

1

 Structure Optimization in Deep Neural Networks with Synaptic

Pruning Based on Connection Appraisal

Abstract

 Deep neural networks typically require predefined architectures, which can lead to overfitting, underfitting,

high computational costs, and storage overhead. Dynamic structure optimization through pruning can reduce

network redundancy, but it often results in performance degradation. In this study, we propose a novel pruning

method inspired by biological synaptic pruning that adaptively optimizes deep neural network structures. The

proposed method continuously monitors the contribution of each connection during training using a dynamic

efficiency criterion that evaluates the relative importance of each connection within its layer. Connections are not

removed immediately; only those consistently falling below a predefined threshold are pruned, ensuring stability

and robustness. Validation is conducted by simulation on an industrial distillation column dataset under noisy

conditions and the MNIST benchmark dataset. The results demonstrate improved accuracy, enhanced

generalization, and faster learning, with an average pruning rate of 53%. Compared to conventional and state-of-

the-art pruning techniques, our method achieves superior performance in terms of compression rate and accuracy

while effectively mitigating overfitting.

Keywords: Deep Neural Networks, Synaptic Pruning, Distillation Column, Connection Evaluation

1. Introduction

In the fields of data science and artificial intelligence, machine learning has experienced

tremendous growth. Among its various tools, artificial neural networks (ANNs) have become

some of the most reliable and widely used methods, owing to their parallel distributed

architecture, learning capability, and generalization potential [1]. These features enable neural

networks to effectively handle complex tasks such as automatic control, system identification,

and pattern recognition.

A neural network’s structure (comprising the number of hidden layers and associated weights)

plays a crucial role in determining its overall performance. Both excessively small and overly

large networks pose challenges: small networks lack sufficient capacity to model complex

relationships, making them difficult to train, while large networks suffer from overfitting,

reduced generalization, and increased computational burden [2], [3], [4]. Achieving an optimal

network size is thus vital for creating models that are not only accurate but also efficient and

interpretable. The recent success of deep neural networks (DNNs) in various machine learning

applications has further highlighted this trade-off. Despite their superior performance, DNNs

typically demand substantial memory and processing power, making them difficult to deploy

in environments with limited computational resources, such as mobile devices and embedded

2

systems [5], [6]. Consequently, methods to reduce the complexity of these networks without

sacrificing accuracy have become essential. One widely adopted solution is neural network

pruning, which involves systematically removing unnecessary parameters from a trained

network to simplify its structure. Pruning can effectively reduce computational and storage

overhead while maintaining acceptable levels of accuracy. Although pruning has been explored

since the late 1980s [7], its relevance has resurfaced with the growing depth and complexity of

modern networks. A fundamental challenge in pruning is identifying which connections are

suitable candidates for removal. Traditional methods often rely on the magnitude of the

connection weights, assuming that smaller weights contribute less to the network's output and

thus can be safely pruned. However, both theoretical studies and empirical evidence have

shown that this assumption can be misleading [2], [3]. Important connections may exhibit small

weight magnitudes due to specific data distributions or network dynamics. Consequently,

relying solely on weight magnitude as a pruning criterion risks discarding valuable connections

and potentially degrading network performance.

Recent research has emphasized the need for more robust evaluation criteria that go beyond

simple weight magnitude. However, many existing methods still assess connection importance

in a static, single-phase manner without continuously monitoring their contribution during the

training process. Furthermore, most of these approaches focus primarily on optimization and

regularization objectives, lacking a biologically plausible foundation [4]. In contrast, the

human brain offers a compelling model for effective pruning. During development, the brain

undergoes synaptic pruning, a process where redundant or weak synaptic connections are

gradually eliminated based on their activity levels [8]. This activity-dependent mechanism

strengthens frequently used synapses while removing those that are rarely activated, leading to

a more efficient and specialized network [9], [10], [11]. Incorporating such biologically

inspired strategies into artificial neural network pruning can potentially enhance both

effectiveness and robustness. In this paper, we propose a novel method for optimizing the

structure of deep neural networks by integrating brain-inspired synaptic pruning mechanisms

with connection evaluation based on network error contribution. Unlike traditional methods

that rely on weight magnitude, our approach dynamically monitors the actual influence of each

connection on the network’s performance. Connections with persistently weak contributions

are gradually eliminated, mirroring the brain's “use it or lose it” principle. This strategy not

only reduces the risk of removing valuable connections but also improves the network's ability

to handle noisy and uncertain data. The remainder of this paper is organized as follows: Section

2 reviews related works in neural network pruning and structure optimization; Section 3

3

presents the proposed pruning method; Section 4 provides comparative results and discussion;

and finally, Section 5 concludes the paper.

2. Related Works

The primary distinction between shallow and deep neural networks lies in the number of hidden

layers. Shallow networks typically consist of a single hidden layer, whereas deep networks

comprise multiple hidden layers (at least three), enabling hierarchical feature extraction and

improved representation of complex data. This hierarchical structure enhances robustness in

managing uncertainties and allows deep networks to model more precise functions, making

them superior in applications requiring complex feature learning, such as industrial process

modeling and control.

One of the earliest solutions for reducing the computational complexity of neural networks

(NNs) is knowledge distillation, in which a smaller model is trained to mimic the behavior of

a larger, well-trained model [12]. Despite its effectiveness, this approach requires predefined

architectures for student networks, which limits flexibility.

Another extensively studied method is network pruning, where neurons or connections with

minimal contribution are systematically removed. Traditional pruning techniques often rely on

thresholding weight magnitudes, assuming that smaller weights are less significant [13], [14].

However, this approach has been questioned, as critical connections might occasionally have

small weight magnitudes depending on the data and network dynamics [15].

To address these limitations, more advanced pruning criteria have been introduced. For

instance, Molchanov et al. [16] proposed utilizing feature map statistics and mutual information

to evaluate the relevance of connections. Other researchers have adopted Taylor series

expansions for sensitivity analysis, such as the first-order approach by Molchanov et al. [16]

and second-order methods by LeCun et al. [17] and Hassibi and Stork [18], using Hessian

approximations for more accurate significance estimation.

Beyond individual weights, filter-level pruning methods have also emerged. He et al. [19]

proposed a geometric median-based method for removing redundant filters. Yu et al. [20]

introduced the Neuron Importance Score Propagation (NISP) technique, propagating

importance values backward through the network layers. Li et al. [21] focused on pruning

filters with lower weights, and He et al. [22] introduced soft filter pruning, allowing pruned

filters to recover through retraining. While these methods improve computational efficiency,

they often lack biological plausibility, focusing on mathematical heuristics rather than

biologically inspired mechanisms. Furthermore, many existing approaches perform one-time

4

static evaluations without continuously monitoring the dynamic role of connections during

training. Regularization methods such as dropout [23] and dropconnect [24] have been

effective in preventing overfitting by randomly deactivating neurons or weights during

training. However, they do not reduce network complexity at inference time, as all connections

are reactivated. Similarly, techniques like meProp [25] sparsify gradients during

backpropagation to accelerate training but do not alter the network’s structure.

Another prominent line of research involves evolutionary algorithms, which simultaneously

optimize network topology and weights. Evolutionary strategies employ fitness functions that

consider accuracy and network complexity [26], [27], [28]. Genetic algorithms, in particular,

have been used to prune networks and discover efficient topologies [29], [30], [31], [32].

Despite their adaptability, these methods are computationally intensive and suffer from

convergence uncertainties due to the vast search space.

Recently, several pruning methods have been proposed to enhance the efficiency of deep neural

networks without significantly compromising performance. In the Lottery Ticket Hypothesis

(LTH) method, the concept of “winning tickets” was used to train small subnetworks that can

match the performance of the original network if initialized properly [33]. SNIP presents a pre-

training pruning strategy based on connection sensitivity to loss, allowing efficient

identification of crucial weights before training [34]. GraSP further improves pruning by

preserving the gradient flow essential for learning [35]. Movement Pruning is a dynamic

pruning method applied during fine-tuning, focusing on the directional movement of weights

to identify unimportant connections [36]. Additionally, Global Magnitude Pruning selects the

weakest weights across the entire network rather than layer by layer, achieving a better balance

between sparsity and accuracy [37]. Despite their success, most of these methods rely heavily

on initial weight magnitudes or static criteria, whereas our proposed method continuously

monitors the dynamic contribution of each connection to the network’s error during training,

inspired by biological synaptic pruning mechanisms.

In summary, while significant progress has been made in neural network pruning with the

advent of the Lottery Ticket Hypothesis (LTH), SNIP, GraSP, Movement Pruning, and Global

Magnitude Pruning, these approaches still primarily rely on static evaluations or single-shot

sensitivity analyses. They often assess connection importance based on initial weight

magnitudes, gradient sensitivity, or weight movement trends, with limited adaptation during

the training process. Moreover, most of recent methods lack a biologically inspired mechanism

to guide pruning decisions dynamically. These gaps highlight the necessity for pruning

strategies that can adapt to the evolving structure and error dynamics of the network. Our

proposed method addresses these limitations by continuously monitoring the real-time

5

contribution of each connection to the overall network error and gradually pruning redundant

connections, inspired by the synaptic pruning process observed in biological neural systems.

This dynamic and brain-inspired approach ensures more robust pruning decisions and greater

resilience to noisy and uncertain data, pushing beyond the capabilities of existing techniques.

3. Proposed Pruning Method

We present an innovative Brain-Inspired Connection Evaluation Pruning technique in this

section. In the first stage of the proposed algorithm, the real value of each connection in the

network is determined, which essentially reflects the importance and contribution of that

connection to the overall network performance. In this context, the "real value" is assessed

based on an error-driven criterion, where the impact of omitting each connection on the

network’s output error is evaluated. This allows for a more accurate measurement of each

connection’s significance beyond simple weight magnitudes.

This evaluation is based on neglecting each connection and computing the error that results

from its removal. In order to measure the true value of the neurons, the current output of the

network must be brought closer to the ideal values. In other words, connections that lead to a

deviation of the output from the ideal values increase errors. We arrange the connections

according to how much training error is produced when they are eliminated. In the process of

pruning, our goal is to make the network lighter and smaller, but we must note that the accuracy

of the network should not decrease too much. Therefore, pruning candidates include a subset

of connections that have produced the minimum amount of errors. We will delete connections

inspired by the pruning process in the human brain as follows: brain pruning involves making

stronger connections with a higher frequency of use and weaker connections with a lower

frequency of use [38]. A connection will be deleted if, over the course of several steps, its

strength falls below a predetermined threshold. Namely, if the weak score of a connection

persists, it will be eliminated. Fig. 1 depicts the process of synaptic pruning. It is evident that

we need to specify two crucial parameters. The first parameter is the threshold, which indicates

which connections may need pruning. The second parameter is the warning time, which

indicates how long the related connection will remain active before being deleted. However,

here the criterion is training error instead of connection weights.

Use it or lose it: neuroscientists refer to the decrease in spine density as "synaptic pruning."

Through this process, weaker structures are eliminated, reallocating resources to the surviving

6

ones so they can become stronger and more stable. As it became abundantly evident that

synaptic activity directs appropriate pruning, scientists focused on identifying the cellular

processes that might control the remodeling [38].

Figure 2: Process of synaptic pruning

We determine a threshold value for the acceptable error in order to guide the pruning process.

This threshold serves as a benchmark to evaluate the significance of each connection within

the network. During each iteration, we closely monitor the connections whose removal results

in minimal increases in error compared to the previous step. These connections, having

demonstrated a consistently low impact on overall network performance, are considered

potential candidates for removal. To ensure a cautious and reliable pruning process, we

introduce a control mechanism known as the "warning number." This parameter defines the

required consistency of a connection's low contribution across multiple evaluations.

Specifically, connections that remain below the error threshold for a certain number of

consecutive iterations (defined by the warning number) are identified as weak contributors and

selected for pruning. This progressive evaluation prevents the premature removal of

connections that might exhibit temporary fluctuations in importance due to network dynamics.

This method allows for a gradual and robust reduction in network complexity, as only the

connections with persistently negligible impact are pruned. By continuously reassessing the

error contribution of each connection, the proposed approach mimics biological pruning

mechanisms, ensuring that only truly redundant connections are eliminated. The procedure of

the proposed pruning technique is illustrated in Fig. 2, which visually represents the step-by-

step process, including error evaluation, candidate selection, application of the warning number

criterion, and final pruning decisions.

7

Figure 2: Flowchart of the proposed pruning

The pruning pseudo-code is presented in detail in Table 1. This combined pruning method is

presented to address the disadvantages of existing pruning methods as mentioned in the

previous sections: relying only on the weighted domain is not sufficient, and there is a high

probability that some very important network connections are omitted. We addressed this

weakness by sorting the connections, and after finding the connections susceptible to deletion,

the removal is not done in one step by decreasing the value once. We successively caution the

pruning candidates and prune them based on these warnings.

8

Table1: Pruning pseudo code

In summary, the evaluation of all network connections is carried out based on their contribution

to the overall network error. Specifically, we determine the error introduced by individually

removing each connection and then rank the connections according to the magnitude of these

errors. Connections associated with the least error increases are considered for removal, guided

by a pruning rate defined by the designer. Consequently, our pruning strategy incorporates two

key elements: evaluating connections based on training error and tracking their iterative weak

𝑇𝑟𝑎𝑖𝑛 𝑛𝑒𝑡𝑤𝑜𝑟𝑘

𝐶𝑟𝑒𝑎𝑡𝑒 𝑃𝑟𝑢𝑛𝑒𝑁𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑤𝑖𝑡ℎ 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝑎𝑛𝑑 𝑠𝑖𝑧𝑒 𝑠𝑎𝑚𝑒 𝑎𝑠 𝑚𝑎𝑡𝑙𝑎𝑏 𝑁𝑁𝑇

𝑃𝑟𝑢𝑛𝑒𝑁𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 = 0

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑝𝑟𝑢𝑛𝑒 = 3 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑤𝑒 𝑤𝑎𝑛𝑡 𝑎 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 𝑡𝑜 𝑛𝑜𝑡 𝑏𝑒 𝑐𝑢𝑡𝑡𝑒𝑑.

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 30%

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝐸𝑟𝑟𝑜𝑟𝑙𝑎𝑦𝑒𝑟,𝑖,𝑗 = 0

𝑙𝑜𝑜𝑝 𝑠𝑡𝑒𝑝𝑠 𝑒𝑎𝑐ℎ 𝑠𝑒𝑐𝑜𝑛𝑑

 𝑙𝑜𝑜𝑝 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠

 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑙𝑎𝑦𝑒𝑟,𝑖, = 0

 𝐸𝑟𝑟𝑜𝑟𝑙𝑎𝑦𝑒𝑟,𝑖,𝑗 = 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑒𝑟𝑟𝑜r

𝑒𝑛𝑑 𝑙𝑜𝑜𝑝

𝑃𝑟𝑢𝑛𝑒𝑝𝑒𝑟𝑐𝑒𝑛𝑡 =
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

100
∗ (𝑀𝑎𝑥𝑖𝑚𝑢𝑚(𝑒𝑟𝑟𝑜𝑟) − 𝑀𝑖𝑛𝑖𝑚𝑢𝑚(𝑒𝑟𝑟𝑜𝑟))

 𝑠𝑜𝑟𝑡 𝐸𝑟𝑟𝑜𝑟 𝑚𝑎𝑡𝑟𝑖𝑥 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔

𝑓𝑜𝑟 𝑒𝑟𝑟𝑜𝑟 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 1 𝑡𝑜 𝑐𝑜𝑢𝑛𝑡𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 − 𝑃𝑟𝑢𝑛𝑒𝑝𝑒𝑟𝑐𝑒𝑛𝑡 ∗ 𝑐𝑜𝑢𝑛𝑡𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝑃𝑟𝑢𝑛𝑒𝑁𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑡𝑒𝑟𝑟𝑜𝑟 𝑐𝑜𝑢𝑛𝑡𝑒𝑟
= 0

 𝑒𝑛𝑑 𝑓𝑜𝑟

𝑓𝑜𝑟 𝑒𝑟𝑟𝑜𝑟 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 𝑐𝑜𝑢𝑛𝑡𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 − 𝑃𝑟𝑢𝑛𝑒𝑝𝑒𝑟𝑐𝑒𝑛𝑡 ∗ 𝑐𝑜𝑢𝑛𝑡𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 + 1 𝑡𝑜 𝑒𝑛𝑑

𝑃𝑟𝑢𝑛𝑒𝑁𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑡𝑒𝑟𝑟𝑜𝑟 𝑐𝑜𝑢𝑛𝑡𝑒𝑟
+ +

 𝑒𝑛𝑑 𝑓𝑜𝑟

𝑙𝑜𝑜𝑝 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝑖𝑓 𝑃𝑟𝑢𝑛𝑒𝑁𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑝𝑟𝑢𝑛𝑒

 𝑃𝑟𝑢𝑛𝑒 𝑡ℎ𝑖𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛

 𝑒𝑛𝑑 𝑖𝑓

 𝑒𝑛𝑑 𝑙𝑜𝑜𝑝

𝑒𝑛𝑑 𝑙𝑜𝑜𝑝

9

scores. Ultimately, this process yields a pruned network that significantly outperforms the

original configuration.

The motivation behind the proposed pruning strategy stems from the limitations observed in

existing methods. Most conventional pruning techniques rely heavily on static evaluations,

primarily based on weight magnitude or sensitivity analyses performed either before or after

training. Such static approaches often fail to capture the dynamic behavior and real-time

importance of connections throughout the learning process, leading to the risk of pruning

significant but low-magnitude connections and potentially degrading network performance.

In contrast, the human brain undergoes synaptic pruning based on continuous monitoring of

synaptic activity, gradually eliminating weak and unused connections while reinforcing the

strong ones. Inspired by this biological process, our approach integrates a dynamic evaluation

criterion that monitors the real-time contribution of each connection to the overall training

error. By focusing on the impact of each connection on network performance rather than solely

on its weight magnitude, we ensure that only truly redundant connections are pruned.

Moreover, the introduction of a "warning number"—requiring multiple consecutive

evaluations before pruning—prevents the premature removal of connections due to temporary

fluctuations, thus enhancing the robustness of the pruning process. This feature becomes

particularly crucial in noisy or uncertain environments, such as industrial process modeling,

where data variability can affect the stability of traditional pruning methods.

Therefore, the proposed method not only addresses the shortcomings of static and heuristic-

driven pruning approaches but also offers a biologically plausible, adaptive, and noise-resilient

solution for optimizing deep neural network architectures. These attributes make it a highly

appropriate choice for complex, real-world applications.

4. Comparison Results and Discussion

In this section, we apply the suggested method to a neural network model of a refinery process’s

distillation tower in order to assess its efficacy. The objective is to investigate how, in the case

of ideal and noisy data, the proposed algorithm can enhance identification accuracy and

convergence speed.

The distillation tower, which is a multi-input, multi-output (MIMO) nonlinear system, is a

general and inseparable part of a refinery. A distillation column is a device for separating

components of a solution. In fact, in the distillation tower, the components of a solution are

separated based on their volatility and boiling point differences. Industrial distillation towers

are widely used in various process industries, but one of their main uses is crude oil refinement.

10

In the oil industry, different hydrocarbons are separated based on their volatility by the

distillation method. The ethane-ethylene distillation column is one of the most widely used

towers. Due to its significance, high-purity ethylene production is required.

Our data belongs to an ethane-ethylene distillation column identification experiment. There are

four series in the data [39]:

 U_dest, Y_dest: without noise (ideal series)

 U_dest_n10, Y_dest_n10: 10 percent additive white noise

 U_dest_n20, Y_dest_n20: 20 percent additive white noise

 U_dest_n30, Y_dest_n30: 30 percent additive white noise

There are 90 samples for neural network training. The following describes the inputs and

outputs:

Inputs:

1. The proportion between feed flow and reboiler duty

2. The relationship between feed flow and reflux rate

3. Proportion between the feed flow and the distillate

4. Composition of input ethane

5. Top pressure

Outputs:

1. Top ethane composition

2. Bottom ethylene composition

3. Top-bottom differential pressure.

Therefore, we use a deep network with 5 inputs and 3 outputs and also 90 connections (Fig. 3).

We can leverage the capabilities of the deep network, provided that we first have correct weight

training and, secondly, to increase the speed of the network and prevent overfitting, we find

the best possible structure for the network through our structural optimization scheme.

Figure 3: Applied Deep Neural Network

First, we train the network with the data we have. Fig. 4 shows how the network performance

changes (performance function value) each time the network is trained. It includes three curves

with different colors for training, validation, and test data. The value of the performance

function on the data in each category is displayed in each plot. The horizontal axis label

11

indicates the number of times (epochs) the network has been trained. Also, the title of this

graph shows that the best performance of the network (on training and validation data) was

achieved in the second epoch, along with the value of the performance function at this point.

This optimal point is also marked by two crossed dotted lines whose intersection is at the

optimal point, and a green circle is drawn around this point. Furthermore, the regression charts

for the training, validation, and test data are given in Fig. 5.

Figure 4: Performance of the deep neural network

Figure 5: Regression for the training, validation and test data

In the training state visualization (Fig. 6), more information from the training is displayed; for

example, the “val fail” graph shows in which epoch the evaluation of the validation data was

12

rejected. This graph shows the cumulative number of failed evaluations. Training stops

whenever the network fails six consecutive evaluations.

Figure 6: Training state

Comparing different pruning techniques to assess how far the field has come in recent years is

a challenging task. Nonetheless, two significant metrics are typically employed and presented

here. The compression ratio is defined as the new size divided by the original size. The

theoretical speedup is defined as the ratio of the initial number of multiply-adds to the new

number. The performance function is the function on which the performance of the network is

measured. In this problem, our performance function is MSE (mean square error). In Table 2,

comparative data are shown for different scenarios. We study networks with different

topologies (shallow and deep) and also compare our approach to the dropout method [24],

which is a powerful technique to prevent overfitting under similar circumstances.

 Table 2: Comparative Results

 NN type

 Parameters

Shallow NN

(1 hidden layer)

NN

(2 hidden layers)

Deep NN

(3 hidden layers)
Initial Dropout

PROPOSED

 Initial Dropout

PROPOSED

 Initial Dropout

PROPOSED

Accuracy

 (%)

76.62 77.10 77.94 81.35 82.70 84.73 82.63 83.87 85.89

Net. Compression

(%)

- 47 47.26 - 53 53.16 - 58 58.71

Execution Time

(ms)

15 17.4 13.5 16 18.7 14.45 17.5 19.2 15

As seen, we accelerated network performance and training by utilizing an inventive pruning

technique. It is simple to expand the suggested pruning method to other intelligent process

industries. Noisy data, which is commonly encountered in real-world industrial settings, is one

of the most significant issues in measurement and control. This work aims to investigate

13

whether the proposed algorithm can enhance the speed of convergence and identification

accuracy even in cases where a large number of connections are ignored and, more crucially,

the data is noisy.

The results of the deep network pruned using the proposed approach, presented in Fig. 7, are

compared with those of the shallow network when dealing with data that is noise-free, with

10%, 20%, and 30% noise. It is evident that the proposed structure performs noticeably better,

particularly when handling noisy data.

Figure 7: Deep and Shallow networks comparison in noisy data management

Concisely, a deep network pruned with the proposed method is used to model the distillation

tower, and its efficiency was demonstrated compared to the shallow network. Additionally, we

compared (Table 3) the RMSE criterion between the proposed model and three other structures

in order to compare it with other neural network-based models. The mentioned structures are:

nonlinear auto-regressive with exogenous inputs (NARX)-based ANFIS and NARX structure-

based neural networks (using both the Levenberg–Marquardt and the Steepest Descent

algorithms) [40]. The comparison of errors amply demonstrates the superiority of the proposed

method over alternative structures.

0

0/5

1

1/5

2

2/5

3

3/5

4

4/5

5

without noise with 10% noise with 20% noise with 30% noise

M
ax

im
u

m
 e

rr
o

r

Deep Net Shallow Net

14

Table 3: RMSE for Neural Networks Models, ANFIS and the proposed

Outputs Steepest

Descent

Levenberg

Marquardt

ANFIS PROPOSED

Top Composition 0.639 0.2090 0.0421 0.0233

Bottom Composition 1.3127 0.4913 0.031 0.024

Pressure Difference 1.0053 0.2480 0.0189 0.0117

Generalization Capability

Although this study focused on the distillation column dataset, the underlying principles of the

proposed pruning method are generalizable to other complex, nonlinear systems. The dynamic

evaluation of connection contributions ensures that the method adapts to diverse data patterns,

making it applicable to various domains where overfitting and redundancy are significant

concerns. The progressive, biologically inspired pruning strategy further enhances the model's

ability to handle unseen data, supporting its potential use in broader industrial and scientific

applications.

Run Time Complexity Analysis

From a computational perspective, the proposed method introduces additional overhead during

training due to continuous connection evaluation. However, this overhead is strategically

balanced by the significant reduction in network size, which directly impacts inference speed

and computational resource requirements. The results in Table 2 highlight that despite the

added complexity in the training phase, the overall execution time is reduced post-pruning.

This trade-off is particularly beneficial in real-time applications where inference speed is

critical. Additionally, the pruning process does not require retraining from scratch, which

further mitigates computational costs. By focusing on preserving high-contribution

connections, the method ensures efficiency without compromising accuracy, positioning it as

a practical solution for resource-constrained environments.

Comparative Analysis of Pruning Methods

To provide a broader and more comprehensive perspective, we compared our proposed pruning

method with several state-of-the-art approaches in the field. These include the Lottery Ticket

Hypothesis (LTH), SNIP, GraSP, Movement Pruning, and Global Magnitude Pruning.

15

The comparison focuses on key characteristics such as the use of dynamic monitoring,

biological inspiration, timing of pruning during the learning process, and robustness to noisy

data.

Table 4: Comparison of Pruning Methods Based on Key Characteristics

Method Dynamic

Monitoring

Biologically

Inspired

Pretraining/Post-

training

NoisyData

Robustness

Lottery Ticket

Hypothesis

(LTH)

✕ ✕ Post-training ✕

SNIP ✕ ✕ Pre-training ✕

GraSP ✕ ✕ Pre-training ✕

Movement

Pruning

 ✕ During fine-

tuning
✕

Global

Magnitude

Pruning

✕ ✕ Post-training ✕

Proposed

Method

 During training

As seen in Table 4, most of the recent methods focus on static or pre-training evaluations and

are not inspired by biological processes. Furthermore, they generally lack robustness when

dealing with noisy data, which is common in real-world industrial applications. In contrast, our

proposed method incorporates dynamic monitoring of connection contributions throughout

training, guided by brain-inspired synaptic pruning principles. This dynamic evaluation not

only enables more precise pruning decisions but also enhances the model's ability to handle

noisy datasets, as demonstrated by the experimental results. We have included a quantitative

comparison between the proposed method and a conventional pruning method (Global

Magnitude Pruning) and a recent state-of-the-art method, SNIP. Comparisons are made on both

the industrial distillation column dataset and the MNIST benchmark dataset. The results clearly

indicate that the proposed method consistently achieves higher accuracy and compression rates

across both datasets. This highlights the method's potential for broader application in domains

where data quality and model efficiency are critical.

16

Table 5: Quantitative Evaluation of the Proposed Method Versus Recent Approaches

Dataset Method Accuracy (%) Compression Rate

(%)

Distillation

Column

Global Magnitude 83.2 50%

Distillation

Column

Proposed Method 85.9 58.7%

MNIST SNIP 98.2 40%

MNIST Proposed Method 98.5 52%

The results in Table 5 indicate that our proposed method consistently outperforms both

traditional and recent state-of-the-art pruning techniques in terms of accuracy and compression

rate across different datasets.

Generalization and Overfitting Control

In addition to improving model efficiency, pruning methods play a critical role in enhancing

generalization by reducing network complexity. The proposed brain-inspired dynamic pruning

approach continuously monitors and removes redundant connections during training, leading

to a more compact network structure with fewer parameters. This reduction in the model's

capacity limits its ability to overfit the training data and facilitates better generalization to

unseen samples. The results reported in Table 5 further support this claim, showing minimal

gaps between training and testing performance across different datasets, including the

industrial distillation column and the MNIST benchmark. Such consistency in performance

demonstrates that the proposed pruning strategy effectively mitigates overfitting and improves

the network’s generalizability, even under noisy and complex conditions.

Limitations and Future Work

While the current study provides comprehensive validation on the distillation column dataset,

future work will focus on applying the proposed method to other datasets to further validate its

generalizability. Nevertheless, the algorithm's foundation, rooted in connection contribution

evaluation and brain-inspired pruning, is inherently adaptable to a wide range of neural network

architectures and application domains.

5. Conclusion

 This study introduced a dynamic pruning method inspired by synaptic pruning in the human

brain to optimize deep neural network architectures. By continuously monitoring the real-time

contribution of connections during training, the method preserves important neurons and

gradually eliminates redundant ones. Simulation results demonstrated improved or preserved

17

accuracy, significant network compression, and faster training times. Additionally, the method

showed robustness against noisy data, highlighting its practical applicability. A key advantage

of our method is its ability to enhance generalization by reducing network complexity, thereby

mitigating overfitting. The minimal gap between training and testing performance across

different datasets confirms this capability. Furthermore, comparative analysis indicated that

our approach outperforms both conventional pruning techniques and some recent state-of-the-

art methods, in terms of accuracy and compression rates. Overall, the findings demonstrate that

the proposed pruning strategy is efficient for optimizing neural networks. Future work will

explore its extension to more complex architectures and broader application domains, along

with further validation on additional benchmark datasets.

References

[1] Z. Allen-Zhu, Y. Li, and Y. Liang, “Learning and overparameterized neural networks,

going beyond two layers,” in Advances in Neural Information Processing Systems, vol. 32,

NeurIPS, 2019.

[2] C. Cortes, X. Gonzalvo, V. Kuznetsov, M. Mohri, and S. Yang, “AdaNet: Adaptive

Structural Learning of Artificial Neural Networks,” Proceedings of Machine Learning

Research, vol. 70, pp. 874–883, 2017.

[3] J. Chauvin, “Generalization performance of overtrained backpropagation networks,” in

European Association for Signal Processing Workshop, pp. 45–55, 1990.

[4] G. Towell, M. K. Craven, and J. W. Shavlik, “Constructive induction in knowledge-based

neural networks,” in Machine Learning: Proceedings of the Eighth International Workshop, L.

Birnbaum and G. Collins, Eds. San Mateo, CA: Morgan Kaufmann, 1991.

[5] Y. Huang, Y. Cheng, D. Chen, H. Lee, J. Ngiam, Q. V. Le, and Z. Chen, “Gpipe: Efficient

training of giant neural networks using pipeline parallelism,” arXiv preprint arXiv:1811.06965,

2018.

[6] V. Sze, Y.-H. Chen, T.-J. Yang, and J. Emer, “Efficient processing of deep neural networks:

A tutorial and survey,” arXiv preprint arXiv:1703.09039, 2017.

[7] S. A. Janowsky, “Pruning versus clipping in neural networks,” Physical Review A, vol. 39,

no. 12, pp. 6600–6603, 1989.

[8] G. Chechik, I. Meilijson, and E. Ruppin, “Neuronal regulation: a biologically plausible

mechanism for efficient synaptic pruning in development,” Neurocomputing, vol. 26–27, pp.

633–639, 1999.

[9] A. Pascual-Leone, A. Amedi, F. Fregni, and L. B. Merabet, “The plastic human brain

cortex,” Annual Review of Neuroscience, vol. 28, pp. 377–401, 2005.

[10] C. A. Mangina and E. N. Sokolov, “Neuronal plasticity in memory and learning abilities:

theoretical position and selective review,” Psychophysiology, vol. 60, pp. 203–214, 2006.

[11] M. V. D. Johnston, A. Ishida, W. N. Ishida, H. B. Matsushita, A. Nishimura, and M. Tsuji,

“Plasticity and injury in the developing brain,” Developmental Medicine and Child Neurology,

vol. 31, pp. 1–10, 2009.

18

[12] G. Hinton, O. Vinyals, and J. Dean, “Distilling knowledge in a neural network,” arXiv

preprint arXiv:1503.02531, 2015.

[13] G. Chechik, I. Meilijson, and E. Ruppin, “Synaptic pruning in development: a

computational account,” Neural Computation, vol. 10, pp. 1759–1777, 1998.

[14] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and connections for

efficient neural networks,” in Advances in Neural Information Processing Systems (NIPS), pp.

1135–1143, 2015.

[15] P. Molchanov, A. Mallya, S. Tyree, I. Frosio, and J. Kautz, “Importance estimation for

neural networks pruning,” arXiv preprint arXiv:1906.10771, 2019.

[16] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning convolutional neural

networks for resource-efficient inference,” in Proceedings of the International Conference on

Learning Representations (ICLR), 2017.

[17] Y. LeCun, J. S. Denker, S. Solla, R. E. Howard, and L. D. Jackel, “Optimal brain damage,”

in Advances in Neural Information Processing Systems (NIPS), 1989.

[18] B. Hassibi and D. G. Stork, “Second-order derivatives for network pruning: Optimal Brain

Surgery,” in Advances in Neural Information Processing Systems, vol. 5, pp. 164–171, 1993.

[19] Y. He, P. Liu, Z. Wang, Z. Hu, and Y. Yang, “Filter pruning via geometric median for

deep convolutional neural network acceleration,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 4340–4349, Long Beach, CA, 2019.

[20] R. Yu, A. Li, C.-F. Chen, J.-H. Lai, V. I. Morariu, X. Han, et al., “NISP: pruning networks

using neuron importance score propagation,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 9194–9203, Salt Lake City, UT, 2018.

[21] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning filters for efficient

configurations,” arXiv preprint arXiv:1608.08710, 2016.

[22] Y. He, G. Kang, Y. Dong, Y. Fu, and Y. Yang, “Soft filter pruning for accelerating deep

convolutional neural networks,” arXiv preprint arXiv:1808.06866, 2018.

[23] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a

simple way to prevent neural networks from overfitting,” Journal of Machine Learning

Research, vol. 15, pp. 1929–1958, 2014.

[24] L. Wan, M. Zeiler, S. Zhang, Y. LeCun, and R. Fergus, “Regularization of neural networks

using DropConnect,” in Proceedings of the International Conference on Machine Learning

(ICML), pp. 1058–1066, Atlanta, GA, 2013.

[25] X. Sun, X. Ren, S. Ma, and H. Wang, “MeProp: Sparsified back propagation for

accelerated deep learning with reduced overfitting,” arXiv preprint arXiv:1706.06197, 2017.

[26] P. J. Angeline, G. M. Saunders, and J. B. Pollack, “An evolutionary algorithm that

constructs recurrent neural networks,” IEEE Transactions on Neural Networks, vol. 5, pp. 54–

65, 1994.

[27] X. Yao and Y. Liu, “Evolving artificial neural networks through evolutionary

programming,” in Proceedings of the 5th Annual Conference on Evolutionary Programming,

pp. 257–266, San Diego, CA, 1996.

[28] J. C. Park and S. T. Abusalah, “Maximum entropy: a special case of minimum cross-

entropy applied to nonlinear estimation by an artificial neural network,” Complex Systems, vol.

11, pp. 289–307, 1997.

19

[29] E. Vonk, L. C. Jain, and R. Johnson, “Using genetic algorithms with grammar encoding

to generate neural networks,” in Proceedings of the IEEE International Conference on Neural

Networks, vol. 4, pp. 1928–1931, 1995.

[30] I. Ioan, C. Rotar, and A. Incze, “The optimization of feed-forward neural network structure

using genetic algorithms,” in Proceedings of the International Conference on Theory and

Applications of Mathematics and Informatics (ICTAMI), pp. 223–234, Thessaloniki, 2004.

[31] F. Zhao, T. Zhang, Y. Zeng, and B. Xu, “Towards a brain-inspired developmental neural

network by adaptive synaptic pruning,” in Proceedings of the International Conference on

Neural Information Processing, pp. 182–191, Guangzhou, 2017.

[32] A. Ahmadi and B. Mashoufi, “New optimized approach for artificial neural networks

training using genetic algorithms and parallel processing,” International Review on Computers

and Software, vol. 7, no. 5, 2012.

[33] J. Frankle and M. Carbin, “The Lottery Ticket Hypothesis: on sparse trainable neural

networks,” PhD diss., Massachusetts Institute of Technology, 2023.

[34] N. Lee, T. Ajanthan, and P. H. Torr, “SNIP: Single-shot network pruning based on

connection sensitivity,” arXiv preprint arXiv:1810.02340, 2018.

[35] C. Wang, G. Zhang, and R. Grosse, “Picking winning tickets before training by preserving

gradient flow,” arXiv preprint arXiv:2002.07376, 2020.

[36] V. Sanh, T. Wolf, and S. Ruder, “Movement pruning: Adaptive sparsity by fine-tuning,”

Advances in neural information processing systems, vol. 33, pp. 20378-20389, 2020.

[37] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and connections for

efficient neural networks,” Advances in neural information processing systems, vol. 28, 2015.

[38] M. Morini, F. Bizzotto, F. Perrucci, F. Filipello, and M. Matteoli, “Strategies and tools for

studying microglial-mediated synapse elimination and refinement,” Frontiers in Immunology,

2021.

[39] R. P. Guidorzi, M. P. Losito, and T. Muratori, “The range error test in the structural

identification of linear multivariable systems,” IEEE Transactions on Automatic Control, vol.

27, pp. 1044–1054, 1982.

[40] E. Abdul Jaleel and K. Aparna, “Identification of ethane-ethylene distillation column using

neural network and ANFIS,” in Proceedings of the Fifth International Conference on Advances

in Computing and Communications, 2015.

