- Arshad, M., & Haghshenas, M. (2025). Melatonin and chitosan coating effects on banana postharvest life and physiological traits. International Journal of Horticultural Science and Technology, 12(1), 31-42. https://doi.org/10.22059/ijhst.2024.364005.687
- Ba, L.J., Cao, S., Ji, N., Ma, C., Wang, R., & Luo, D.L. (2022). Effects of melatonin treatment on maintenance of the quality of fresh-cut pitaya fruit. International Food Research Journal, 29(4), 796-805. https://doi.org/10.47836/ifrj.29.4.07
- Bal, E. (2021). Effect of melatonin treatments on biochemical quality and postharvest life of nectarines. Journal of Food Measurement and Characterization, 15(1), 288-295. https://doi.org/10.1007/s11694-020-00636-5
- Berra, B., & Rizzo, A.M. (2009). Melatonin: circadian rhythm regulator, chronobiotic, antioxidant and beyond. Clinics in Dermatology, 27(2), 202-209. https://doi.org/10.1016/j.clindermatol.2008.04.003
- Bhosale, A.A., & Sundaram, K.K. (2011). Equation for predicting shelf life of an apple. Paper presented at the Applied Mechanics and Materials. https://doi.org/10.4028/www.scientific.net/AMM.52-54.1936
- Boominathan, R., & Doran, P.M. (2002). Ni‐induced oxidative stress in roots of the Ni hyperaccumulator, Alyssum bertolonii. New Phytologist, 156(2), 205-215. https://doi.org/10.1046/j.1469-8137.2002.00506.x
- Cao, S., Qiao, L., Huang, T., Zhang, Y., Qu, G., & Kou, X. (2024). Melatonin reduces postharvest decay of blueberries by regulating ascorbate–glutathione cycle and membrane lipid metabolism. Postharvest Biology and Technology, 218. https://doi.org/10.1016/j.postharvbio.2024.113185
- Carrión-Antolí, A., Martínez-Romero, D., Guillén, F., Zapata, P.J., Serrano, M., & Valero, D. (2022). Melatonin pre-harvest treatments leads to maintenance of sweet cherry quality during storage by increasing antioxidant systems. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.863467
- Chiou, A., Karathanos, V.T., Mylona, A., Salta, F.N., Preventi, F., & Andrikopoulos, N.K. (2007). Currants (Vitis vinifera) content of simple phenolics and antioxidant activity. Food Chemistry, 102(2), 516-522. https://doi.org/10.1016/j.foodchem.2006.06.009
- D’Cunha, G.B. (2005). Enrichment of phenylalanine ammonia lyase activity of Rhodotorula yeast. Enzyme and Microbial Technology, 36(4), 498-502. https://doi.org/10.1016/j.enzmictec.2004.11.006
- Dong, X., Tang, J., Ding, J., Jin, P., & Zheng, Y. (2024). Effect and underlying mechanism of melatonin treatment on Rhizopus rot in postharvest peach fruit. Shipin Kexue/Food Science, 45(11), 243-249. https://doi.org/10.7506/spkx1002-6630-20230918-160
- El-Mogy, M.M., Ludlow, R.A., Roberts, C., Müller, C.T., & Rogers, H.J. (2019). Postharvest exogenous melatonin treatment of strawberry reduces postharvest spoilage but affects components of the aroma profile. Journal of Berry Research, 9(2), 297-307. https://doi.org/10.3233/JBR-180361
- Giglio, C., Yang, Y., & Kilmartin, P. (2023). Analysis of phenolics in New Zealand Pinot noir wines using UV-visible spectroscopy and chemometrics. Journal of Food Composition and Analysis, 117, 105106. https://doi.org/10.1016/j.jfca.2022.105106
- Guo, S., Li, T., Wu, C., Fan, G., Wang, H., & Shen, D. (2021). Melatonin and 1-methylcyclopropene treatments on delay senescence of apricots during postharvest cold storage by enhancing antioxidant system activity. Journal of Food Processing and Preservation, 45(10). https://doi.org/10.1111/jfpp.15863
- Hailu, S., Seyoum, T., & Dechassa, N. (2008). Effect of combined application of organic P and inorganic N fertilizers on post harvest quality of carrot. African Journal of Biotechnology, 7(13), 2187-2196.
- Khathir, R., Yuliana, R., Agustina, R., & Putra, B.S. (2019). The Shelf-life Prediction of Sweet Orange Based on Its Total Soluble Solid by Using Arrhenius and Q 10 Approach. Paper presented at the IOP Conference Series: Materials Science and Engineering. https://doi.org/10.1088/1757-899X/506/1/012058
- Kucuker, E., Gundogdu, M., Aglar, E., Ogurlu, F., Arslan, T., Ozcengiz, C.K., & Tekin, O. (2024). Physiological effects of melatonin on polyphenols, phenolic compounds, organic acids and some quality properties of peach fruit during cold storage. Journal of Food Measurement and Characterization, 18(1), 823-833. https://doi.org/10.1007/s11694-023-02199-7
- Lei, C., Wang, K., Tan, M., Wang, J., & Li, C. (2022). Induction of melatonin treatment on the priming resistance in postharvest plum fruit. Science and Technology of Food Industry, 43(13), 329-335. https://doi.org/10.13386/j.issn1002-0306.2021090105
- Liu, C., Zheng, H., Sheng, K., Liu, W., & Zheng, L. (2018). Effects of melatonin treatment on the postharvest quality of strawberry fruit. Postharvest Biology and Technology, 139, 47-55. https://doi.org/10.1016/j.postharvbio.2018.01.016
- Lorente-Mento, J.M., Guillén, F., Castillo, S., Martínez-Romero, D., Valverde, J.M., Valero, D., & Serrano, M. (2021). Melatonin treatment to pomegranate trees enhances fruit bioactive compounds and quality traits at harvest and during postharvest storage. Antioxidants, 10(6). https://doi.org/10.3390/antiox10060820
- Ma, Q., Lin, X., Wei, Q., Yang, X., Zhang, Y., & Chen, J. (2021). Melatonin treatment delays postharvest senescence and maintains the organoleptic quality of ‘Newhall’ navel orange (Citrus sinensis (L.) Osbeck) by inhibiting respiration and enhancing antioxidant capacity. Scientia Horticulturae, 286. https://doi.org/10.1016/j.scienta.2021.110236
- Marak, K.A., Mir, H., Singh, P., Siddiqui, M.W., Ranjan, T., Singh, D.R., Irfan, M. (2023). Exogenous melatonin delays oxidative browning and improves postharvest quality of litchi fruits. Scientia Horticulturae, 322. https://doi.org/10.1016/j.scienta.2023.112408
- Marandi, R.J., Hassani, A., Ghosta, Y., Abdollahi, A., Pirzad, A., & Sefidkon, F. (2010). Thymus kotschyanus and Carum copticum essential oils as botanical preservatives for table grape. Journal of Medicinal Plants Research, 4(22), 2424-2430.
- Meda, A., Lamien, C.E., Romito, M., Millogo, J., & Nacoulma, O.G. (2005). Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chemistry, 91(3), 571-577. https://doi.org/10.1016/j.foodchem.2004.10.006
- Michailidis, M., Tanou, G., Sarrou, E., Karagiannis, E., Ganopoulos, I., Martens, S., & Molassiotis, A. (2021). Pre- and post-harvest melatonin application boosted phenolic compounds accumulation and altered respiratory characters in sweet cherry fruit. Frontiers in Nutrition, 8. https://doi.org/10.3389/fnut.2021.695061
- Neog, M., & Saikia, L. (2010). Control of post-harvest pericarp browning of litchi (Litchi chinensis Sonn). Journal of Food Science and Technology, 47(1), 100-104. https://doi.org/10.1007/s13197-010-0001-9
- Pirogov, A., Sokolova, L., Sokerina, E., Tataurova, O., & Shpigun, O. (2016). Determination of flavonoids as complexes with Al3+ in microemulsion media by HPLC method with fluorescence detection. Journal of Liquid Chromatography & Related Technologies, 39(4), 220-224. https://doi.org/10.1080/10826076.2016.1147462
- Qu, G., Ba, L., Wang, R., Li, J., Ma, C., Ji, N., & Cao, S. (2022). Effects of melatonin on blueberry fruit quality and cell wall metabolism during low temperature storage. Food Science and Technology (Brazil), 42. https://doi.org/10.1590/fst.40822
- Qu, G., Wu, W., Ba, L., Ma, C., Ji, N., & Cao, S. (2022). Melatonin enhances the postharvest disease resistance of blueberries fruit by modulating the jasmonic acid signaling pathway and phenylpropanoid metabolites. Frontiers in Chemistry, 10. https://doi.org/10.3389/fchem.2022.957581
- Rahmanzadeh-Ishkeh, S., Shirzad, H., Tofighi, Z., Fattahi, M., & Ghosta, Y. (2024). Exogenous melatonin prolongs raspberry postharvest life quality by increasing some antioxidant and enzyme activity and phytochemical contents. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-62111-1
- Saroj, N., Prasad, K., Singh, S.K., Maurya, S., Maurya, P., Kumar, S., Dhongabanti, B. (2023). Diverse functional role of melatonin in postharvest biology Melatonin in Plants: A Regulator for Plant Growth and Development (pp. 203-217). https://doi.org/10.1007/978-981-99-6745-2_9
- Saud, S., Jiang, Z., Chen, S., & Fahad, S. (2023). Interaction of melatonin on post-harvest physiology and quality of horticultural crops. Scientia Horticulturae, 321. https://doi.org/10.1016/j.scienta.2023.112286
- Selcuk, N., & Erkan, M. (2015). Changes in phenolic compounds and antioxidant activity of sour–sweet pomegranates cv.‘Hicaznar’during long-term storage under modified atmosphere packaging. Postharvest Biology and Technology, 109, 30-39. https://doi.org/10.1016/j.postharvbio.2015.05.018
- Shang, F., Liu, R., Wu, W., Han, Y., Fang, X., Chen, H., & Gao, H. (2021). Effects of melatonin on the components, quality and antioxidant activities of blueberry fruits. LWT, 147. https://doi.org/10.1016/j.lwt.2021.111582
- Sharma, P., Thakur, N., Mann, N.A., & Umar, A. (2024). Melatonin as plant growth regulator in sustainable agriculture. Scientia Horticulturae, 323. https://doi.org/10.1016/j.scienta.2023.112421
- Shi, L., Cao, M., Lu, X., Dong, W., Lan, Q., Chen, W., Cao, S. (2024). Melatonin extends shelf life in postharvest okra via delaying fruit softening and reducing weight loss. Journal of the Science of Food and Agriculture, 104(15), 9506-9513. https://doi.org/10.1002/jsfa.13773
- Shi, L., Chen, Y., Dong, W., Li, S., Chen, W., Yang, Z., & Cao, S. (2024). Melatonin delayed senescence by modulating the contents of plant signalling molecules in postharvest okras. Frontiers in Plant Science, 15. https://doi.org/10.3389/fpls.2024.1304913
- Sicari, V., Dorato, G., Giuffrè, A.M., Rizzo, P., & Albunia, A.R. (2017). The effect of different packaging on physical and chemical properties of oranges during storage. Journal of Food Processing and Preservation, 41(5). https://doi.org/10.1111/jfpp.13168
- Sidana, J., Saini, V., Dahiya, S., Nain, P., & Bala, S. (2013). A review on citrus - 'the boon of nature'. International Journal of Pharmaceutical Sciences Review and Research, 18(2), 20-27.
- Singh, S., Salaria, M., Talekar, N., & Suresh, A. (2024). A review on value-added goodies from different major and minor fruits from the perspective of India. Journal of Applied and Natural Science, 16(2), 909-921. https://doi.org/10.31018/jans.v16i2.5574
- Song, L., Zhang, W., Li, Q., Jiang, Z., Wang, Y., Xuan, S., & Chen, X. (2022). Melatonin alleviates chilling injury and maintains postharvest quality by enhancing antioxidant capacity and inhibiting cell wall degradation in cold-stored eggplant fruit. Postharvest Biology and Technology, 194. https://doi.org/10.1016/j.postharvbio.2022.112092
- Sun, H. L., Wang, X.Y., Shang, Y., Wang, X.Q., Du, G.D., & LÜ, D.G. (2021). Preharvest application of melatonin induces anthocyanin accumulation and related gene upregulation in red pear (Pyrus ussuriensis). Journal of Integrative Agriculture, 20(8), 2126-2137. https://doi.org/10.1016/S2095-3119(20)63312-3
- Sun, Q., Zhang, N., Wang, J., Zhang, H., Li, D., Shi, J., & Guo, Y. D. (2015). Melatonin promotes ripening and improves quality of tomato fruit during postharvest life. Journal of Experimental Botany, 66(3), 657-668. https://doi.org/10.1093/jxb/eru332
- Tadapaneni, R.K., Daryaei, H., Krishnamurthy, K., Edirisinghe, I., & Burton-Freeman, B.M. (2014). High-pressure processing of berry and other fruit products: Implications for bioactive compounds and food safety. Journal of Agricultural and Food Chemistry, 62(18), 3877-3885. https://doi.org/10.1021/jf404400q
- Tütem, E., Sözgen Başkan, K., Karaman Ersoy, Ş., & Apak, R. (2020). Orange Nutritional Composition and Antioxidant Properties of Fruits and Vegetables (pp. 353-376). https://doi.org/10.1016/B978-0-12-812780-3.00022-2
- Verde, A., Míguez, J.M., & Gallardo, M. (2022). Role of melatonin in apple fruit during growth and ripening: Possible interaction with ethylene. Plants, 11(5). https://doi.org/10.3390/plants11050688
- Vithana, M.D.K., Singh, Z., & Johnson, S.K. (2018). Cold storage temperatures and durations affect the concentrations of lupeol, mangiferin, phenolic acids and other health-promoting compounds in the pulp and peel of ripe mango fruit. Postharvest Biology and Technology, 139, 91-98. https://doi.org/10.1016/j.postharvbio.2017.12.003
- Wang, Y., Zhang, J., Ma, Q., Zhang, X., Luo, X., & Deng, Q. (2022). Exogenous melatonin treatment on post-harvest jujube fruits maintains physicochemical qualities during extended cold storage. PeerJ, 10. https://doi.org/10.7717/peerj.14155
- Wu, C., Hao, W., Yan, L., Zhang, H., Zhang, J., Liu, C., & Zheng, L. (2023). Postharvest melatonin treatment enhanced antioxidant activity and promoted GABA biosynthesis in yellow-flesh peach. Food Chemistry, 419. https://doi.org/10.1016/j.foodchem.2023.136088
- Xia, H., Shen, Y., Deng, H., Wang, J., Lin, L., Deng, Q., & Xiong, B. (2021). Melatonin application improves berry coloration, sucrose synthesis, and nutrient absorption in ‘Summer Black’ grape. Food Chemistry, 356. https://doi.org/10.1016/j.foodchem.2021.129713
- Xue, J., Wang, K., Li, Z., Zhang, S., Mu, B., Li, Z., & Sun, H. (2021). Influences of post-harvest melatonin treatment on preservation quality and shelf life of fresh-cut cauliflower. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 37(13), 273-283. https://doi.org/10.11975/j.issn.1002-6819.2021.13.031
- Zang, H., Ma, J., Wu, Z., Yuan, L., Lin, Z. Q., Zhu, R., & Yin, X. (2022). Synergistic effect of melatonin and selenium improves resistance to postharvest gray mold disease of tomato fruit. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.903936
- Zhang, M., Yang, X., Yin, C., Lin, X., Liu, K., Zhang, K., & Wang, Z. (2024). Effect of exogenous melatonin on antioxidant properties and fruit softening of ‘Fengtang’ plum fruit (Prunus salicina) during storage at room temperature. Frontiers in Plant Science, 15. https://doi.org/10.3389/fpls.2024.1348744
- Zhang, Z., Wang, T., Liu, G., Hu, M., Yun, Z., Duan, X., & Jiang, G. (2021). Inhibition of downy blight and enhancement of resistance in litchi fruit by postharvest application of melatonin. Food Chemistry, 347. https://doi.org/10.1016/j.foodchem.2021.129009
|