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Abstract Deep neural networks typically require 

predefined architectures, which can lead to overfitting, 

underfitting, high computational costs, and storage 

overhead. Dynamic structure optimization through 

pruning can reduce network redundancy but often results 

in performance degradation. In this study, we propose a 

novel pruning method inspired by biological synaptic 

pruning that adaptively optimizes deep neural network 

structures. The proposed method continuously monitors 

the contribution of each connection during training using 

a dynamic efficiency criterion that evaluates the relative 

importance of each connection within its layer. 

Connections are not removed immediately; instead, only 

those consistently falling below a predefined threshold are 

pruned, ensuring stability and robustness. Simulation 

validation is conducted on an industrial distillation 

column dataset under noisy conditions and the MNIST 

benchmark dataset. The results demonstrate improved 

accuracy, enhanced generalization, and faster learning, 

with an average pruning rate of 53%. Compared to 

conventional and state-of-the-art pruning techniques, our 

method achieves superior performance in terms of 

compression rate and accuracy while effectively 

mitigating overfitting. 

 

Key Words Deep Neural Networks, Synaptic Pruning, 

Distillation Column, Connection Evaluation.   

 

1. INTRODUCTION 

In the fields of data science and artificial intelligence, 

machine learning has experienced tremendous growth. 
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Among its various tools, artificial neural networks (ANNs) 

have become some of the most reliable and widely used 

methods, owing to their parallel distributed architecture, 

learning capability, and generalization potential [1]. These 

features enable neural networks to effectively handle 

complex tasks such as automatic control, system 

identification, and pattern recognition. 

 A neural network’s structure (comprising the number of 

hidden layers and associated weights) plays a crucial role 

in determining its overall performance. Both excessively 

small and overly large networks pose challenges: small 

networks lack sufficient capacity to model complex 

relationships, making them difficult to train, while large 

networks suffer from overfitting, reduced generalization, 

and increased computational burden [2], [3], [4]. 

Achieving an optimal network size is thus vital for creating 

models that are not only accurate but also efficient and 

interpretable. The recent success of deep neural networks 

(DNNs) in various machine learning applications has 

further highlighted this trade-off. Despite their superior 

performance, DNNs typically demand substantial memory 

and processing power, making them difficult to deploy in 

environments with limited computational resources, such 

as mobile devices and embedded systems [5], [6]. 

Consequently, methods to reduce the complexity of these 

networks without sacrificing accuracy have become 

essential. One widely adopted solution is neural network 

pruning, which systematically removes unnecessary 

parameters from a trained network to simplify its structure. 

Pruning can effectively reduce computational and storage 

overhead while maintaining acceptable levels of accuracy. 
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Although pruning has been explored since the late 1980s 

[7], its relevance has resurfaced with the growing depth 

and complexity of modern networks. A fundamental 

challenge in pruning is identifying which connections are 

suitable candidates for removal. Traditional methods often 

rely on the magnitude of the connection weights, assuming 

that smaller weights contribute less to the network's output 

and thus can be safely pruned. However, both theoretical 

studies and empirical evidence have shown that this 

assumption can be misleading [2], [3]. Important 

connections may exhibit small weight magnitudes due to 

specific data distributions or network dynamics. 

Consequently, relying solely on weight magnitude as a 

pruning criterion risks discarding valuable connections 

and potentially degrading network performance. 

 Recent research has emphasized the need for more 

robust evaluation criteria that go beyond simple weight 

magnitude. However, many existing methods still assess 

connection importance in a static, single-phase manner 

without continuously monitoring their contribution during 

the training process. Furthermore, most of these 

approaches focus primarily on optimization and 

regularization objectives, lacking a biologically plausible 

foundation [4]. In contrast, the human brain offers a 

compelling model for effective pruning. During 

development, the brain undergoes synaptic pruning, a 

process where redundant or weak synaptic connections are 

gradually eliminated based on their activity levels [8]. This 

activity-dependent mechanism strengthens frequently used 

synapses while removing those that are rarely activated, 

leading to a more efficient and specialized network [9], 

[10], [11]. Incorporating such biologically inspired 

strategies into artificial neural network pruning can 

potentially enhance both effectiveness and robustness. In 

this paper, we propose a novel method for optimizing the 

structure of deep neural networks by integrating brain-

inspired synaptic pruning mechanisms with connection 

evaluation based on network error contribution. Unlike 

traditional methods that rely on weight magnitude, our 

approach dynamically monitors the actual influence of 

each connection on the network’s performance. 

Connections with persistently weak contributions are 

gradually eliminated, mirroring the brain's “use it or lose 

it” principle. This strategy not only reduces the risk of 

removing valuable connections but also improves the 

network's ability to handle noisy and uncertain data. The 

remainder of this paper is organized as follows: Section 2 

reviews related works in neural network pruning and 

structure optimization; Section 3 presents the proposed 

pruning method; Section 4 provides comparative results 

and discussion; and finally, Section 5 concludes the paper. 

 
2. RELATED WORKS 
The primary distinction between shallow and deep neural 

networks lies in the number of hidden layers. Shallow 

networks typically consist of a single hidden layer, 

whereas deep networks comprise multiple hidden layers 

(at least three), enabling hierarchical feature extraction and 

improved representation of complex data. This 

hierarchical structure enhances robustness in managing 

uncertainties and allows deep networks to model more 

precise functions, making them superior in applications 

requiring complex feature learning, such as industrial 

process modeling and control. 

 One of the earliest solutions for reducing the 

computational complexity of neural networks (NNs) is 

knowledge distillation, in which a smaller model is trained 

to mimic the behavior of a larger, well-trained model [12]. 

Despite its effectiveness, this approach requires predefined 

architectures for student networks, which limits flexibility. 

 Another extensively studied method is network pruning, 

where neurons or connections with minimal contribution 

are systematically removed. Traditional pruning 

techniques often rely on thresholding weight magnitudes, 

assuming that smaller weights are less significant [13], 

[14]. However, this approach has been questioned, as 

critical connections might occasionally have small weight 

magnitudes depending on the data and network dynamics 

[15]. 

 To address these limitations, more advanced pruning 

criteria have been introduced. For instance, Molchanov et 

al. [16] proposed utilizing feature map statistics and 

mutual information to evaluate the relevance of 

connections. Other researchers have adopted Taylor series 

expansions for sensitivity analysis, such as the first-order 

approach by Molchanov et al. [16] and second-order 

methods by LeCun et al. [17] and Hassibi and Stork [18], 

using Hessian approximations for more accurate 

significance estimation. 

 Beyond individual weights, filter-level pruning methods 

have also emerged. He et al. [19] proposed a geometric 

median-based method for removing redundant filters. Yu 

et al. [20] introduced the Neuron Importance Score 

Propagation (NISP) technique, propagating importance 

values backward through the network layers. Li et al. [21] 

focused on pruning filters with lower weights, and He et 

al. [22] introduced soft filter pruning, allowing pruned 

filters to recover through retraining. While these methods 

improve computational efficiency, they often lack 

biological plausibility, focusing on mathematical 

heuristics rather than biologically inspired mechanisms. 

Furthermore, many existing approaches perform one-time 

static evaluations without continuously monitoring the 

dynamic role of connections during training. 

Regularization methods such as dropout [23] and 

dropconnect [24] have been effective in preventing 

overfitting by randomly deactivating neurons or weights 

during training. However, they do not reduce network 

complexity at inference time, as all connections are 

reactivated. Similarly, techniques like meProp [25] 

sparsify gradients during backpropagation to accelerate 
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training but do not alter the network’s structure. 

 Another prominent line of research involves 

evolutionary algorithms, which simultaneously optimize 

network topology and weights. Evolutionary strategies 

employ fitness functions that consider accuracy and 

network complexity [26], [27], [28]. Genetic algorithms, 

in particular, have been used to prune networks and 

discover efficient topologies [29], [30], [31], [32]. Despite 

their adaptability, these methods are computationally 

intensive and suffer from convergence uncertainties due to 

the vast search space. 

 Recently, several pruning methods have been proposed 

to enhance the efficiency of deep neural networks without 

significantly compromising performance. In the Lottery 

Ticket Hypothesis (LTH) method, the concept of “winning 

tickets” was used to train small subnetworks that can 

match the performance of the original network if 

initialized properly [33]. SNIP presents a pre-training 

pruning strategy based on connection sensitivity to loss, 

allowing efficient identification of crucial weights before 

training [34]. GraSP further improves pruning by 

preserving the gradient flow essential for learning [35]. 

Movement Pruning is a dynamic pruning method applied 

during fine-tuning, focusing on the directional movement 

of weights to identify unimportant connections [36]. 

Additionally, Global Magnitude Pruning selects the 

weakest weights across the entire network rather than layer 

by layer, achieving a better balance between sparsity and 

accuracy [37]. Despite their success, most of these 

methods rely heavily on initial weight magnitudes or static 

criteria, whereas our proposed method continuously 

monitors the dynamic contribution of each connection to 

the network’s error during training, inspired by biological 

synaptic pruning mechanisms. 

 In summary, while significant progress has been made 

in neural network pruning with the advent of the Lottery 

Ticket Hypothesis (LTH), SNIP, GraSP, Movement 

Pruning, and Global Magnitude Pruning, these approaches 

still primarily rely on static evaluations or single-shot 

sensitivity analyses. They often assess connection 

importance based on initial weight magnitudes, gradient 

sensitivity, or weight movement trends, with limited 

adaptation during the training process. Moreover, most 

SOTA methods lack a biologically inspired mechanism to 

guide pruning decisions dynamically. These gaps highlight 

the necessity for pruning strategies that can adapt to the 

evolving structure and error dynamics of the network. Our 

proposed method addresses these limitations by 

continuously monitoring the real-time contribution of each 

connection to the overall network error and gradually 

pruning redundant connections, inspired by the synaptic 

pruning process observed in biological neural systems. 

This dynamic and brain-inspired approach ensures more 

robust pruning decisions and greater resilience to noisy 

and uncertain data, pushing beyond the capabilities of 

existing SOTA techniques. 

 

3. PROPOSED PRUNING METHOD     

We present an innovative Brain-Inspired Connection 

Evaluation Pruning technique in this section. In the first 

stage of the proposed algorithm, the real value of each 

connection in the network is determined, which essentially 

reflects the importance and contribution of that connection 

to the overall network performance. In this context, the 

"real value" is assessed based on an error-driven criterion, 

where the impact of omitting each connection on the 

network’s output error is evaluated. This allows for a more 

accurate measurement of each connection’s significance 

beyond simple weight magnitudes. 

 This evaluation is based on neglecting each connection 

and computing the error that results from its removal. To 

measure the true value of the neurons, the current output 

of the network must be brought closer to the ideal values. 

In other words, connections that lead to a deviation of the 

output from the ideal values increase errors. We arrange 

the connections according to the value of training errors 

produced when they are eliminated. In the process of 

pruning, our goal is to make the network lighter and 

smaller, but we must note that the accuracy of the network 

should not decrease too much. Therefore, pruning 

candidates include a subset of connections that have 

produced the minimum value of errors. We will delete 

connections inspired by the pruning process in the human 

brain as follows: brain pruning involves making stronger 

connections with a higher frequency of use and weaker 

connections with a lower frequency of use [38]. A 

connection will be deleted if, over the course of several 

steps, its strength falls below a predetermined threshold. 

Namely, if the weak score of a connection persists, it will 

be eliminated. Fig. 1 depicts the process of synaptic 

pruning. It is evident that we need to specify two crucial 

parameters. The first parameter is the threshold, which 

indicates which connections may need pruning. The 

second parameter is the warning time, which indicates how 

long the related connection will remain active before being 

deleted. However, here the criterion is training error 

instead of connection weights. 

 Use it or lose it: neuroscientists refer to the decrease in 

spine density as "synaptic pruning." Through this process, 

weaker structures are eliminated, reallocating resources to 

the surviving ones so they can become stronger and more 

stable. As it became abundantly evident that synaptic 

activity directs appropriate pruning, scientists focused on 

identifying the cellular processes that might control the 

remodeling [38]. 

 We determine a threshold value for the acceptable error 

in order to guide the pruning process. This threshold serves 

as a benchmark to evaluate the significance of each 

connection within the network. During each iteration, we 

closely monitor the connections whose removal results in 
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minimal increases in error compared to the previous step. 

These connections, having demonstrated a consistently 

low impact on overall network performance, are 

considered potential candidates for removal. To ensure a 

cautious and reliable pruning process, we introduce a 

control mechanism known as the "warning number." This 

parameter defines the required consistency of a 

connection's low contribution across multiple evaluations. 

Specifically, connections that remain below the error 

threshold for a certain number of consecutive iterations 

(defined by the warning number) are identified as weak 

contributors and selected for pruning. This progressive 

evaluation prevents the premature removal of connections 

that might exhibit temporary fluctuations in importance 

due to network dynamics. This method allows for a 

gradual and robust reduction in network complexity, as 

only the connections with persistently negligible impact 

are pruned. By continuously reassessing the error 

contribution of each connection, the proposed approach 

mimics biological pruning mechanisms, ensuring that only 

truly redundant connections are eliminated. The procedure 

of the proposed pruning technique is illustrated in Fig. 2, 

which visually represents the step-by-step process, 

including error evaluation, candidate selection, application 

of the warning number criterion, and final pruning 

decisions. 

 The pruning pseudo-code is presented in detail in Table 

1. This combined pruning method is presented to address 

the disadvantages of existing pruning methods as 

mentioned in the previous sections: relying only on the 

weighted domain is not sufficient, and there is a high 

probability that some very important network connections 

are omitted. We addressed this weakness by sorting the 

connections, and after finding the connections susceptible 

to deletion, the removal is not done in one step by 

decreasing the value once. We successively caution the 

pruning candidates and prune them based on these 

warnings. 

 In summary, the evaluation of all network connections 

is carried out based on their contribution to the overall 

network error. Specifically, we determine the error 

introduced by individually removing each connection and 

then rank the connections according to the magnitude of 

these errors. Connections associated with the least error 

increases are considered for removal, guided by a pruning 

rate defined by the designer. Consequently, our pruning 

strategy incorporates two key elements: evaluating 

connections based on training error and tracking their 

iterative weak scores. Ultimately, this process yields a 

pruned network that significantly outperforms the original 

configuration. The motivation behind the proposed 

pruning strategy stems from the limitations observed in 

existing methods. Most conventional pruning techniques 

rely heavily on static evaluations, primarily based on 

weight magnitude or sensitivity analyses performed either 

before or after training. Such static approaches often fail to 

capture the dynamic behavior and real-time importance of 

connections throughout the learning process, leading to the 

risk of pruning significant but low-magnitude connections 

and potentially degrading network performance. 

 

 

 

 

 

 

 

 

 
 

Fig. 1. Process of synaptic pruning  
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Fig. 2.  Flowchart of the proposed pruning 
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TABLE1 

Pruning pseudo code 

 

 

 

 In contrast, the human brain undergoes synaptic pruning 

based on continuous monitoring of synaptic activity, 

gradually eliminating weak and unused connections while 

reinforcing the strong ones. Inspired by this biological 

process, our approach integrates a dynamic evaluation 

criterion that monitors the real-time contribution of each 

connection to the overall training error. By focusing on the 

impact of each connection on network performance rather 

than solely on its weight magnitude, we ensure that only 

truly redundant connections are pruned. 

 Moreover, the introduction of a "warning number"—

requiring multiple consecutive evaluations before 

pruning— prevents the premature removal of connections 

due to temporary fluctuations, thus enhancing the 

robustness of the pruning process. This feature becomes 

particularly crucial in noisy or uncertain environments, 

such as industrial process modeling, where data variability 

can affect the stability of traditional pruning methods. 

Train network 

Create PruneNominated variable with structure and size same as matlab NNT 

PruneNominated = 0 

Thresholdprune = 3 number of time we want  a connection to not be cutted. 

threshold = 30% 

Initialize Errorlayer,i,j = 0 

loop steps each second 

 loop connections 

  connectionlayer,i, = 0 

  Errorlayer,i,j = calculate network error 

end loop 

Prunepercent =
threshold

100
∗ (Maximum(error) − Minimum(error)) 

 sort Error matrix descending 

for error counter = 1 to countconnections − Prunepercent ∗ countconnections 

PruneNominatedconnectionterror counter
= 0 

 end for 

for error counter = countconnections − Prunepercent ∗ countconnections + 1 to end 

PruneNominatedconnectionterror counter
+ + 

 end for 

loop connections 

if PruneNominatedconnection = Thresholdprune 

   Prune this connection 

  end if 

 end loop 

end loop 
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 Therefore, the proposed method not only addresses the 

shortcomings of static and heuristic-driven pruning 

approaches but also offers a biologically plausible, 

adaptive, and noise-resilient solution for optimizing deep 

neural network architectures. These attributes make it a 

highly appropriate choice for complex, real-world 

applications. 

 

4. COMPARISON RESULTS AND DISCUSSION                           
In this section, we apply the suggested method to a neural 

network model of a refinery process’s distillation tower in 

order to assess its efficacy. The objective is to investigate 

how, in the case of ideal and noisy data, the proposed 

algorithm can enhance identification accuracy and 

convergence speed.  

 The distillation tower, which is a multi-input, multi-

output (MIMO) nonlinear system, is a general and 

inseparable part of a refinery. A distillation column is a 

device for separating components of a solution. In fact, in 

the distillation tower, the components of a solution are 

separated based on their volatility and boiling point 

differences. Industrial distillation towers are widely used 

in various process industries, but one of their main uses is 

crude oil refinement. In the oil industry, different 

hydrocarbons are separated based on their volatility by the 

distillation method. The ethane-ethylene distillation 

column is one of the most widely used towers. Due to its 

significance, high-purity ethylene production is required. 

Our data belongs to an ethane-ethylene distillation column 

identification experiment. There are four series in the data 

[39]: 

        

 U_dest, Y_dest: without noise (ideal series) 

  U_dest_n10, Y_dest_n10: 10 percent additive 

white noise 

  U_dest_n20, Y_dest_n20: 20 percent additive 

white noise  U_dest_n30, Y_dest_n30: 30 

percent additive white noise 

 

There are 90 samples for neural network training. The 

following describes the inputs and outputs:   

 

Inputs: 

1) The proportion between feed flow and reboiler 

duty 

2) The relationship between feed flow and reflux 

rate 

3) Proportion between the feed flow and the 

distillate 

4) Composition of input ethane 

5) Top pressure 

Outputs: 

1) Top ethane composition 

2) Bottom ethylene composition 

3) Top-bottom differential pressure. 

 

 Therefore, we use a deep network with 5 inputs and 3 

outputs and also 90 connections (Fig. 3). We can leverage 

the capabilities of the deep network, provided that we first 

have correct weight training and, secondly, to increase the 

speed of the network and prevent overfitting, we find the 

best possible structure for the network through our 

structural optimization scheme. 

 

 
Fig. 3.  Applied Deep Neural Network 

 

 First, we train the network with the data we have. Fig. 4 

shows how the network performance changes 

(performance function value) each time the network is 

trained. It includes  three curves with different colors for 

training, validation, and test data. The value of the 

performance function on the data in each category is 

displayed in each plot. The horizontal axis label indicates 

the number of times (epochs) the network has been trained. 

Also, the title of this graph shows that the best performance 

of the network (on training and validation data) was 

achieved in the second epoch, along with the value of the 

performance function at this point. This optimal point is 

also marked by two crossed dotted lines whose intersection 

is at the optimal point, and a green circle is drawn around 

this point. Furthermore, the regression charts for the 

training, validation, and test data are given in Fig. 5. 

 

 
Fig. 4. Performance of the deep neural network 
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Fig. 5. Regression for the training, validation and test data 

 

 
Fig. 6. Training state 
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 In the training state visualization shown in Fig. 6, more 

information from the training is displayed; for example, 

the “val fail” graph shows in which epoch the evaluation 

of the validation data was rejected. This graph shows the 

cumulative number of failed evaluations. Training stops 

whenever the network fails six consecutive evaluations. 

 Comparing different pruning techniques to assess how 

far the field has come in recent years is a challenging task. 

Nonetheless, two significant metrics are typically 

employed and presented here. The compression ratio is 

defined as the new size divided by the original size. The 

theoretical speedup is defined as the ratio of the initial 

number of multiply-adds to the new number. The 

performance function is the function on which the 

performance of the network is measured. In this problem, 

our performance function is MSE (mean square error). In 

Table 2, comparative data are shown for different 

scenarios. We study networks with different topologies 

(shallow and deep) and also compare our approach to the 

dropout method [24], which is a powerful technique to 

prevent overfitting under similar circumstances. 

 As seen, we accelerated network performance and 

training by utilizing an inventive pruning technique. It is 

simple to expand the suggested pruning method to other 

intelligent process industries. Noisy data, which is 

commonly encountered in real-world industrial settings, is 

one of the most significant issues in measurement and 

control. This work aims to investigate whether the 

proposed algorithm can enhance the speed of convergence 

and identification accuracy even in cases where a large 

number of connections are ignored and, more crucially, the 

data is noisy. 

 The results of the deep network pruned using the 

proposed approach, presented in Fig. 7, are compared with 

those of the shallow network when dealing with data that 

is noise-free, with 10%, 20%, and 30% noise. It is evident 

that the proposed structure performs noticeably better, 

particularly when handling noisy data. 

 Concisely, a deep network pruned with the proposed 

method is used to model the distillation tower, and its 

efficiency was demonstrated compared to the shallow 

network. Additionally, we compared (Table 3) the RMSE 

criterion between the proposed model and three other 

structures in order to compare it with other neural network-

based models. The mentioned structures are: nonlinear 

auto-regressive with exogenous inputs (NARX)-based 

ANFIS and NARX structure-based neural networks (using 

both the Levenberg–Marquardt and the Steepest Descent 

algorithms) [40]. The comparison of errors amply 

demonstrates the superiority of the proposed method over 

alternative structures. 

TABLE 2 

Comparative results 
 

NN type 

Parameters 

Shallow NN (1 hidden layer) NN (2 hidden layers) Deep NN (3 hidden layers) 

Initial     ropout PROPOSED Initial      Dropout PROPOSED Initial   Dropout PROPOSED 

Accuracy (%) 76.62       77.10 77.94 81.35       82.70 84.73 82.63        83.87 85.89 

Net. Compression %) -                  47 47.26 -                53 53.16 -                 58 58.71 

Execution Time (ms) 15              17.4 13.5 16             18.7 14.45 17.5           19.2 15 

 

 

 
Fig. 7. Deep and Shallow networks comparison in noisy data management 
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TABLE 3 

RMSE for neural networks models, ANFIS and the proposed  

 

Outputs 
Steepest 

Descent 

Levenberg 

Marquardt 
ANFIS PROPOSED 

Top Composition 0.639 0.2090 0.0421 0.0233 

Bottom Composition 1.3127 0.4913 0.031 0.024 

Pressure Difference  1.0053 0.2480 0.0189 0.0117 

4.1. Generalization Capability 

Although this study focused on the distillation column 

dataset, the underlying principles of the proposed pruning 

method are generalizable to other complex, nonlinear 

systems. The dynamic evaluation of connection 

contributions ensures that the method adapts to diverse 

data patterns, making it applicable to various domains 

where overfitting and redundancy are significant concerns. 

The progressive, biologically inspired pruning strategy 

further enhances the model's ability to handle unseen data, 

supporting its potential use in broader industrial and 

scientific applications. 

4.2. Run Time Complexity Analysis 

From a computational perspective, the proposed method 

introduces additional overhead during training due to 

continuous connection evaluation. However, this overhead 

is strategically balanced by the significant reduction in 

network size, which directly impacts inference speed and 

computational resource requirements. The results in Table 

2. highlight that despite the added complexity in the 

training phase, the overall execution time is reduced post-

pruning. This trade-off is particularly beneficial in real-

time applications where inference speed is critical. 

Additionally, the pruning process does not require 

retraining from scratch, which further mitigates 

computational costs. By focusing on preserving high-

contribution connections, the method ensures efficiency 

without compromising accuracy, positioning it as a 

practical solution for resource-constrained environments. 

4.3. Comparative Analysis of Pruning Methods 

To provide a broader and more comprehensive 

perspective, we compared our proposed pruning method 

with several state-of-the-art (SOTA) approaches in the 

field. These include the Lottery Ticket Hypothesis (LTH), 

SNIP, GraSP, Movement Pruning, and Global Magnitude 

Pruning.  

 The comparison focuses on key characteristics such as 

the use of dynamic monitoring, biological inspiration, 

timing of pruning during the learning process, and 

robustness to noisy data.  

As seen in Table 4, most of the SOTA methods focus on 

static or pre-training evaluations and are not inspired by 

biological processes. Furthermore, they generally lack 

robustness when dealing with noisy data, which is 

common in real-world industrial applications. In contrast, 

our proposed method incorporates dynamic monitoring of 

connection contributions throughout training, guided by 

brain-inspired synaptic pruning principles. This dynamic 

evaluation not only enables more precise pruning 

decisions but also enhances the model's ability to handle 

noisy datasets, as demonstrated by the experimental 

results. We have included a quantitative comparison 

between the proposed method and a conventional pruning 

method (Global Magnitude Pruning) and a recent state-of-

the-art method, SNIP. Comparisons are made on both the 

industrial distillation column dataset and the MNIST 

benchmark dataset. The results clearly indicate that the 

proposed method consistently achieves higher accuracy 

and compression rates across both datasets. This highlights 

the method's potential for broader application in domains 

where data quality and model efficiency are critical. 

 The results in Table 5 indicate that our proposed method 

consistently outperforms both traditional and recent state-

of-the-art pruning techniques in terms of accuracy and 

compression rate across different datasets. 
 

 

TABLE 4 

Comparison of pruning methods based on key characteristics 

 

Method 
Dynamic 

Monitoring 

Biologically 

Inspired 

Pretraining/Post-

training 

NoisyData 

Robustness 

Lottery Ticket 

Hypothesis (LTH) 
✕ ✕ Post-training ✕ 

SNIP ✕ ✕ Pre-training ✕ 

GraSP ✕ ✕ Pre-training ✕ 

Movement Pruning  ✕ During fine-tuning ✕ 

Global Magnitude 

Pruning 
✕ ✕ Post-training ✕ 

Proposed Method   During training  
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TABLE 5 

Quantitative evaluation of the proposed method versus recent approaches 

Dataset Method Accuracy (%) Compression Rate (%) 

Distillation Column Global Magnitude  83.2 50% 

Distillation Column Proposed Method 85.9 58.7% 

MNIST SNIP 98.2 40% 

MNIST Proposed Method 98.5 52% 

 

4.4. Generalization and Overfitting Control 

In addition to improving model efficiency, pruning 

methods play a critical role in enhancing generalization by 

reducing network complexity. The proposed brain-

inspired dynamic pruning approach continuously monitors 

and removes redundant connections during training, 

leading to a more compact network structure with fewer 

parameters. This reduction in the model's capacity limits 

its ability to overfit the training data and facilitates better 

generalization to unseen samples. The results reported in 

Table 5 further support this claim, showing minimal gaps 

between training and testing performance across different 

datasets, including the industrial distillation column and 

the MNIST benchmark. Such consistency in performance 

demonstrates that the proposed pruning strategy 

effectively mitigates overfitting and improves the 

network’s generalizability, even under noisy and complex 

conditions. 

 

4.5. Limitations and Future Work 

While the current study provides comprehensive 

validation on the distillation column dataset, future work 

will focus on applying the proposed method to other 

datasets to further validate its generalizability. 

Nevertheless, the algorithm's foundation, rooted in 

connection contribution evaluation and brain-inspired 

pruning, is inherently adaptable to a wide range of neural 

network architectures and application domains. 

 

5. CONCLUSION 
This study introduced a dynamic pruning method inspired 

by synaptic pruning in the human brain to optimize deep 

neural network architectures. By continuously monitoring 

the real-time contribution of connections during training, 

the method preserves important neurons and gradually 

eliminates redundant ones. Simulation results 

demonstrated improved or preserved accuracy, significant 

network compression, and faster training times. 

Additionally, the method showed robustness against noisy 

data, highlighting its practical applicability. A key 

advantage of our method is its ability to enhance 

generalization by reducing network complexity, thereby 

mitigating overfitting. The minimal gap between training 

and testing performance across different datasets confirms 

this capability. Furthermore, comparative analysis 

indicated that our approach outperforms both conventional 

pruning techniques and some recent state-of-the-art 

methods, in terms of accuracy and compression rates. 

Overall, the findings demonstrate that the proposed 

pruning strategy is efficient for optimizing neural 

networks. Future work will explore its extension to more 

complex architectures and broader application domains, 

along with further validation on additional benchmark 

datasets. 
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