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  Structure Optimization in Deep Neural Networks with Synaptic 

Pruning Based on Connection Appraisal 

 

Abstract 

   Deep neural networks typically require predefined architectures, which can lead to overfitting, underfitting, 

high computational costs, and storage overhead. Dynamic structure optimization through pruning can reduce 

network redundancy, but it often results in performance degradation. In this study, we propose a novel pruning 

method inspired by biological synaptic pruning that adaptively optimizes deep neural network structures. The 

proposed method continuously monitors the contribution of each connection during training using a dynamic 

efficiency criterion that evaluates the relative importance of each connection within its layer. Connections are not 

removed immediately; only those consistently falling below a predefined threshold are pruned, ensuring stability 

and robustness. Validation is conducted by simulation on an industrial distillation column dataset under noisy 

conditions and the MNIST benchmark dataset. The results demonstrate improved accuracy, enhanced 

generalization, and faster learning, with an average pruning rate of 53%. Compared to conventional and state-of-

the-art pruning techniques, our method achieves superior performance in terms of compression rate and accuracy 

while effectively mitigating overfitting. 
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1. Introduction 

In the fields of data science and artificial intelligence, machine learning has experienced 

tremendous growth. Among its various tools, artificial neural networks (ANNs) have become 

some of the most reliable and widely used methods, owing to their parallel distributed 

architecture, learning capability, and generalization potential [1]. These features enable neural 

networks to effectively handle complex tasks such as automatic control, system identification, 

and pattern recognition. 

A neural network’s structure (comprising the number of hidden layers and associated weights) 

plays a crucial role in determining its overall performance. Both excessively small and overly 

large networks pose challenges: small networks lack sufficient capacity to model complex 

relationships, making them difficult to train, while large networks suffer from overfitting, 

reduced generalization, and increased computational burden [2], [3], [4]. Achieving an optimal 

network size is thus vital for creating models that are not only accurate but also efficient and 

interpretable. The recent success of deep neural networks (DNNs) in various machine learning 

applications has further highlighted this trade-off. Despite their superior performance, DNNs 

typically demand substantial memory and processing power, making them difficult to deploy 

in environments with limited computational resources, such as mobile devices and embedded 
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systems [5], [6]. Consequently, methods to reduce the complexity of these networks without 

sacrificing accuracy have become essential. One widely adopted solution is neural network 

pruning, which involves systematically removing unnecessary parameters from a trained 

network to simplify its structure. Pruning can effectively reduce computational and storage 

overhead while maintaining acceptable levels of accuracy. Although pruning has been explored 

since the late 1980s [7], its relevance has resurfaced with the growing depth and complexity of 

modern networks. A fundamental challenge in pruning is identifying which connections are 

suitable candidates for removal. Traditional methods often rely on the magnitude of the 

connection weights, assuming that smaller weights contribute less to the network's output and 

thus can be safely pruned. However, both theoretical studies and empirical evidence have 

shown that this assumption can be misleading [2], [3]. Important connections may exhibit small 

weight magnitudes due to specific data distributions or network dynamics. Consequently, 

relying solely on weight magnitude as a pruning criterion risks discarding valuable connections 

and potentially degrading network performance. 

Recent research has emphasized the need for more robust evaluation criteria that go beyond 

simple weight magnitude. However, many existing methods still assess connection importance 

in a static, single-phase manner without continuously monitoring their contribution during the 

training process. Furthermore, most of these approaches focus primarily on optimization and 

regularization objectives, lacking a biologically plausible foundation [4]. In contrast, the 

human brain offers a compelling model for effective pruning. During development, the brain 

undergoes synaptic pruning, a process where redundant or weak synaptic connections are 

gradually eliminated based on their activity levels [8]. This activity-dependent mechanism 

strengthens frequently used synapses while removing those that are rarely activated, leading to 

a more efficient and specialized network [9], [10], [11]. Incorporating such biologically 

inspired strategies into artificial neural network pruning can potentially enhance both 

effectiveness and robustness. In this paper, we propose a novel method for optimizing the 

structure of deep neural networks by integrating brain-inspired synaptic pruning mechanisms 

with connection evaluation based on network error contribution. Unlike traditional methods 

that rely on weight magnitude, our approach dynamically monitors the actual influence of each 

connection on the network’s performance. Connections with persistently weak contributions 

are gradually eliminated, mirroring the brain's “use it or lose it” principle. This strategy not 

only reduces the risk of removing valuable connections but also improves the network's ability 

to handle noisy and uncertain data. The remainder of this paper is organized as follows: Section 

2 reviews related works in neural network pruning and structure optimization; Section 3 
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presents the proposed pruning method; Section 4 provides comparative results and discussion; 

and finally, Section 5 concludes the paper. 

2.  Related Works 

The primary distinction between shallow and deep neural networks lies in the number of hidden 

layers. Shallow networks typically consist of a single hidden layer, whereas deep networks 

comprise multiple hidden layers (at least three), enabling hierarchical feature extraction and 

improved representation of complex data. This hierarchical structure enhances robustness in 

managing uncertainties and allows deep networks to model more precise functions, making 

them superior in applications requiring complex feature learning, such as industrial process 

modeling and control. 

One of the earliest solutions for reducing the computational complexity of neural networks 

(NNs) is knowledge distillation, in which a smaller model is trained to mimic the behavior of 

a larger, well-trained model [12]. Despite its effectiveness, this approach requires predefined 

architectures for student networks, which limits flexibility. 

Another extensively studied method is network pruning, where neurons or connections with 

minimal contribution are systematically removed. Traditional pruning techniques often rely on 

thresholding weight magnitudes, assuming that smaller weights are less significant [13], [14]. 

However, this approach has been questioned, as critical connections might occasionally have 

small weight magnitudes depending on the data and network dynamics [15]. 

To address these limitations, more advanced pruning criteria have been introduced. For 

instance, Molchanov et al. [16] proposed utilizing feature map statistics and mutual information 

to evaluate the relevance of connections. Other researchers have adopted Taylor series 

expansions for sensitivity analysis, such as the first-order approach by Molchanov et al. [16] 

and second-order methods by LeCun et al. [17] and Hassibi and Stork [18], using Hessian 

approximations for more accurate significance estimation. 

Beyond individual weights, filter-level pruning methods have also emerged. He et al. [19] 

proposed a geometric median-based method for removing redundant filters. Yu et al. [20] 

introduced the Neuron Importance Score Propagation (NISP) technique, propagating 

importance values backward through the network layers. Li et al. [21] focused on pruning 

filters with lower weights, and He et al. [22] introduced soft filter pruning, allowing pruned 

filters to recover through retraining. While these methods improve computational efficiency, 

they often lack biological plausibility, focusing on mathematical heuristics rather than 

biologically inspired mechanisms. Furthermore, many existing approaches perform one-time 
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static evaluations without continuously monitoring the dynamic role of connections during 

training. Regularization methods such as dropout [23] and dropconnect [24] have been 

effective in preventing overfitting by randomly deactivating neurons or weights during 

training. However, they do not reduce network complexity at inference time, as all connections 

are reactivated. Similarly, techniques like meProp [25] sparsify gradients during 

backpropagation to accelerate training but do not alter the network’s structure. 

Another prominent line of research involves evolutionary algorithms, which simultaneously 

optimize network topology and weights. Evolutionary strategies employ fitness functions that 

consider accuracy and network complexity [26], [27], [28]. Genetic algorithms, in particular, 

have been used to prune networks and discover efficient topologies [29], [30], [31], [32]. 

Despite their adaptability, these methods are computationally intensive and suffer from 

convergence uncertainties due to the vast search space. 

Recently, several pruning methods have been proposed to enhance the efficiency of deep neural 

networks without significantly compromising performance. In the Lottery Ticket Hypothesis 

(LTH) method, the concept of “winning tickets” was used to train small subnetworks that can 

match the performance of the original network if initialized properly [33]. SNIP presents a pre-

training pruning strategy based on connection sensitivity to loss, allowing efficient 

identification of crucial weights before training [34]. GraSP further improves pruning by 

preserving the gradient flow essential for learning [35]. Movement Pruning is a dynamic 

pruning method applied during fine-tuning, focusing on the directional movement of weights 

to identify unimportant connections [36]. Additionally, Global Magnitude Pruning selects the 

weakest weights across the entire network rather than layer by layer, achieving a better balance 

between sparsity and accuracy [37]. Despite their success, most of these methods rely heavily 

on initial weight magnitudes or static criteria, whereas our proposed method continuously 

monitors the dynamic contribution of each connection to the network’s error during training, 

inspired by biological synaptic pruning mechanisms. 

In summary, while significant progress has been made in neural network pruning with the 

advent of the Lottery Ticket Hypothesis (LTH), SNIP, GraSP, Movement Pruning, and Global 

Magnitude Pruning, these approaches still primarily rely on static evaluations or single-shot 

sensitivity analyses. They often assess connection importance based on initial weight 

magnitudes, gradient sensitivity, or weight movement trends, with limited adaptation during 

the training process. Moreover, most of recent methods lack a biologically inspired mechanism 

to guide pruning decisions dynamically. These gaps highlight the necessity for pruning 

strategies that can adapt to the evolving structure and error dynamics of the network. Our 

proposed method addresses these limitations by continuously monitoring the real-time 
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contribution of each connection to the overall network error and gradually pruning redundant 

connections, inspired by the synaptic pruning process observed in biological neural systems. 

This dynamic and brain-inspired approach ensures more robust pruning decisions and greater 

resilience to noisy and uncertain data, pushing beyond the capabilities of existing techniques. 

3. Proposed Pruning Method     

We present an innovative Brain-Inspired Connection Evaluation Pruning technique in this 

section. In the first stage of the proposed algorithm, the real value of each connection in the 

network is determined, which essentially reflects the importance and contribution of that 

connection to the overall network performance. In this context, the "real value" is assessed 

based on an error-driven criterion, where the impact of omitting each connection on the 

network’s output error is evaluated. This allows for a more accurate measurement of each 

connection’s significance beyond simple weight magnitudes. 

This evaluation is based on neglecting each connection and computing the error that results 

from its removal. In order to measure the true value of the neurons, the current output of the 

network must be brought closer to the ideal values. In other words, connections that lead to a 

deviation of the output from the ideal values increase errors. We arrange the connections 

according to how much training error is produced when they are eliminated. In the process of 

pruning, our goal is to make the network lighter and smaller, but we must note that the accuracy 

of the network should not decrease too much. Therefore, pruning candidates include a subset 

of connections that have produced the minimum amount of errors. We will delete connections 

inspired by the pruning process in the human brain as follows: brain pruning involves making 

stronger connections with a higher frequency of use and weaker connections with a lower 

frequency of use [38]. A connection will be deleted if, over the course of several steps, its 

strength falls below a predetermined threshold. Namely, if the weak score of a connection 

persists, it will be eliminated. Fig. 1 depicts the process of synaptic pruning. It is evident that 

we need to specify two crucial parameters. The first parameter is the threshold, which indicates 

which connections may need pruning. The second parameter is the warning time, which 

indicates how long the related connection will remain active before being deleted. However, 

here the criterion is training error instead of connection weights. 

 

Use it or lose it: neuroscientists refer to the decrease in spine density as "synaptic pruning." 

Through this process, weaker structures are eliminated, reallocating resources to the surviving 
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ones so they can become stronger and more stable. As it became abundantly evident that 

synaptic activity directs appropriate pruning, scientists focused on identifying the cellular 

processes that might control the remodeling [38]. 

 

Figure 2: Process of synaptic pruning  

We determine a threshold value for the acceptable error in order to guide the pruning process. 

This threshold serves as a benchmark to evaluate the significance of each connection within 

the network. During each iteration, we closely monitor the connections whose removal results 

in minimal increases in error compared to the previous step. These connections, having 

demonstrated a consistently low impact on overall network performance, are considered 

potential candidates for removal. To ensure a cautious and reliable pruning process, we 

introduce a control mechanism known as the "warning number." This parameter defines the 

required consistency of a connection's low contribution across multiple evaluations. 

Specifically, connections that remain below the error threshold for a certain number of 

consecutive iterations (defined by the warning number) are identified as weak contributors and 

selected for pruning. This progressive evaluation prevents the premature removal of 

connections that might exhibit temporary fluctuations in importance due to network dynamics. 

This method allows for a gradual and robust reduction in network complexity, as only the 

connections with persistently negligible impact are pruned. By continuously reassessing the 

error contribution of each connection, the proposed approach mimics biological pruning 

mechanisms, ensuring that only truly redundant connections are eliminated. The procedure of 

the proposed pruning technique is illustrated in Fig. 2, which visually represents the step-by-

step process, including error evaluation, candidate selection, application of the warning number 

criterion, and final pruning decisions. 
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Figure 2: Flowchart of the proposed pruning 

 

The pruning pseudo-code is presented in detail in Table 1. This combined pruning method is 

presented to address the disadvantages of existing pruning methods as mentioned in the 

previous sections: relying only on the weighted domain is not sufficient, and there is a high 

probability that some very important network connections are omitted. We addressed this 

weakness by sorting the connections, and after finding the connections susceptible to deletion, 

the removal is not done in one step by decreasing the value once. We successively caution the 

pruning candidates and prune them based on these warnings. 
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Table1: Pruning pseudo code 

 

 

In summary, the evaluation of all network connections is carried out based on their contribution 

to the overall network error. Specifically, we determine the error introduced by individually 

removing each connection and then rank the connections according to the magnitude of these 

errors. Connections associated with the least error increases are considered for removal, guided 

by a pruning rate defined by the designer. Consequently, our pruning strategy incorporates two 

key elements: evaluating connections based on training error and tracking their iterative weak 

𝑇𝑟𝑎𝑖𝑛 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 
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 𝑒𝑛𝑑 𝑙𝑜𝑜𝑝 

𝑒𝑛𝑑 𝑙𝑜𝑜𝑝 
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scores. Ultimately, this process yields a pruned network that significantly outperforms the 

original configuration. 

The motivation behind the proposed pruning strategy stems from the limitations observed in 

existing methods. Most conventional pruning techniques rely heavily on static evaluations, 

primarily based on weight magnitude or sensitivity analyses performed either before or after 

training. Such static approaches often fail to capture the dynamic behavior and real-time 

importance of connections throughout the learning process, leading to the risk of pruning 

significant but low-magnitude connections and potentially degrading network performance. 

In contrast, the human brain undergoes synaptic pruning based on continuous monitoring of 

synaptic activity, gradually eliminating weak and unused connections while reinforcing the 

strong ones. Inspired by this biological process, our approach integrates a dynamic evaluation 

criterion that monitors the real-time contribution of each connection to the overall training 

error. By focusing on the impact of each connection on network performance rather than solely 

on its weight magnitude, we ensure that only truly redundant connections are pruned. 

Moreover, the introduction of a "warning number"—requiring multiple consecutive 

evaluations before pruning—prevents the premature removal of connections due to temporary 

fluctuations, thus enhancing the robustness of the pruning process. This feature becomes 

particularly crucial in noisy or uncertain environments, such as industrial process modeling, 

where data variability can affect the stability of traditional pruning methods. 

Therefore, the proposed method not only addresses the shortcomings of static and heuristic-

driven pruning approaches but also offers a biologically plausible, adaptive, and noise-resilient 

solution for optimizing deep neural network architectures. These attributes make it a highly 

appropriate choice for complex, real-world applications. 

4. Comparison Results and Discussion                           

In this section, we apply the suggested method to a neural network model of a refinery process’s 

distillation tower in order to assess its efficacy. The objective is to investigate how, in the case 

of ideal and noisy data, the proposed algorithm can enhance identification accuracy and 

convergence speed.  

The distillation tower, which is a multi-input, multi-output (MIMO) nonlinear system, is a 

general and inseparable part of a refinery. A distillation column is a device for separating 

components of a solution. In fact, in the distillation tower, the components of a solution are 

separated based on their volatility and boiling point differences. Industrial distillation towers 

are widely used in various process industries, but one of their main uses is crude oil refinement. 
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In the oil industry, different hydrocarbons are separated based on their volatility by the 

distillation method. The ethane-ethylene distillation column is one of the most widely used 

towers. Due to its significance, high-purity ethylene production is required. 

Our data belongs to an ethane-ethylene distillation column identification experiment. There are 

four series in the data [39]:        

 U_dest, Y_dest: without noise (ideal series) 

  U_dest_n10, Y_dest_n10: 10 percent additive white noise 

  U_dest_n20, Y_dest_n20: 20 percent additive white noise 

  U_dest_n30, Y_dest_n30: 30 percent additive white noise 

 

There are 90 samples for neural network training. The following describes the inputs and 

outputs:   

 

Inputs: 

1. The proportion between feed flow and reboiler duty 

2. The relationship between feed flow and reflux rate 

3. Proportion between the feed flow and the distillate 

4. Composition of input ethane 

5. Top pressure 

Outputs: 

1. Top ethane composition 

2. Bottom ethylene composition 

3. Top-bottom differential pressure. 

 

Therefore, we use a deep network with 5 inputs and 3 outputs and also 90 connections (Fig. 3). 

We can leverage the capabilities of the deep network, provided that we first have correct weight 

training and, secondly, to increase the speed of the network and prevent overfitting, we find 

the best possible structure for the network through our structural optimization scheme. 

 

 
Figure 3: Applied Deep Neural Network 

 

First, we train the network with the data we have. Fig. 4 shows how the network performance 

changes (performance function value) each time the network is trained. It includes three curves 

with different colors for training, validation, and test data. The value of the performance 

function on the data in each category is displayed in each plot. The horizontal axis label 
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indicates the number of times (epochs) the network has been trained. Also, the title of this 

graph shows that the best performance of the network (on training and validation data) was 

achieved in the second epoch, along with the value of the performance function at this point. 

This optimal point is also marked by two crossed dotted lines whose intersection is at the 

optimal point, and a green circle is drawn around this point. Furthermore, the regression charts 

for the training, validation, and test data are given in Fig. 5. 

 

 

Figure 4: Performance of the deep neural network 

 

 

Figure 5: Regression for the training, validation and test data 

 

In the training state visualization (Fig. 6), more information from the training is displayed; for 

example, the “val fail” graph shows in which epoch the evaluation of the validation data was 
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rejected. This graph shows the cumulative number of failed evaluations. Training stops 

whenever the network fails six consecutive evaluations. 

 

 

Figure 6: Training state 

 

Comparing different pruning techniques to assess how far the field has come in recent years is 

a challenging task. Nonetheless, two significant metrics are typically employed and presented 

here. The compression ratio is defined as the new size divided by the original size. The 

theoretical speedup is defined as the ratio of the initial number of multiply-adds to the new 

number. The performance function is the function on which the performance of the network is 

measured. In this problem, our performance function is MSE (mean square error). In Table 2, 

comparative data are shown for different scenarios. We study networks with different 

topologies (shallow and deep) and also compare our approach to the dropout method [24], 

which is a powerful technique to prevent overfitting under similar circumstances. 

                                                               Table 2: Comparative Results 

      NN type 

 

 Parameters 

Shallow NN 

(1 hidden layer) 

NN 

(2 hidden layers) 

Deep NN 

(3 hidden layers) 
Initial     Dropout  

PROPOSED 

   Initial      Dropout             

PROPOSED 

 Initial      Dropout    

PROPOSED 

Accuracy 

 (%) 

76.62       77.10 77.94 81.35       82.70 84.73 82.63        83.87 85.89 

Net. Compression 

(%)  

-                  47 47.26 -                53 53.16 -                 58 58.71 

Execution Time 

(ms) 

15              17.4 13.5 16             18.7 14.45 17.5           19.2     15 

 

As seen, we accelerated network performance and training by utilizing an inventive pruning 

technique. It is simple to expand the suggested pruning method to other intelligent process 

industries. Noisy data, which is commonly encountered in real-world industrial settings, is one 

of the most significant issues in measurement and control. This work aims to investigate 
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whether the proposed algorithm can enhance the speed of convergence and identification 

accuracy even in cases where a large number of connections are ignored and, more crucially, 

the data is noisy. 

The results of the deep network pruned using the proposed approach, presented in Fig. 7, are 

compared with those of the shallow network when dealing with data that is noise-free, with 

10%, 20%, and 30% noise. It is evident that the proposed structure performs noticeably better, 

particularly when handling noisy data. 

 
Figure 7: Deep and Shallow networks comparison in noisy data management 

 

Concisely, a deep network pruned with the proposed method is used to model the distillation 

tower, and its efficiency was demonstrated compared to the shallow network. Additionally, we 

compared (Table 3) the RMSE criterion between the proposed model and three other structures 

in order to compare it with other neural network-based models. The mentioned structures are: 

nonlinear auto-regressive with exogenous inputs (NARX)-based ANFIS and NARX structure-

based neural networks (using both the Levenberg–Marquardt and the Steepest Descent 

algorithms) [40]. The comparison of errors amply demonstrates the superiority of the proposed 

method over alternative structures. 
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Table 3: RMSE for Neural Networks Models, ANFIS and the proposed  

Outputs Steepest 

Descent 

Levenberg 

Marquardt 

ANFIS PROPOSED 

Top Composition 0.639 0.2090 0.0421 0.0233 

Bottom Composition 1.3127 0.4913 0.031 0.024 

Pressure Difference  1.0053 0.2480 0.0189 0.0117 

Generalization Capability 

Although this study focused on the distillation column dataset, the underlying principles of the 

proposed pruning method are generalizable to other complex, nonlinear systems. The dynamic 

evaluation of connection contributions ensures that the method adapts to diverse data patterns, 

making it applicable to various domains where overfitting and redundancy are significant 

concerns. The progressive, biologically inspired pruning strategy further enhances the model's 

ability to handle unseen data, supporting its potential use in broader industrial and scientific 

applications. 

 

Run Time Complexity Analysis 

From a computational perspective, the proposed method introduces additional overhead during 

training due to continuous connection evaluation. However, this overhead is strategically 

balanced by the significant reduction in network size, which directly impacts inference speed 

and computational resource requirements. The results in Table 2 highlight that despite the 

added complexity in the training phase, the overall execution time is reduced post-pruning. 

This trade-off is particularly beneficial in real-time applications where inference speed is 

critical. Additionally, the pruning process does not require retraining from scratch, which 

further mitigates computational costs. By focusing on preserving high-contribution 

connections, the method ensures efficiency without compromising accuracy, positioning it as 

a practical solution for resource-constrained environments. 

Comparative Analysis of Pruning Methods 

 

To provide a broader and more comprehensive perspective, we compared our proposed pruning 

method with several state-of-the-art approaches in the field. These include the Lottery Ticket 

Hypothesis (LTH), SNIP, GraSP, Movement Pruning, and Global Magnitude Pruning.  
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The comparison focuses on key characteristics such as the use of dynamic monitoring, 

biological inspiration, timing of pruning during the learning process, and robustness to noisy 

data.  

Table 4: Comparison of Pruning Methods Based on Key Characteristics 

Method Dynamic 

Monitoring 

Biologically 

Inspired 

Pretraining/Post-

training 

NoisyData 

Robustness 

Lottery Ticket 

Hypothesis 

(LTH) 

✕ ✕ Post-training ✕ 

SNIP ✕ ✕ Pre-training ✕ 

GraSP ✕ ✕ Pre-training ✕ 

Movement 

Pruning 

 ✕ During fine-

tuning 
✕ 

Global 

Magnitude 

Pruning 

✕ ✕ Post-training ✕ 

Proposed 

Method 

  During training  

 

As seen in Table 4, most of the recent methods focus on static or pre-training evaluations and 

are not inspired by biological processes. Furthermore, they generally lack robustness when 

dealing with noisy data, which is common in real-world industrial applications. In contrast, our 

proposed method incorporates dynamic monitoring of connection contributions throughout 

training, guided by brain-inspired synaptic pruning principles. This dynamic evaluation not 

only enables more precise pruning decisions but also enhances the model's ability to handle 

noisy datasets, as demonstrated by the experimental results. We have included a quantitative 

comparison between the proposed method and a conventional pruning method (Global 

Magnitude Pruning) and a recent state-of-the-art method, SNIP. Comparisons are made on both 

the industrial distillation column dataset and the MNIST benchmark dataset. The results clearly 

indicate that the proposed method consistently achieves higher accuracy and compression rates 

across both datasets. This highlights the method's potential for broader application in domains 

where data quality and model efficiency are critical. 
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Table 5: Quantitative Evaluation of the Proposed Method Versus Recent Approaches 

Dataset Method Accuracy (%) Compression Rate 

(%) 

Distillation 

Column 

Global Magnitude  83.2 50% 

Distillation 

Column 

Proposed Method 85.9 58.7% 

MNIST SNIP 98.2 40% 

MNIST Proposed Method 98.5 52% 

 

The results in Table 5 indicate that our proposed method consistently outperforms both 

traditional and recent state-of-the-art pruning techniques in terms of accuracy and compression 

rate across different datasets. 

Generalization and Overfitting Control 

In addition to improving model efficiency, pruning methods play a critical role in enhancing 

generalization by reducing network complexity. The proposed brain-inspired dynamic pruning 

approach continuously monitors and removes redundant connections during training, leading 

to a more compact network structure with fewer parameters. This reduction in the model's 

capacity limits its ability to overfit the training data and facilitates better generalization to 

unseen samples. The results reported in Table 5 further support this claim, showing minimal 

gaps between training and testing performance across different datasets, including the 

industrial distillation column and the MNIST benchmark. Such consistency in performance 

demonstrates that the proposed pruning strategy effectively mitigates overfitting and improves 

the network’s generalizability, even under noisy and complex conditions. 

Limitations and Future Work 

While the current study provides comprehensive validation on the distillation column dataset, 

future work will focus on applying the proposed method to other datasets to further validate its 

generalizability. Nevertheless, the algorithm's foundation, rooted in connection contribution 

evaluation and brain-inspired pruning, is inherently adaptable to a wide range of neural network 

architectures and application domains. 

5. Conclusion 

   This study introduced a dynamic pruning method inspired by synaptic pruning in the human 

brain to optimize deep neural network architectures. By continuously monitoring the real-time 

contribution of connections during training, the method preserves important neurons and 

gradually eliminates redundant ones. Simulation results demonstrated improved or preserved 
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accuracy, significant network compression, and faster training times. Additionally, the method 

showed robustness against noisy data, highlighting its practical applicability. A key advantage 

of our method is its ability to enhance generalization by reducing network complexity, thereby 

mitigating overfitting. The minimal gap between training and testing performance across 

different datasets confirms this capability. Furthermore, comparative analysis indicated that 

our approach outperforms both conventional pruning techniques and some recent state-of-the-

art methods, in terms of accuracy and compression rates. Overall, the findings demonstrate that 

the proposed pruning strategy is efficient for optimizing neural networks. Future work will 

explore its extension to more complex architectures and broader application domains, along 

with further validation on additional benchmark datasets. 
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