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Abstract  The increasing reliance on Internet of Things 

devices in smart grids has introduced significant 

cybersecurity challenges, particularly in the detection and 

prevention of Advanced Persistent Threats. These threats, 

characterized by their stealth and persistence, can 

compromise the integrity and functionality of critical grid 

infrastructure. This paper proposes the use of Deep 

Reinforcement Learning to enhance cybersecurity in smart 

grids by leveraging the ProAPT model, which is 

specifically designed to predict and mitigate Advanced 

Persistent Threats. The ProAPT model utilizes a Markov 

Decision Process to simulate and assess potential threats, 

dynamically adapting to the evolving security landscape. 

The model is trained using the CICAPT-IIoT dataset, 

which includes simulated attack scenarios in industrial 

IoT networks. The results of our experiments demonstrate 

the effectiveness of the ProAPT model in detecting and 

preventing APTs in smart grid environments. 

Experimental results show that the ProAPT model 

significantly outperforms traditional machine learning 

algorithms like Random Forest, Support Vector Machines, 

and Logistic Regression, achieving 93.8% accuracy, 

93.12% precision, 95.2% recall, and 94.15% F1-Score. 

The feature importance analysis reveals that traffic-

related features such as packet size variance and 

connection duration are crucial in identifying Advanced 

Persistent Threats. This paper demonstrates the 

effectiveness of Deep Reinforcement Learning in 

enhancing smart grid cybersecurity by proactively 

identifying and mitigating cyber threats, offering a 

promising approach to securing IoT-based critical 

infrastructures against sophisticated cyberattacks. 
 

Key Words  Cyber Security, Smart Grids, Advanced 

Persistent Threats, Deep Reinforcement Learning, 

ProAPT Model, Feature Importance. 
 

                                                           
 Manuscript received 2024 December 29, Revised 2025 March 4, Accepted 2025 June 16.  
1 Corresponding author. Assistant Professor Department of Industrial and Systems Engineering, Tarbiat Modares University, Tehran, 

Iran. Email: m_dehghan@modares.ac.ir  
2 Assistant Professor, Department of Mechanical Engineering, Payame Noor University, Tehran, Iran. 

 

1. INTRODUCTION 
The transformation from traditional power grids to smart 

grids has revolutionized the energy sector by integrating 

modern technologies such as IoT devices, sensors, and 

advanced communication systems. These technologies 

enable real-time monitoring, automated decision-making, 

and predictive maintenance, making energy supply more 

efficient, reliable, and sustainable. In particular, smart 

grids enable dynamic management of electricity 

generation, distribution, and consumption, improving 

energy efficiency and facilitating the integration of 

renewable energy sources. However, the increasing 

complexity of smart grids increases their vulnerability to 

cybersecurity threats. The emergence of IoT in smart grids 

has significantly increased the number of connected 

devices and systems, many of which are exposed to 

external networks or deployed in remote or insecure 

environments. While these IoT devices are essential to 

optimizing network operations, attackers can also exploit 

vulnerabilities in these devices to infiltrate network 

systems, manipulate operations, or disrupt network 

operations. These threats are exacerbated by the increasing 

sophistication and persistence of cyber-attacks targeting 

critical infrastructure, which can have serious 

consequences such as system failure, data theft, and even 

property damage [1].  

 One of the most concerning types of cyber-attacks 

related to smart grids is the APT. An APT is a type of 

advanced, stealthy cyber-attack designed to infiltrate a 

network and remain undetected for long periods of time. 

Unlike traditional cyber-attacks, which are often short-

lived and detectable by traditional defense mechanisms, 

APTs are characterized by their multi-stage nature and 

long-term objectives, making them difficult to identify and 

contain. These threats are often launched by well-funded 

and organized attackers, including nation states and 

cybercrime organizations, who seek to maintain persistent 
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access to critical systems for espionage, sabotage, or data 

exfiltration. The impact of APTs on the smart grid is 

potentially devastating [2].  

 If attackers successfully penetrate the smart grid, they 

can manipulate operational data, disrupt the flow of 

electricity, or compromise the security of the entire 

system. For example, APTs could attack the power grid's 

control systems, causing power outages and damaging the 

electrical infrastructure. Furthermore, because the smart 

grid is decentralized and relies heavily on IoT devices for 

data collection and decision-making, these attacks are 

increasingly difficult to detect.  

 Traditional defense mechanisms such as signature-

based IDSs and basic anomaly detection methods are often 

ineffective against such complex and persistent threats. 

The scale and complexity of the smart grid poses unique 

challenges for cybersecurity. Unlike traditional IT 

networks, where security measures can be deployed 

centrally, the smart grid is comprised of numerous 

interconnected devices, including smart meters, grid 

sensors, phases of power flow management systems, and 

actuators. These devices are distributed across vast 

geographic areas and communicate with each other in real 

time to ensure efficient network operation. Given this 

dynamic and decentralized structure, ensuring the security 

of the smart grid requires not only protecting individual 

devices, but also ensuring that all components work 

together securely [3].   

 Recent research highlights the growing importance of 

deep learning techniques, particularly Deep 

Reinforcement Learning [4], in addressing the dynamic 

and adaptive nature of APTs in smart grids. DRL offers a 

promising solution for proactive cybersecurity measures 

by continuously learning from interactions with the 

environment and adapting strategies accordingly. Studies 

such as [5] emphasize the role of deep learning in 

enhancing the resilience of smart grid networks against 

evolving cyber threats. In addition, Sewak et al. [6] 

demonstrate the effectiveness of DRL-based models in 

detecting complex cybersecurity threats, including APTs, 

by using reward-based learning frameworks. These 

advancements are particularly relevant for smart grid 

systems, where traditional cybersecurity measures are 

increasingly inadequate due to the rapid evolution of attack 

techniques and the scale of connected devices. 

 Moreover, recent studies such as [7,8] have proposed 

robust models integrating machine learning and DRL for 

detecting and mitigating APTs. They have designed a DRL 

framework for smart grid cybersecurity, highlighting its 

ability to adapt to the complex, dynamic nature of cyber-

physical attacks. Khan et al. [7] provide an overview of the 

cyber threats facing modern smart grids and propose 

advanced machine learning models to counter these 

challenges. These studies reinforce the need for adaptive 

and proactive cybersecurity frameworks like the ProAPT 

model, which utilizes DRL to predict and mitigate APTs 

before they fully manifest, thus improving the security and 

reliability of smart grids. In addition, IoT devices often 

have limited processing power and storage capacity and 

may not support traditional security measures, further 

complicating the detection and containment of complex 

cyber threats. Furthermore, the growing reliance on M2M 

communications and cloud computing in smart grids 

increases the attack surface and provides attackers with 

numerous entry points. This is particularly problematic 

because attackers may exploit vulnerabilities in the 

software or hardware of IoT devices, as well as in 

communication protocols and network interfaces. 

 As a result, traditional cybersecurity approaches are no 

longer sufficient to address emerging threats to smart 

grids. Given the limitations of traditional techniques and 

the increasing sophistication of cyber-attacks, there is an 

urgent need for more advanced and adaptive solutions that 

can effectively detect, predict, and mitigate APTs in smart 

grids [9]. 

 In this paper, we propose a novel solution to combat 

cybersecurity threats in smart grids by detecting and 

mitigating APTs using DRL. DRL is a branch of machine 

learning in which an agent learns how to make optimal 

decisions by interacting with the environment and 

receiving feedback in the form of rewards or penalties 

[10]. Unlike supervised learning approaches that require 

labeled data, DRL operates in dynamic environments and 

is able to continuously learn from new interactions and 

adapt its strategy accordingly. The proposed solution 

leverages the ProAPT (Prediction of Advanced Persistent 

Threats) model [11], which is designed to predict and 

mitigate APTs using deep reinforcement learning. The 

central idea behind the ProAPT model is to use a Markov 

decision process (MDP) to simulate the evolving security 

state of a smart grid system and determine the optimal 

action to address potential threats. 

 In the context of a smart grid, these actions might 

include triggering security protocols, isolating affected 

devices, or adjusting network configurations to prevent the 

attack from spreading. By continually interacting with the 

grid’s environment and receiving feedback, the model 

learns how to improve threat detection and mitigation 

strategies over time, enabling it to identify APTs before 

they fully manifest. One key innovation of this approach is 

its ability to proactively predict APTs. Rather than relying 

on reactive measures such as post-attack detection, the 

ProAPT model predicts possible future threats based on 

historical attack data and ongoing grid activity. This 

proactive approach significantly improves the resilience of 

the grid, enabling early intervention to prevent severe 

damage. The model is trained using the CICAPT-IIoT 

dataset [12], which contains simulated attack scenarios in 

industrial IoT networks. The ProAPT model is applied to 

this dataset to evaluate its effectiveness in detecting and 

mitigating APTs in smart grid environments.  

 This paper makes the following key contributions to 

advancing smart grid cybersecurity: 

 Novel Application of DRL for APT Prediction: 

Unlike previous works that rely on traditional 

machine learning approaches, this study pioneers 

the use of DRL to predict APTs in smart grids, 

enabling a more adaptive and proactive defense 

mechanism. 

 Empirical Validation on a Real-World Industrial 

IoT Dataset: We rigorously evaluate our 

proposed ProAPT model using the CICAPT-IIoT 
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dataset, which includes diverse and realistic 

cyber-attack scenarios specific to critical 

infrastructure, ensuring practical relevance and 

generalizability. 

 Feature Importance-Driven Model Optimization: 

Our approach integrates a feature importance 

analysis to systematically identify and prioritize 

the most critical features, enhancing model 

interpretability and efficiency. 

 Comprehensive Performance Assessment: 

Unlike prior studies that focus on limited 

evaluation metrics, we conduct an extensive 

performance analysis using accuracy, precision, 

recall, and F1-score to provide a holistic 

understanding of the model’s effectiveness in 

detecting and mitigating APTs. 

 This paper is structured as follows: 

 Section 2 provides a comprehensive overview of related 

research in the areas of cybersecurity in smart grids, APT 

detection, and the application of DRL in cybersecurity. 

Section 3 presents the methodology detailing the ProAPT 

model, its adaptation to smart grid cybersecurity, the 

training process and evaluation using the CICAPT-IIoT 

dataset. Section 4 describes the experimental setup 

including the results of applying the ProAPT model and 

compares its performance with other conventional models 

in terms of detection accuracy, precision and F1-score. In 

section 5 feature importance methods are implemented and 

the best features are stated. Finally in sections 6 and 7 we 

discuss and conclude the paper with an overview of the 

contributions and suggestions for future work such as 

improving scalability and integrating it into existing smart 

grid security frameworks. 

 

2. RELATED WORK 

Smart grid cybersecurity is a critical concern due to the 
integration of advanced technologies and data-driven 
systems, which, while enhancing efficiency and 
sustainability, also introduce vulnerabilities. These 
vulnerabilities manifest in various forms, such as false data 
injection attacks, malware, and cyber-physical attacks, 
posing significant risks to the integrity and reliability of 
smart grids. Addressing these threats requires a 
multifaceted approach involving detection, prevention, 
and mitigation strategies. Machine learning models, such 
as Extra Tree, Random Forest, and Extreme Gradient 
Boosting, have shown high accuracy (up to 98%) in 
detecting these attacks, providing a robust defense 
mechanism [13]. 
 Cyber-Physical attacks involve manipulating power 
demands using IoT devices or introducing false sensor 
readings. A DRL framework has been proposed to counter 
these attacks by triggering appropriate protection 
sequences, verified through reachability analysis for safety 
[14]. The use of SCADA systems in smart grids makes 
them susceptible to malware, which can exploit IT-OT 
integration vulnerabilities. The complexity of these 
systems increases the risk of cyber threats, necessitating 
enhanced cybersecurity measures [15]. 
 The integration of information and operations 

technology in smart grids introduces new vulnerabilities, 
requiring continuous monitoring and updating of security 
protocols to prevent breaches [16]. Implementing a 
combination of traditional and advanced security measures 
is crucial. This includes regular updates, intrusion 
detection systems, and employee training to recognize and 
respond to threats [7]. Ongoing research is essential to 
address emerging threats and develop innovative 
solutions, such as advanced algorithms for attack detection 
and mitigation [16]. While smart grids offer numerous 
benefits, such as improved energy efficiency and 
integration of renewable sources, they also present unique 
cybersecurity challenges. The dynamic nature of cyber 
threats necessitates a proactive and adaptive approach to 
security, ensuring the resilience and reliability of smart 
grid infrastructures. 
 Smart grids are an essential part of modern energy 
systems, but they are also vulnerable to various 
cybersecurity threats due to their increasing reliance on 
digital technologies and interconnected devices. 
Researchers have proposed several solutions to secure 
smart grids, which can be broadly categorized into IDS, 
anomaly detection techniques, and authentication 
protocols. One of the primary methods used to protect 
smart grids is the development of IDS, which monitor the 
network for any signs of unauthorized access or abnormal 
behavior. IDS in smart grids often rely on signature-based 
detection, which matches observed network behavior to 
known attack patterns. However, as smart grid 
environments evolve, this approach has become less 
effective due to the increasing sophistication of 
cyberattacks and the dynamic nature of smart grids. To 
address this limitation, anomaly detection techniques, such 
as statistical methods and machine learning, have been 
integrated into IDS to detect deviations from normal 
operations that could indicate a security breach [17]. 
 These methods, though effective in detecting new types 
of attacks, struggle with issues such as false positives and 
the need for large amounts of labeled data. Detecting and 
responding to APTs in smart grids presents unique 
challenges. APTs are characterized by their stealthy, 
multi-stage nature and ability to remain undetected over 
long periods. This makes them particularly dangerous in 
smart grids, where attackers can potentially gain control of 
critical infrastructure systems without alerting security 
systems. Additionally, the heterogeneity of smart grid 
components, the presence of many IoT devices, and the 
distributed nature of control make it difficult to monitor 
and secure the entire grid effectively. These challenges 
require advanced, dynamic methods of detection and 
response that can adapt to new and evolving attack vectors. 
Several studies have explored using real-time monitoring 
and adaptive security models to mitigate these challenges 
[5]. 
 APTs are one of the most critical cybersecurity concerns 
for modern infrastructure, including smart grids. Unlike 
typical cyberattacks, which tend to be short-lived and 
easily detectable, APTs are long-term attacks that exploit 
vulnerabilities in a system over an extended period. APTs 
often involve multiple stages, including initial infiltration, 
lateral movement within the network, data exfiltration, and 
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maintaining persistence over time. They are designed to 
avoid detection and maximize their impact on targeted 
systems [2]. 
 APTs are usually associated with highly organized 
threat actors, such as nation-states or cybercriminal 
groups. These actors have significant resources and 
expertise, allowing them to plan and execute multi-phase 
attacks. Key characteristics of APTs include 
sophistication, long-term persistence, and specific 
targeting. APT attacks often target high-value assets, 
including critical infrastructure like power plants, water 
supplies, and transportation systems, with the goal of 
gaining unauthorized access, stealing sensitive data, or 
causing operational disruptions [18].  
Some of the most infamous APT attacks targeting critical 
infrastructure include Stuxnet [19], which specifically 
targeted Iran’s nuclear facilities, and BlackEnergy [20], 
which affected Ukraine's power grid. These attacks 
demonstrate the high stakes involved in cybersecurity for 
critical infrastructure and the potential consequences of a 
successful APT. Stuxnet, for example, manipulated 
control systems within the targeted facility, leading to 
significant physical damage. Traditional methods for 
detecting APTs include signature-based approaches, 
which compare network traffic to predefined attack 
patterns, and statistical methods, which look for anomalies 
in system behavior that may indicate an attack. However, 
these approaches often struggle to detect sophisticated, 
low-and-slow APTs. Recent research has focused on 
leveraging machine learning techniques to improve APT 
detection. Models such as random forests, support vector 
machines (SVM), and deep learning have shown promise 
in identifying previously unknown attack patterns. Despite 
this progress, a major challenge remains the lack of labeled 
data for training models, as APTs are rare and difficult to 
simulate in a controlled environment [21].  
 DRL has emerged as a powerful tool for addressing 
complex decision-making problems in dynamic 
environments, including cybersecurity. DRL involves 
training an agent to take actions in an environment to 
maximize cumulative rewards, making it an ideal approach 
for security tasks that require continuous adaptation and 
learning. DRL has shown great potential in the field of 
cybersecurity due to its ability to adapt to evolving threats 
and optimize long-term security strategies. DRL-based 
models have been used for tasks such as intrusion 
detection, vulnerability scanning, attack detection, and 
incident response. By continuously learning from the 
environment and adjusting its actions based on feedback, 
DRL can provide an adaptive, proactive defense 
mechanism against cyberattacks, including APTs. For 
example, DRL has been used to model intrusion detection 
in IoT networks, where it learns to distinguish between 
benign and malicious activities based on observed 
behaviors [22].  
 One of the main advantages of DRL is its ability to learn 
optimal decision policies from raw data without relying on 
hand-crafted rules or predefined attack signatures. This 
capability is particularly useful in environments like smart 
grids, where attack patterns are constantly evolving. 
Moreover, DRL-based models can handle complex, multi-
step security tasks that require dynamic adjustments based 

on the state of the system. For instance, DRL can optimize 
actions to prevent attacks while minimizing the impact on 
system performance and resource consumption. Despite its 
potential, applying DRL to cybersecurity poses several 
challenges. One of the main challenges is the sample 
inefficiency of deep reinforcement learning algorithms, 
where a large number of interactions with the environment 
are often needed to converge on an optimal policy. 
Additionally, reward shaping can be difficult, as 
determining the appropriate rewards for specific security 
actions in dynamic environments like smart grids is not 
straightforward. Finally, training DRL models in real-
world cybersecurity scenarios often requires access to 
large amounts of labeled data, which is typically not 
available for rare events such as APTs [6].  
 DRL, a promising technique for cybersecurity, enables 
models to learn optimal responses by interacting with the 
environment and adapting over time. It has shown 
significant potential in various fields, including robotics, 
gaming, and cybersecurity. One notable application is 
ProAPT [11], which uses DRL to predict the next stages 
of APTs. The model learns from historical attack data and 
environmental conditions to anticipate the next steps in an 
ongoing attack, enabling proactive defense mechanisms.  
 Recent advances in DRL have led to a surge of research 
focused on enhancing cybersecurity in smart grids and 
critical infrastructures. Abdi et al. [5] provided a 
comprehensive survey on the application of deep learning, 
particularly DRL, to proactively secure smart grid 
environments. They emphasized how DRL frameworks 
can adaptively counter zero-day attacks and sophisticated 
APTs. Veith et al. [23] explored how DRL agents trained 
on misuse cases can learn novel attack vectors, 
representing a significant leap in proactive APT detection. 
Sinha et al. [24] extended this work by proposing a cyber-
resilient demand response system, which not only 
optimizes grid operations but also integrates DRL for 
enhanced security against APTs and false data injection. 
Furthermore, Li et al. [25] introduced a state-adversarial 
DRL-based scheduler for integrated energy systems that 
mitigates the effect of data manipulation attacks on 
demand-response coordination. To support secure 
communication in grid CPS, Sun et al. [26] proposed a 
DRL-based multi-agent scheme for secure resource 
allocation under adversarial conditions.  
 These contributions collectively reinforce the relevance 
and applicability of DRL—especially DQN variants—in 
detecting and mitigating APTs across multiple smart grid 
environments [27]. While the previous research 
demonstrate important progress in applying machine 
learning and deep learning methods to smart grid 
cybersecurity, several critical gaps remain that hinder their 
real-world applicability. Most of the existing deep learning 
models—such as LSTM, CNN, and GRU—operate in a 
supervised learning setting and rely heavily on large 
volumes of labeled data. This is a significant limitation in 
the context of APTs, which are rare, highly complex, and 
difficult to label accurately due to their stealthy and 
evolving nature. Moreover, many previous solutions are 
static in their behavior and lack the ability to adapt over 
time. As cyber threats in smart grid environments grow 
more dynamic, fixed models trained on historical data may 
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struggle to detect novel attack strategies. Another notable 
limitation is the frequent separation between different data 
modalities. Prior studies often focus on either network 
traffic or system behavior independently, rather than 
combining both for richer context-aware detection. The 
proposed ProAPT model addresses these limitations 
through its integration of deep reinforcement learning with 
LSTM-based temporal modeling, allowing it to 
dynamically learn and predict sequential attack stages. 
Unlike static models, ProAPT can adapt to new patterns 
without requiring manual retraining.  

 

3. METHODOLOGY 
The ProAPT model [11] is a novel approach designed for 
predicting and mitigating APTs using DRL. The model 
leverages DRL's ability to continuously learn and adapt to 
dynamic environments, making it ideal for addressing the 
evolving nature of cyber threats in complex systems like 
smart grids. Smart grids present unique challenges due to 
their complexity, scale, and reliance on interconnected IoT 
devices.  
 The ProAPT model is based on Q-learning and LSTM 
to project the following step of APTs. As some relations 
exist between the attack steps, LSTM is used for value 
function approximation. LSTM is a modified version of 
RNN and facilitates the recall of past data and solves the 
problems of RNN. LSTM is employed to keep the previous 
states over long periods. The APT projection problem can 
be considered as a Markov Decision Process. Detection of 
normal or abnormal behavior at the current time step will 
alter the environment. The changing environment will also 
influence the next decision. Hence, it is natural to adapt 
this problem to the framework of Reinforcement Learning.  
We describe the Deep Reinforcement Learning System for 
the APT projection problem as follows: We demonstrate 
each state by features such as the source IP address, 
destination IP address, source port number, destination 
port number, timestamp, attack type, header length, flow 
duration. The agent receives the current state and selects 
the best action based on the ϵ -greedy policy. Indeed, the 
agent receives the correlated alerts and selects the 
following attack step. The reward is 1 or 0 for a 
correct/incorrect attack prediction. We use a Q-learning 
algorithm to learn the agent. To approximate the Q 
function, we employ LSTM, as some relations exist 
between attack steps. A Q function provides the maximum 
expected reward at a specific state and action. We employ 
APT datasets instead of interacting with the environment 
to reduce the time spent learning, testing, and evaluating. 
Although employing datasets increases the speed of 
learning and testing, interacting with the environment is 
suitable for predicting unknown APTs.  

 As mentioned, we give data from an APT dataset as 

input to DRLS. Based on the input data, the agent learns 

how to predict the following step of attacks.  

 Based on Fig.  1, we randomly divide the input dataset 

into sections and select the index. Then, from the selected 

index, we consider N number of data as training data. Each 

Training data, as input for LSTM, include the features of 

the alerts such as source IP address, destination IP address, 

source port number, destination port number, timestamp, 

attack type, header length, and flow duration. The second 

part is the data label in step t+1. This part shows the attack 

label in step t+1 such as automated collection, screen 

capture, exfiltration over C2 channel, ingress tool transfer.  

 For example, S0 represents the attack step at (t0), and 𝑎1
∗ 

expresses the attack label at time (t1) and for the state S1. 

Since we want to recognize the following step of the attack 

in the DRLS, we consider the following step label in each 

state and use it to determine its reward. Fig.  2 

demonstrates a DRLS to predict the following attack step. 

As mentioned, we give data from an APT dataset as input 

to DRLS. Based on the input data, the agent learns how to 

predict the following step of attacks. Input data consists of 

three parts. The first part expresses the state at time (t). 

This part includes the features of the correlated alerts at 

time (t). The second part is the data label in step (t+1). This 

part shows the attack label in step (t+1). The third part 

describes the state at time (t+1). That is a feature of 

correlated alerts at time (t+1). The first part of the input is 

entered into the LSTM neural network to approximate the 

value function of different actions for the state at time (t). 

In this context, LSTM approximates the value function for 

the following step of the ongoing attack. We display the 

approximated value with (𝑎𝑡+1
^ ), which has the value 

(𝑞𝑡+1
^ ). Then, based on the ϵ  -greedy policy, the action 

with the highest value function is selected by a probability 

of ϵ . Finally, the approximated value (𝑎𝑡+1
^ ) is compared 

with the main label of the following step of the attack, 

which is the second part of the input data (𝑎𝑡+1
∗ ). If the 

comparison result is equal, the reward (+1) is given to the 

agent; otherwise, the reward (0) is given. The third part of 

the input is used to calculate the error function and update 

the LSTM. So that the state-expressing features at time 

(t+1) are entered in the second LSTM for approximation 

of value functions for different actions. At this point, the 

policy is the selection of action with the most significant 

value. In our problem, actions are the following step of 

attacks. Then, the obtained value is used to calculate the 

Mean Square Error Loss between the Q-value 

approximated by the LSTM for the state at time t and a 

reference value (qref ). The reference value (qref = rt + λ × 

𝑞𝑡+1
^ .) is obtained by adding the reward at time t (rt) to the 

Q-value for the state at time t+1 multiplied by a discount 

factor (λ). The pseudocode for the smart grids APT 

prediction is depicted in Algorithm 1.  

 The output space (actions) corresponds to predicting the 

next attack step in an APT sequence is stated in Table 1. 
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Algorithm 1.  Smart Grids APT prediction 
 

 
Fig.  1. Data Preparation in ProAPT model (Dehghan et al., 2022) 
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Fig. 2. The architecture of the ProAPT Model (Dehghan et al., 2022) 

TABLE 1 

   The output space corresponds to APT prediction 

 

Action ID Predicted Attack Step Description 

0 Automated Collection Data staged for exfiltration 

1 Screen Capture Attacker takes screenshots 

2 
Exfiltration over C2 

Channel 

Sensitive data exfiltrated using covert 

communication 

3 Ingress Tool Transfer 
Uploading malicious tools for further 

exploitation 

4 Credential Dumping 
Extraction of credentials from 

memory or files 

5 Remote SSH Remote access for lateral movement 

6 Masquerading 
Use of deceptive filenames/paths to 

evade detection 

7 Data Destruction Deletion of logs or sabotage 

... 
(Additional tactics as 

needed) 

Aligned with MITRE categories from 

the CICAPT-IIoT dataset 

 

 

Fig.  3. Pre-processing Steps 

 

 The steps of our methodology is as follows:   

 Data Preprocessing: Initially, the data is preprocessed 

to standardize features and address any missing values, as 

shown in Fig.  3.  

Data Loading Data Cleaning
Specifying the 
next step label

Encoding Non 
Numerical 

Data

Data 
Normalization
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 Hyperparameters Tuning: Key hyperparameters like 

learning rate, discount factor, and exploration rate are 

carefully tuned to maximize the model’s performance. 

Grid search is used to find the optimal combination of 

these hyperparameters, ensuring the model performs at its 

best.  

 Feature Selection: Performed using Random Forest-

based feature importance to select the most informative 

attributes. 

 Data Splitting: The dataset is split into 70% for 

training, 30% for testing 

 Model Training: The model undergoes training using 

the reinforcement learning framework. As it trains, the 

model updates its Q-values based on the feedback it 

receives from the reward function, gradually refining its 

predictions over time. 

 Test and Evaluation: Once trained, the model is 

evaluated using standard classification metrics like 

accuracy, precision, recall, F1-score. These metrics gauge 

how well the model predicts the next attack in the 

sequence, considering both correct predictions and 

penalties for mistakes. By evaluating the model with these 

metrics, we can assess its effectiveness in predicting the 

next step in an attack sequence and its overall value in 

enhancing smart grid cybersecurity with proactive defense 

strategies. 

 

4. EXPERIMENTS AND RESULTS 
The CICAPT-IIoT dataset [12] is employed to evaluate the 

proposed prediction model. This dataset is designed for 

cybersecurity research, specifically for detecting APTs in 

industrial Internet of Things environments. The dataset 

simulates a sophisticated APT campaign based on the 

APT29 attack group, capturing both provenance logs and 

network traffic data from a hybrid testbed that integrates 

real and simulated IIoT components. The CICAPT-IIoT 

dataset was generated using a controlled IIoT testbed built 

on the Brown-IIoTbed framework, featuring a 

combination of physical and virtual components. It 

consists of two main data types: provenance logs, and 

network traffic logs.  

 The provenance logs capture system-level interactions 

and process relationships through a provenance graph. It 

includes 32 unique features, tracking process execution, 

file access, and network connections. The network traffic 

logs include an attack information file, detailing attack 

timestamps, process IDs of malicious actions, and attack 

categories, enabling researchers to correlate network 

activity with specific APT tactics.  This dataset 

realistically replicates multi-stage APT campaigns 

relevant to smart grid cybersecurity. The attack framework 

follows MITRE ATT&CK tactics, encompassing over 20 

distinct attack techniques across eight major categories as 

stated in Table 2. [12]. 

The dataset’s attack scenarios closely mimic real-world 

threats to smart grids, where attackers exploit 

vulnerabilities in IIoT devices, industrial control systems, 

and network infrastructure. By incorporating provenance-

based monitoring and network traffic analysis, this dataset 

provides a robust foundation for machine learning-based 

APT detection in critical infrastructure security. 

 As stated above, the dataset used for this research is the 

CICAPT-IIoT dataset, which provides a rich set of features 

related to the operation of Industrial Internet of Things 

(IIoT) devices and the detection of network-based threats, 

including. This dataset includes real-time network traffic 

data, device status, and attack patterns, which serve as the 

input for our DQN and LSTM models. To train the 

ProAPT model, we preprocess the dataset following the 

steps outlined in Fig.  3 Next, we select the best 

hyperparameters. Table 3. demonstrates the best selected 

one.  

 By setting a low learning rate, we ensure that the 

updates to the model remain stable. Additionally, a high 

discount factor emphasizes long-term rewards, helping the 

model prioritize future outcomes. A low exploration rate 

encourages the model to exploit the policies it has already 

learned, while a larger batch size and higher update 

frequency help stabilize the training process. 

 

TABLE 2  

Attack Techniques Used in CICAPT-IIoT Dataset [12] 

 

Tactic Example Techniques 
Relevant APT 

Groups 

Collection 
Data Staging, Screen 

Capture 

APT28, APT29, 

APT39 

Exfiltration 
Exfiltration over C2 

Channels 

Lazarus, APT3, 

APT32 

Command & 

Control 
Ingress Tool Transfer APT29, APT3 

Persistence 
Event-Triggered 

Execution 

APT28, APT29, 

APT3 

Discovery 
System & Network 

Discovery 

Chimera, 

Dragonfly, APT29 

Credential Access 
Unsecured Credentials, 

Password Extraction 

APT3, APT39, 

HEXANE 

Lateral Movement Remote SSH Access APT29, Lazarus 

Defense Evasion 
Masquerading, Data 

Destruction 

APT28, APT29, 

Dragonfly 

 

   



Journal of Computer and Knowledge Engineering, Vol.9, No.1.2025. 33 

 

 

 

TABLE 3 

 The best hyperparameters 

 

Model Hyperparameter Value 

DQN with LSTM 

 

Action Space Security measures (e.g., block traffic, adjust security policies) 

State Space Network traffic features, device status, attack signatures 

Neural Network Architecture Fully connected feedforward network 

Learning Rate 0.001 

Replay Buffer Size 10,000 

Batch Size 64 

Epsilon (for exploration) 1 (decaying to 0.1) 

Target Network Update Frequency Every 100 steps 

Input Sequences of time-series data (traffic, device status) 

Number of LSTM Units 100 

Learning Rate 0.001 

Epochs 50 

Batch Size 64 

Activation Function ReLU (hidden layers), Softmax (output) 

 

 To evaluate the performance of our prediction model, 

we use several key metrics, as outlined by Carvalho et al. 

[28]: 

 Accuracy: This measures the proportion of correct 

predictions out of all predictions. It provides an overall 

indication of how well the model is performing in 

predicting the next attack step in the sequence. 

 Precision: Precision assesses how many of the 

predicted attacks are actually correct. This is particularly 

important in cybersecurity, as false positives can have 

significant consequences. A high precision ensures that the 

model isn’t falsely predicting attack steps. 

 Recall: Recall measures how many of the actual attacks 

were correctly predicted. In cybersecurity, this metric is 

crucial because we want to make sure the model doesn’t 

miss any attacks, even if it leads to a few false positives. 

 F1-Score: The F1-score is the harmonic mean of 

precision and recall, providing a balanced measure of both. 

It is especially valuable when dealing with imbalanced 

datasets, such as when attacks are less frequent than 

normal behavior. 

 Time Consumption (ms): The amount of time each 

model takes to process the data and make predictions. 

More complex models like DQN typically take longer to 

process due to their deeper architectures and the need for 

more computations. 

 Bandwidth Usage (KB/s): The amount of bandwidth 

consumed during data transfer between the model and the 

system. Models that require processing more complex data 

often use more bandwidth due to the need for transmitting 

larger volumes of information. 

 Throughput (ops/s): The number of operations the 

model can perform per second. Models with optimized 

architectures and faster computation capabilities generally 

have higher throughput, meaning they can handle more 

operations in a shorter amount of time 

 These metrics are essential for assessing how well the 

model can predict the next steps in a multi-step attack 

sequence. In particular, precision and recall are crucial in 

cybersecurity to minimize false positives and ensure that 

attacks are detected in a timely manner [29]. We compared 

the proposed ProAPT model with additional deep learning 

(non-reinforcement) baselines beyond traditional ML 

models. Specifically, we included models widely used in 

temporal classification tasks such as GRU, Bi-LSTM, 

CNN-   LSTM, and Transformer architectures, as depicted 

in Table 4. These models were trained on the same 

CICAPT-IIoT dataset and evaluated using the same 

metrics as ProAPT to ensure a fair comparison.  

 As shown in Table 4, ProAPT achieved the best 

accuracy and F1-score but required slightly more 

processing time and bandwidth compared to simpler 

models like GRU and LSTM. However, its ability to 

handle complex multi-stage attack sequences and maintain 

high throughput demonstrates its suitability for real-time 

cybersecurity in smart grid systems. 

 To select the most suitable deep reinforcement learning 

algorithm for the proposed model and the dataset, we 

evaluated various algorithms (DQN, Double DQN, PPO, 

A3C), among which DQN delivered the best results. A 

comparison of these algorithms is presented in Table 5.  

 These algorithms are widely used in complex 

reinforcement learning environments due to their stability 

and robustness in continuous and asynchronous settings. 

PPO employs a clipped objective function to maintain 

policy updates within a trust region, improving learning 

stability. A3C, on the other hand, leverages multiple 

asynchronous agents to stabilize training and efficiently 

explore large state spaces [30]. 

 We implemented PPO and A3C using the same 

environment setup, state space, and reward functions used 

for DQN and Double DQN to ensure consistency. Our 
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results, summarized in Table 5, show that while both PPO 

and A3C performed competitively, the proposed DQN-

based ProAPT model outperformed them in terms of 

accuracy, precision, and recall. Specifically, PPO. These 

results reinforce the suitability of DQN for discrete action 

spaces typical of smart grid security environments, where 

decisions like blocking IPs or raising alarms are 

categorical in nature. Moreover, we considered a hybrid 

model combining feature-engineered inputs with a 

lightweight anomaly detection layer before feeding into 

DRL. Although this hybrid approach improved 

interpretability slightly, it did not outperform the 

standalone DRL models in overall metrics. These 

additional comparisons support our choice of DQN as a 

highly effective and practical baseline for APT detection 

in smart grid environments, while also highlighting 

avenues for future exploration in combining DRL with 

hybrid or ensemble methods [31].
 

TABLE 4 

Performance Comparison between ProAPT and Deep Learning Models 

 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Time 

(ms) 

Bandwidth 

(KB/s) 

Throughput 

(ops/s) 

ProAPT (DQN + LSTM) 92.5 91.8 93.2 92.5 150 120 5000 

LSTM 89.8 88.4 91.0 89.7 95 90 5800 

GRU 89.3 88.1 90.4 89.2 87 85 5900 

Bi-LSTM 90.2 89.6 91.3 90.4 110 100 5600 

CNN-LSTM 90.7 89.8 92.0 90.9 125 105 5400 

Transformer 91.0 90.5 92.2 91.3 140 115 5100 

 

 
TABLE 5   

Performance Comparison between DQN, and Other DRL Models 

 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Time 

Consumption (ms) 

Bandwidth Usage 

(KB/s) 

Throughput 

(ops/s) 

DQN 92.5 91.8 93.2 92.5 150 120 5000 

Double DQN 90.3 89.5 91.4 90.4 160 115 4800 

PPO 91.0 90.2 92.1 91.1 180 110 4700 

A3C 88.2 86.9 89.4 88.1 200 100 4500 

Hybrid 90.1 89.0 90.2 89.6 250 130 4700 

 

 

5. FEATURE IMPORTANCE 
Feature importance indicates how much each feature 

contributes to the predictions made by a machine learning 

model. In the case of the Random Forest Classifier, the 

importance of each feature is determined by its ability to 

reduce uncertainty or enhance decision-making at each 

split in the trees [32]. Decision trees within the Random 

Forest algorithm aim to find patterns in the data that best 

separate the different classes, such as benign behavior and 

various types of attacks (DoS, etc.). Features that result in 

the most impactful splits—those that effectively 

distinguish between these classes—are considered more 

important. Fig.  4 provides an overview of the feature 

importance results.  

 For the Network Traffic dataset, features related to 

traffic patterns, such as packet size variance, connection 

duration, and protocol usage, dominated the importance 

scores. Features indicating irregularities in network flow 

(e.g., unusually large data packets or abrupt connection 

terminations) were highly predictive of threats. Certain 

features, like general connection metadata, showed low 

importance and could potentially be excluded to 

streamline model training. The leading features include 

packet size variance, connection duration, and frequency 

of specific protocols. This highlights that deviations in 

normal traffic patterns and protocol behaviors are 

indicative of advanced persistent threats. After 

implementing feature importance, we train and test the 

model, and summarize the results as demonstrated in Table 

6. 

 The confusion matrix for multi-stage attacks 

before feature selection is presented in Table 7. 

and Fig.  5. This matrix shows the actual vs 

predicted values for each of the 7 attack classes. 

The TP (True Positives), FP (False Positives), FN 

(False Negatives), and TN (True Negatives) for 

Class 0 (as an example) are calculated as follows:  

 True Positives (TP): 10000 (correctly classified 

instances of Class 0). 

 False Positives (FP): 1250 (the number of 

instances from other classes that were 

misclassified as Class 0). 

 False Negatives (FN): 860 (the number of 

instances of Class 0 that were incorrectly 

classified into other classes). 

 True Negatives (TN): 2084650 (all other 

instances not related to Class 0). 
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Fig. 4. Feature Importance Result for Network Traffic Dataset using Random Forest  

 

TABLE 6  

The results of prediction after feature importance implementation 

Metric Value 

Accuracy (%) 93.8 

Precision (%) 93.12 

Recall (%) 95.2 

F1-Score (%) 94.15 

Time Consumption (ms) 150 

Bandwidth Usage (kb/s) 120 

Throughput (ops/s) 5000 

 

TABLE 7  

Confusion matrix before feature selection 

 
Predicted 

Class 0 

Predicted 

Class 1 

Predicted 

Class 2 

Predicted 

Class 3 

Predicted 

Class 4 

Predicted 

Class 5 

Predicted 

Class 6 

Actual Class 0 10000 500 300 200 100 50 100 

Actual Class 1 400 9500 400 300 200 100 150 

Actual Class 2 200 300 9600 500 300 200 150 

Actual Class 3 100 150 300 9700 400 300 200 

Actual Class 4 50 100 200 400 9600 500 300 

Actual Class 5 30 60 100 200 350 9800 500 

Actual Class 6 80 120 150 300 400 450 9500 

 Moreover, the confusion matrix for multi-stage attacks 

after feature selection is presented in Table 8. and Fig.  5. 

After feature selection, the TP, FP, FN, and TN for Class 

0 (as an example) are recalculated: 

1) True Positives (TP): 10500 (correctly classified 

instances of Class 0). 

2) False Positives (FP): 1100 (the number of instances 

from other classes that were misclassified as Class 0). 

3) False Negatives (FN): 800 (the number of instances of 

Class 0 that were incorrectly classified into other classes). 

4) True Negatives (TN): 2086250 (all other instances not 

related to Class 0). 

 Table 9. presents a comparison of the proposed ProAPT 

model with several recent works in the field of APT 

detection in smart grids. This comparison includes 

evaluation metrics such as accuracy, precision, recall, and 

F1-score, as well as important factors like the method used, 

dataset, attack types, and the year of publication. The 

selected works focus on applying deep learning techniques 

and machine learning methods to address cybersecurity 

threats in smart grids and IoT environments.
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TABLE 8 

 Confusion Matrix after Feature Selection 
 

 
Predicted 

Class 0 

Predicted 

Class 1 

Predicted 

Class 2 

Predicted 

Class 3 

Predicted 

Class 4 

Predicted 

Class 5 

Predicted 

Class 6 

Actual Class 0 10500 400 250 150 50 30 50 

Actual Class 1 350 9800 350 250 150 80 100 

Actual Class 2 150 250 9800 400 250 150 100 

Actual Class 3 50 100 250 9800 300 250 150 

Actual Class 4 30 60 150 300 9700 400 250 

Actual Class 5 20 50 80 150 300 9700 400 

Actual Class 6 60 100 120 250 350 400 9700 

 

 

Fig.  5. Confusion Matrix before Feature Selection (Blue Diagram) and after Feature Selection (Green Diagram) 

 

TABLE 9 

Comparison of the Proposed Method with Recent Works 

 

Study/Model Method Dataset Attack Types 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

ProAPT (DQN) [11] 
Deep Reinforcement 

Learning (DQN) 

CICAPT-IIoT 

(2024) 
APTs 93.8 93.12 95.2 

Abdi et al. (2024) [5] Deep Learning 
Smart Grid 

Dataset 

Malware, DoS, 

DDoS 
90.0 89.5 91.0 

Maiti & Dey (2024) [8] 
Deep Reinforcement 

Learning 

Simulated Smart 

Grid Data 

Cyber-physical 

attacks 
91.5 92.0 93.5 

Khan et al. (2024) [7] 
Machine Learning 

(Random Forest) 

Smart Grid Cyber 

Attack Dataset 

False Data 

Injection, APT 
87.8 86.7 89.2 

Sewak et al. (2023) [6] 
Deep Reinforcement 

Learning (PPO) 

IoT Network 

Traffic Dataset 

APT, DoS, 

Ransomware 
92.1 91.5 92.8 

 

6. DISCUSSION 
The proposed ProAPT model, powered by DQN, offers a 

compelling approach for enhancing the cybersecurity of 

smart grids by enabling proactive and adaptive responses 

to Advanced Persistent Threats (APTs). The model's 

strong performance—achieving over 92% accuracy, 

precision, and recall—demonstrates its effectiveness in 

detecting complex attack patterns, particularly in highly 

dynamic IIoT environments. One of the key strengths of 

the ProAPT model lies in its ability to continuously learn 

and adapt to new threats using reinforcement signals from 

the environment. Unlike traditional machine learning 

models that rely on static rules or labeled datasets, the 

DRL-based approach can dynamically adjust its policies 

based on feedback, making it especially suitable for 

environments where attack vectors evolve rapidly.  

 In this paper, feature selection was guided both by 

domain knowledge and empirical importance measures 

derived from training the DRL model. Specifically, 

features such as packet size variance, connection duration, 

number of failed login attempts, and inbound/outbound 

byte ratios were selected due to their proven relevance in 
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identifying abnormal behaviors associated with APTs. 

These features reflect the temporal and statistical 

properties of network flows that are often manipulated 

during different stages of an attack, such as 

reconnaissance, lateral movement, or data exfiltration. To 

further validate their influence on DRL decision-making, 

we conducted a permutation-based feature importance 

analysis, revealing that traffic-related features had the 

highest impact on the agent’s Q-value updates. For 

instance, packet size variance was frequently associated 

with stealthy data transfers, while connection duration 

helped differentiate between persistent sessions initiated 

by malicious actors and short-lived benign activity. By 

incorporating these features into the state representation, 

the DRL agent learned to prioritize observations that carry 

strong signals of attack behavior, thereby enhancing its 

ability to make accurate, context-aware decisions in real-

time. Incorporating feature selection and emphasizing its 

impact on DRL decision-making helps provide a deeper 

understanding of how the model works and why certain 

features are critical for success in detecting and mitigating 

APTs in IIoT environments. 

 However, translating this success to real-world 

deployment scenarios presents several challenges that 

merit further discussion. Scalability is one such concern. 

While the ProAPT model performs well in controlled 

simulations, deploying it across large-scale, heterogeneous 

smart grid infrastructures may require distributed training 

frameworks or federated learning approaches to handle 

high-volume data streams without overwhelming central 

systems.  

 Another important consideration is computational 

efficiency and real-time responsiveness. Although DQN 

provides a solid balance between performance and 

complexity, models like Double DQN introduce 

architectural overhead that may hinder real-time inference 

in latency-sensitive applications. In this study, we 

observed that Double DQN, despite its theoretical 

advantage in mitigating Q-value overestimation, slightly 

underperformed compared to standard DQN. This was 

likely due to slower convergence in environments with 

strong temporal dependencies, as found in the CICAPT-

IIoT dataset. Nevertheless, this does not diminish the 

potential of Double DQN; rather, it emphasizes the 

importance of careful hyperparameter tuning and task-

specific architecture selection. For example, techniques 

such as prioritized experience replay, reward shaping, or 

even incorporating temporal abstraction (e.g., options 

frameworks or recurrent networks) may enhance the 

model’s ability to capture long-term attack strategies while 

preserving inference speed. To address real-time decision-

making constraints, future implementations could leverage 

lightweight model compression techniques (e.g., pruning, 

quantization) or offload computations to edge-cloud 

collaborative architectures. Such hybrid setups allow for 

scalable deployment without compromising 

responsiveness. Furthermore, the integration of 

explainability mechanisms—such as attention layers, 

saliency maps, or SHAP values—can significantly 

improve the trustworthiness of DRL decisions in 

operational contexts. This aligns with ongoing efforts in 

critical infrastructure security, where human operators 

require transparent and justifiable decision-making 

processes to support real-time incident response. 

 In summary, while the proposed ProAPT model 

demonstrates excellent potential as a next-generation 

defense mechanism for smart grids, addressing its 

implementation challenges through targeted enhancements 

can further solidify its applicability. The insights gained 

from this study also underscore the importance of 

balancing model sophistication with practicality, 

suggesting promising directions for future research in 

explainable, scalable, and robust DRL-based cybersecurity 

systems. 

 

7. CONCLUSION 
The ProAPT model showcases the promise of DRL in 

enhancing smart grid cybersecurity by predicting and 

mitigating APTs. With high performance metrics—

accuracy of 92.5%, precision of 91.8%, and recall of 

93.2%—the model proves its ability to detect complex 

attack sequences in real-time. One of the model’s strengths 

lies in the engineering of its state space and the careful 

selection of relevant features, such as packet size variance, 

connection duration, and protocol usage. These features 

provide critical insights into network behavior, making the 

model more efficient and effective in detecting attacks. By 

focusing on the most important features, the model reduces 

computational complexity, improves accuracy, and 

enhances the interpretability of its decisions. 

 However, there are still significant challenges to 

overcome in deploying this model in real-world smart grid 

environments. The scalability of the model must be 

improved to accommodate larger systems with vast 

amounts of data, and real-time adaptability must be 

enhanced to respond to new attack patterns. Furthermore, 

the interpretability of DRL models must be addressed to 

ensure that cybersecurity professionals can trust and 

understand the model’s decisions in critical infrastructure 

contexts. 

 Future work should focus on addressing these 

challenges by improving scalability, integrating additional 

data sources for enhanced predictive accuracy, and 

enhancing the model’s interpretability. Additionally, 

reducing false positives will be crucial for ensuring that the 

system can operate without causing unnecessary 

disruptions. Exploring hybrid models that combine DRL 

with other machine learning techniques could further 

enhance the robustness of the ProAPT model, enabling it 

to better handle new and emerging threats. Finally, 

incorporating explainability into DRL models, especially 

for applications in high-stakes environments like smart 

grids, will be essential to ensure that automated systems 

can work effectively alongside human experts. 

 In conclusion, while the ProAPT model demonstrates 

great potential, ongoing research and development are 

necessary to refine its scalability, adaptability, and 

transparency, ensuring that it can provide reliable and 

effective protection against the evolving landscape of 

smart grid cybersecurity threats. 
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8. NOMENCLATURE & UNITS 
IoT  Internet of Things 

APT  Advanced Persistent Threats 

IDS  Intrusion Detection Systems 

DRL  Deep Reinforcement Learning 

M2M  Machine-to-Machine 

LSTM  Long Short Term Memory 

MDP  Markov Decision Process 

DQN  Deep Q-Networks 

IIoT  Industrial Internet of Things 
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