
deviations from uniformity and exhibits higher power compared to existing tests for standard
alternatives like the Beta(1,2) distribution. The pdf of the beta distribution with parameters a
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Table 4: Power at significance level α = 0.05.
m\n 10 20 30 40 50 80 100
2 0.0817 0.0966 0.0960 0.1038 0.1137 0.1492 0.1746
3 0.1197 0.1343 0.1558 0.1689 0.1836 0.2522 0.2924
4 0.1546 0.1882 0.2082 0.2302 0.2570 0.3536 0.4467
5 0.1786 0.2370 0.2621 0.2874 0.3359 0.4451 0.5483
9 0.3962 0.4360 0.4654 0.5072 0.6540 0.7211
14 0.5991 0.6221 0.6566 0.7380 0.8187
19 0.7752 0.7734 0.8311 0.8700
24 0.8875 0.8829 0.9128
30 0.9397 0.9459
39 0.9883 0.9850
49 0.9983

and b is given by

fx(x) =
xa−1(1− x)b−1

B(a,b)
, 0 < x < 1,

where B(a,b) is the complete beta function.

To estimate the power of the test, we again utilize a Monte Carlo simulation, this time under
the alternative hypothesis H1. We generate 10,000 random samples of size n from a nonuniform
distribution, such as the Beta(1,2) distribution, which is a common alternative to U(0,1). For
each sample, the value of ∆̂ is calculated and compared to the corresponding critical value derived
under H0.

The estimated power against the alternative Beta(1,2) distribution is given in Table 4 at
the significance level α = 0.05. Our test performs well in detecting nonuniform data. Note that
Beta(1,1) is identically distributed with U(0,1). The power of this test against the alternative
Beta(1,1) is approximately α, so the test achieves its level of significance. The power of our
test is higher than the power of the test proposed by Noughabi and Noughabi (2023) for the
common alternative Beta(1,2).
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Start

Formulate hypotheses

Choose significance level α

Compute test statistic ∆

Simulate N uniform samples

Compute test statistic for each simulation

Sort test statistics from simulations

Determine critical value C1−α

Is ∆ ≥C1−α?Reject H0 (nonuniform) Fail to reject H0 (uniform)

Conclusion

End

Yes No

6.3 Application to real data

The dataset used in this application comes from a real-world environmental study involving vinyl
chloride concentrations. Vinyl chloride is a toxic substance, and understanding its distribution
is critical for assessing environmental risks and regulatory compliance. In particular, the dataset
represents a sample of vinyl chloride measurements that have been transformed to fit a uniform
distribution using the probability integral transformation, as proposed by Xiong et al. (2022).
This transformation is commonly used to standardize nonuniform data so that it can be tested



114 Santosh Kumar Chaudhary

for uniformity.
The choice of this dataset is directly linked to our theoretical findings in the previous sections,

particularly the application of the test of uniformity based on the varextropy estimator ∆̂. As
we shown earlier, the test statistic ∆̂ can effectively detect whether a dataset conforms to a
uniform distribution, which is important for validating the uniformity of the transformed data.
Given that uniformity is a key assumption in many statistical procedures, it is essential to verify
whether the transformation of the vinyl chloride concentrations actually results in data that
adheres to the uniform distribution.

For this dataset, we computed the value of the proposed test statistic ∆̂ using a window size
m = 16 and sample size n = 34. The computed statistic was found to be ∆̂ = 0.0329. The critical
value for the test at a significance level of α = 0.05 was obtained through Monte Carlo simulation,
resulting in a critical value of 0.0733 for m = 16 and n = 34. Since the test statistic ∆̂ = 0.0329
is less than the critical value of 0.0733, the observed statistic lies within the acceptance region.

This outcome suggests that the transformed data conforms to the uniform distribution, and
therefore, we fail to reject the null hypothesis of uniformity. In other words, our proposed test
successfully verifies that the transformation applied to the vinyl chloride data indeed resulted
in a uniform distribution, aligning with the expectations of the transformation method.

Dataset 1: 0.0518, 0.0518, 0.1009, 0.1009, 0.1917, 0.1917, 0.1917, 0.2336, 0.2336, 0.2336, 0.2733,
0.2733, 0.3467, 0.3805, 0.3805, 0.4126, 0.4431, 0.4719, 0.4719, 0.4993, 0.6162, 0.6550, 0.6550,
0.7059, 0.7211, 0.7356, 0.7623, 0.7863, 0.8178, 0.8810, 0.9337, 0.9404, 0.9732, 0.9858.

The dataset represents vinyl chloride concentrations transformed into a uniform distribution
using the probability integral transformation (Xiong et al., 2022). The value of the test statistic
∆̂ is 0.0329 when the window size m = 16 and the sample size n = 34. The critical point is 0.0733
at the 5% level of significance, based on Monte Carlo simulations for m = 16 and n = 34. Since
the estimated value of the test statistic lies in the acceptance region, our test based on ∆̂ fails
to reject the null hypothesis. Therefore, the test verifies that the data is fitted to a uniform
distribution.

The results of our uniformity test based on the varextropy estimator ∆̂ indicate that the
transformed vinyl chloride data fits well with a uniform distribution. The calculated test statistic
(∆̂ = 0.0329) was smaller than the critical value (0.0733) at the 5% significance level, suggesting
that we failed to reject the null hypothesis of uniformity.

However, there are several limitations and potential biases in our analysis. First, the critical
values were derived using Monte Carlo simulations, which, while accurate, are approximations
and depend on the number of replications used (10,000 in this case). Furthermore, the perfor-
mance of the test is influenced by the sample size, and our results may not generalize well to
smaller or larger samples. Another limitation is the assumption that the data under the null
hypothesis is perfectly uniform, which may not always hold in practice, especially with real-
world data where small deviations from uniformity can occur. Additionally, the window size
used in the calculation of ∆̂ could impact the test’s power and its sensitivity to nonuniformity.
While the test performed well in detecting significant departures from uniformity in this case,
its ability to detect subtle differences might be limited. Moreover, the Monte Carlo method,
while effective, can introduce bias if the number of replications is not large enough or if the
underlying assumptions about the test statistic are inaccurate.
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Lastly, the choice of dataset, in this case, vinyl chloride concentrations, may not be rep-
resentative of other datasets, and the conclusions drawn here might not be directly applicable
to different contexts. Despite these limitations, the test demonstrates its utility in assessing
uniformity, and future research can refine its performance and extend its application to other
distributions.

7 Conclusion

The results of our study demonstrate that the proposed test based on the varextropy estimator
∆̂ is an effective tool for assessing the uniformity of datasets. We applied the test to real-world
vinyl chloride concentration data that had been transformed to fit a uniform distribution using
the probability integral transformation. The test statistic ∆̂ = 0.0329 was found to be smaller
than the critical value of 0.0733 at a 5% significance level, leading to the conclusion that the
transformed data conforms to a uniform distribution. This outcome is consistent with our
theoretical expectation that ∆̂ should be small when the data follows a uniform distribution.

Moreover, the test showed strong performance in detecting deviations from uniformity when
applied to simulated data from a Beta(1,2) distribution, a common alternative to the uniform
distribution. As expected, the test’s power increased with sample size, and the critical values,
derived through Monte Carlo simulations, provided a reliable framework for determining decision
thresholds for uniformity testing at various levels of significance. These results demonstrate the
robustness and practicality of the proposed test, especially in the context of assessing uniformity
in real-world datasets.

However, the study also highlights certain limitations. The Monte Carlo simulation approach,
while effective, relies on approximations that depend on the number of replications used, and
the performance of the test can be influenced by the sample size and the choice of window
size. Additionally, the test assumes that the null hypothesis represents perfectly uniform data,
which may not always hold in practice, particularly when small deviations from uniformity exist
in real-world data. These factors suggest that while the test performs well under the given
conditions, its generalizability to other datasets and scenarios may require further investigation.

Future research could address several areas for improvement. First, exploring the test’s per-
formance with smaller sample sizes and more diverse datasets would provide insights into its
robustness and lead to better calibration of critical values. Investigating the test’s sensitivity
to a wider range of nonuniform distributions, beyond Beta(1,2), could help evaluate its applica-
bility to different data patterns. Enhancing the Monte Carlo simulation process through more
efficient sampling techniques or parallel processing could improve both computational speed and
scalability. Additionally, examining the test’s robustness to different distributional assumptions,
such as normal or skewed distributions, would further validate its flexibility.

Comparing the varextropy-based test with other established goodness-of-fit tests, such as the
Kolmogorov–Smirnov or Anderson-Darling tests, could provide valuable insights into its relative
strengths and weaknesses. Expanding the test’s application to multivariate or time-series data
could broaden its utility in domains such as finance, ecology, and other fields that deal with
complex data structures. Furthermore, implementing dynamic window size selection methods
might enhance the accuracy and adaptability of the test across various datasets.
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Lastly, applying the test to additional real-world datasets from diverse fields would help
assess its practical applicability and identify domain-specific challenges or opportunities for
refinement. Addressing these areas in future research could improve the accuracy, efficiency,
and broad applicability of the proposed uniformity test, making it a valuable tool for detecting
uniformity across a variety of statistical and applied contexts
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